L41: Lab 2 - IPC

Dr Robert N. M. Watson

9 March 2015

Dr Robert N. M. Watson L41: Lab2-IPC 9 March 2015 1/10



Introduction

L41: Lab 2 - IPC

v

A quick note on vim_fault ()

Learn about (and trace) POSIX IPC

Explore buffering and scheduler interactions
Measure the probe effect

Start to gather data for assessed Lab Report 2

v

v

\4

v

Dr Robert N. M. Watson L41:Lab2-IPC 9 March 2015 2/10



Introduction

Recall: A (kernel) programmer model for VM

“vm_map_entry”

| “vm_object”
Py X
Read/write,
™ 3
] grows down, [~Na sw:;‘{)n;gf:d
A anonymous .
2] object VM object
a Read/write,
8 anonymous
T object
shadow
Read/copy-on- / anonymous
% write, named swap-backed
5 object VM object
2
©
T | Read/copy-on-
8 write, named
object
vnode
/ VM object
“vmspace”,
“vm_map”

Machine-independent virtual memory (VM)

Dr Robert N. M. Watson

\ vnode
“/bin/dd”

L41:Lab2-IPC

physical
map

>

physical
memory
data
i data
te
to data
pde te
pde ot
data
superpage
pde
te code
te
page-table te code
directory te
page-table
entry
Machine-dependant physical map (PMAP)
9 March 2015 3/10



Introduction

The Mach VM fault handler (vim_fault)

» Key goal of the Mach VM system: be as lazy as possible

» Fill pages (with file data, zeroes, COW) on demand
» Map pages into address spaces on demand
» Flush TLB as infrequently as possible

Any work avoided means reduced CPU cycles and less disk 1/0

Avoid as much work as possible when creating a mapping
(e.g., mmap (), execve ())

v

v

v

Instead, do on-demand in the MMU trap handler, vim_fault ()

Machine-independent function drives almost all VM work
Input: faulting virtual address, output mapped page or signal
Look up object to find cached page; if none, invoke pager
May trigger behaviour such as zero filling or copy-on-write

v

vvyy

v

A good thing to probe with DTrace to understand VM traps

Dr Robert N. M. Watson L41:Lab2-IPC 9 March 2015 4/10



Introduction

The benchmark

[guest@beaglebone ~/lab2] ./ipc-static
ipc-static [-Bgsv] [-b buffersize] [-1 pipel|socket] [-t totalsize] mode

Modes (pick one - default lthread):

lthread IPC within a single thread
2thread IPC between two threads in one process
2proc IPC between two threads in two different processes

Optional flags:

-B Run in bare mode: no preparatory activities

-1 pipelsocket Select pipe or socket for IPC (default: pipe)

-q Just run the benchmark, don’t print stuff out

-s Set send/receive socket-buffer sizes to buffersize
-v Provide a verbose benchmark description

-b buffersize Specify a buffer size (default: 131072)

-t totalsize Specify total I/0 size (default: 16777216)

Simple, bespoke IPC benchmark: pipes and sockets
Statically or dynamically linked

Adjust user and kernel buffer sizes

Various output modes

v vyYVvyYyy

Dr Robert N. M. Watson L41: Lab2-IPC 9 March 2015 5/10



Introduction

The benchmark (2)

» Three operational modes:

1thread IPC within a single thread of a single process
2thread IPC between two threads of a single process
2proc IPC between two threads in two processes
» Adjust IPC parameters:
-i pipe Use pipe () for IPC
-1 socket Use socketpair () for IPC
-b buffersize Set buffer size used for each IPC system call
-t totalsize Settotal size across all IPCs
-s Also set in-kernel buffer size for sockets
-B Suppress quiescence (whole-program tracing)
» Output flags:

—-g Suppress all output (whole-program tracing)
—-v Verbose output (interactive testing)

Dr Robert N. M. Watson L41:Lab2-IPC 9 March 2015 6/10



Introduction

The benchmark (3)

[guest@beaglebone ~/1ab2]$ ./ipc-static -v -i pipe lthread
Benchmark configuration:

buffersize: 131072

totalsize: 16777216

blockcount: 128

mode: lthread

ipctype: pipe

time: 0.033753791
485397.29 KBytes/sec

\4

Use verbose output

v

Use pipe IPC
Run benchmark in a single thread
Use default buffersize of 128K, totalsize of 16M

v

v

Dr Robert N. M. Watson L41: Lab2-IPC 9 March 2015 7710



Introduction

Exploratory questions

» Baseline benchmark performance analysis:

» How do the various benchmark configurations perform?

» How do distributions of return values from read () and write ()
vary?

» How does setting the socket-buffer size impact socket
performance?

» How much time do pipes vs. sockets spend in system calls?

» How do context-switch rates vary across benchmark
configurations?

» Probe effect and measurement decisions
» How do various types of DTrace instrumentation affect performance
— counting, logging, capturing stack traces?
» How much difference does aggregation make for, for example,
system-call counting?
» How much can sampling be used to reduce overhead — and what is
the impact on accuracy?

Dr Robert N. M. Watson L41:Lab2-IPC 9 March 2015 8/10



Introduction

Experimental questions for lab report

The full lab-report assignment will be distributed during the next lab.
These questions are intended to help you gather data that you will
need for that lab report:

» How does changing the buffer size affect IPC performance? For
sockets, consider both with, and without, the -s flag.

» How might the probe affect cause relatively different performance
impacts for different IPC configurations?

Dr Robert N. M. Watson L41:Lab2-IPC 9 March 2015 9/10



Introduction

This lab session

» Upgrade your SD Card image
» This version has fixes to FBT, stack (), and wallclocktime
» Ensure you've saved any scripts/data from your old card
» You will need to reinstall your SSH key on the new SD card
» Return the old card to us — we may provide future updates!

» Use this session to continue to build experience:

» Build and use the IPC benchmark

» Use DTrace to analyse distributions of system calls, system-call
execution times, and system-call arguments and return values

» Useministat to analyse benchmark results

» Experiment with scheduler tracing

» Do ask us if you have any questions or need help

Dr Robert N. M. Watson L41:Lab2-IPC 9 March 2015 10/10



	Introduction

