L41: Lab 4 - The TCP State Machine

Dr Robert N. M. Watson

1 May 2015
L41: Lab 4 - The TCP State Machine

- The TCP state machine
- New IPC benchmark mode
- New DTrace probes of interest
Introduction

Lect 6: The Transmission Control Protocol (TCP)

Lect 6: TCP goals and properties

- Reliable, ordered, byte-stream transport protocol over IP
- Three-way handshake: SYN / SYN-ACK / ACK (mostly!)
- Flow control via advertised window size in ACKs
- Congestion control via packet loss and ECN (‘fairness’)
- Network may delay, (reorder), drop, corrupt packets
- Sequence numbers ACK’d; data retransmitted on loss
- Round-Trip Time (RTT) measured to time out loss
Loopback interface, IPFW, and DUMMYNET

- Loopback interface
 - Simulated local network interface: packets “loop back”
 - Interface name lo0
 - Assigned IPv4 address 127.0.0.1
 - Configure the loopback MTU once per boot.

 - Numbered rules classify packets and perform actions
 - Actions include accept, reject, inject into DUMMYNET ...
 - We will match lab flows using the TCP port number 10141
 - Configure once per boot (and with care!)

- DUMMYNET - link simulation tool by Rizzo, et al.
 - Widely used in network research
 - Impose simulated network conditions – delay, bandwidth, loss, ...
 - Configure and reconfigure as needed for experiments

- Instructions in lab assignment
TCP in the IPC benchmark

root@beaglebone:/data/lab4 # ./ipc-static

ipc-static [-Bqsv] [-b buffersize] [-i pipe|local|tcp] [-p tcp_port]
[-P l1d|l1i|l2|mem|tlb|axi] [-t totalsize] mode

Modes (pick one - default 1thread):
 1thread IPC within a single thread
 2thread IPC between two threads in one process
 2proc IPC between two threads in two different processes

Optional flags:
 -B Run in bare mode: no preparatory activities
 -i pipe|local|tcp Select pipe, local sockets, or TCP (default: pipe)
 -p tcp_port Set TCP port number (default: 10141)
 -P l1d|l1i|l2|mem|tlb|axi Enable hardware performance counters
 -q Just run the benchmark, don’t print stuff out
 -s Set send/receive socket-buffer sizes to buffersize
 -v Provide a verbose benchmark description
 -b buffersize Specify a buffer size (default: 131072)
 -t totalsize Specify total I/O size (default: 16777216)

- New tcp IPC type
- New -p argument to set the port number
DTrace probes

Described in more detail in the lab assignment:

fbt::syncache_add:entry TCP segment installs new SYN-cache entry

fbt::syncache_expand:entry TCP segment converts SYN-cache entry to full connection

fbt::tcp_do_segment:entry TCP segment received post-SYN cache

fbt::tcp_state_change:entry TCP state transition

We are using implementation-specific probes (FBT) rather than portable TCP probes due to a bug in the FreeBSD/armv7 implementation of DTrace – the last (and most critical!) argument goes missing: the TCP header! We will fix this .. but not today.
Exploratory questions

- Trace state transitions occurring in test TCP connections
- Identify causes of transitions – packets, system calls (etc)
- Varying one-way latency, explore performance of the benchmark with TCP
Experimental questions for lab report

- Plot a TCP state-transition diagram for both directions of a flow
- Label the state-transition diagram with causes
- Compare the diagram with RFC 793
- Begin performance analysis of TCP latency vs. throughput

In the next lab, we will start a causal analysis of why latency affects bandwidth in the way that it does
This lab session

- Upgrade your SD Card image (again)
- Ensure that you can build and run the TCP benchmark
- Set up IPFW, DUMMYNET, and loopback MTU (see notes)
- Ask us if you have any questions or need help
- Start with the TCP state machine analysis