L41: Lab 3 - Microarchitectural implications of IPC

Dr Robert N. M. Watson

11 March 2015
L41: Lab 3 - Microarchitectural implications of IPC

- Hardware performance counters
- Extending Lab 2 from OS effects to architecture/microarchitecture
- Updates to the IPC benchmark
- Gather further data for assessed Lab Report 2
Hardware performance counters

- Seems simple enough:
 - Source code compiles to instructions
 - Instructions are executed by the processor

- But some instructions take longer than others: multiply, etc
 - Optimisation is not just about reducing instruction count: some instructions matter more than others
 - More generally, hardware-level information can reveal where hardware-software interactions may be inefficient – e.g., poor utilisation of a cache or the TLB

- Hardware performance counters let us directly ask the processor about *architectural* and *microarchitectural* events
 - E.g., instruction count, memory accesses, cache-miss rate, AXI bus traffic to DRAM
Introduction

Sketch of ARM Cortex A8 memory hierarchy

This is a very, very rough sketch indeed!
The benchmark – now with added PMC

root@beaglebone:/data/lab3 # ./ipc-static
ipc-static [-Bqsv] [-b buffersize] [-i pipe|socket]
 [-P l1d|l1i|l2|mem|tlb|axi] [-t totalsize] mode

Modes (pick one – default 1thread):
 1thread IPC within a single thread
 2thread IPC between two threads in one process
 2proc IPC between two threads in two different processes

Optional flags:
 -B Run in bare mode: no preparatory activities
 -i pipe|socket Select pipe or socket for IPC (default: pipe)
 -P l1d|l1i|l2|mem|tlb|axi Enable hardware performance counters
 -q Just run the benchmark, don’t print stuff out
 -s Set send/receive socket-buffer sizes to buffersize
 -v Provide a verbose benchmark description
 -b buffersize Specify a buffer size (default: 131072)
 -t totalsize Specify total I/O size (default: 16777216)

➤ New −P argument request profiling of load/store instructions, L1 D-cache, L1 I-cache, L2 cache, I-TLB, D-TLB, and AXI
Example: Profile memory instructions

root@beaglebone:/data/lab3 # ./ipc-static -vP mem -b 1048576 -i socket
1thread

Benchmark configuration:
 buffersize: 1048576
 totalsize: 16777216
 blockcount: 16
 mode: 1thread
 ipctype: socket
 time: 0.084140708

pmctype: mem
 INSTR_EXECUTED: 25463397
 CLOCK_CYCLES: 46233168
 CLOCK_CYCLES/INSTR_EXECUTED: 1.815672
 MEM_READ: 8699699
 MEM_READ/INSTR_EXECUTED: 0.341655
 MEM_READ/CLOCK_CYCLES: 0.188170
 MEM_WRITE: 7815423
 MEM_WRITE/INSTR_EXECUTED: 0.306928
 MEM_WRITE/CLOCK_CYCLES: 0.169044

194721.45 KBytes/sec
Example: Profile memory instructions

- Benchmark run pushed 16m data through a socket using 1m buffers for reads and writes
- Reasonable expectation of load and store memory footprints to be $16m \times 2 + \epsilon$ reflecting copies to and from kernel buffers
- Word size in ARMv7 is 32 bits
- Memory reads $(8,699,699) \times 4 = \approx 32M$ – sum of buffer accesses in user and kernel memory
- Could now query L1, L2 caches: how many of those accesses are in each cache, and how does it affect performance?
Exploratory questions

- How do requested memory access vary across our six benchmark configurations?
- How does varying the buffer size (and kernel socket-buffer size) impact L1, L2 cache effectiveness?
- In what situations might using a smaller buffer size to improve cache effectiveness hurt performance?
Experimental questions for lab report

- How does changing the IPC buffer size affect memory behaviour?
- Can we reach conclusions about the scalability of pipes vs. sockets?
- How does DTrace itself perturb the microarchitecture?
This lab session

- Upgrade your SD Card image (again)
 - This version has PMC improvements and further DTrace fixes
 - Ensure you’ve saved any scripts/data from your old card
 - You will need to reinstall your SSH key on the new SD card
 - Return the old card to us – we may provide future updates!

- Use this session to continue to build experience:
 - Build and use the updated IPC benchmark
 - Use PMC to analyse the benchmark

- Do ask us if you have any questions or need help