
L41 - Lecture 4: The Process Model (2)

Dr Robert N. M. Watson

4 March 2015

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 1 / 19

Introduction

Reminder: last time

1. The process model and its evolution
I Isolation
I Controlled communication to kernel and other processes
I Kernel must initiate communication, but can continue after return

2. Brutal pre-introduction to virtual memory
3. Where do programs come from?
4. Traps and system calls
5. Reading for next time

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 2 / 19

Introduction

This time: more about the process model

1. More on traps and system calls
2. Virtual memory support for the process model
3. Threads and the process model
4. Readings for next time

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 3 / 19

System calls

System calls
I System calls allow user processes to request kernel services

I read() reads data from a file descriptor to user memory
I fork() creates a new process

I Exposed to userspace as system-library functions (e.g., libc)
I Under the hood, a hardware trap transfers control to the kernel
I Once the work is done, the kernel returns control to userspace

I Mostly synchronous, like normal C functions, but not always:
I _exit() never returns
I sigreturn() returns ... but not to a caller
I fork() returns ... twice

I Even if a call is synchronous, its work is often asynchronous
I send() writes data to a socket .. to get somewhere eventually
I aio_write() explicitly performs an asynchronous write;

later calls to aio_return()/aio_error() collect results

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 4 / 19

System calls

System-call invocation from user to kernel

kernel

libc

binary main()

getpid()

vector

syscall()

sys_getpid()

vdso __kernel_vsyscall()

I libc system-call function stubs
provide linkable symbols

I Stubs can execute system-call
instructions directly, or use dynamic
implementations

I Linux vdso
I Xen hypercall page

I Low-level vector calls syscall()
I System-call prologue runs

(e.g., breakpoints, tracing)
I Actual kernel service invoked
I System-call epilogue runs

(e.g., more tracing, signal delivery)

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 5 / 19

System calls

The system-call table: syscalls.master
...
33 AUE_ACCESS STD { int access(char *path, int amode); }
34 AUE_CHFLAGS STD { int chflags(const char *path, u_long flags); }
35 AUE_FCHFLAGS STD { int fchflags(int fd, u_long flags); }
36 AUE_SYNC STD { int sync(void); }
37 AUE_KILL STD { int kill(int pid, int signum); }
38 AUE_STAT COMPAT { int stat(char *path, struct ostat *ub); }
39 AUE_GETPPID STD { pid_t getppid(void); }
...

UserspaceKernel

init_
sysent.c

System-call
entry array

syscalls
.c

System-call
name array

systrace_
args.c

DTrace
‘systrace’
provider

type array

System-call
numbers and
prototypes

libc
stubs

System-call
stubs in libc

system-
call

headers

syscalls
.master

System-call
table

NB: If this looks like RPC stub generation .. that’s because it is.
Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 6 / 19

System calls

Security and reliability
I System calls perform work on behalf a user thread

I Work authorised by the thread’s credential
I Resources (e.g., CPU time, memory) billed to the thread
I Debugging/profiling information exposed to the thread’s owner

I Kernel interface is key Trusted Computing Base (TCB) surface
I Isolation goals: integrity, confidentiality, availability
I Scope global effects except as specified for service
I Enforce access-control policies on all operations
I Provide mechanisms for accountability (e.g., event auditing)

I But the kernel cannot trust user thread
I Handle failures gracefully: terminate process, not kernel
I Avoid priority inversions, unbounded resource allocation, etc
I Confidentiality is expensive; e.g., zero pages, structure padding
I Be aware of covert channels, side channels

I User code is the adversary – may try to break isolation
I System-call arguments and return values are data, not code
I Access user addresses safely (e.g., copyin(), copyout())

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 7 / 19

System calls

System-call entry – the guts: syscallenter

cred_update_thread Update thread cred from process
sv_fetch_syscall_args ABI-specific copyin() of arguments
ktrsyscall ktrace syscall entry
ptracestop ptrace syscall entry breakpoint
IN_CAPABILITY_MODE Capsicum capability-mode check
syscall_thread_enter Thread drain barrier (module unload)
systrace_probe_func DTrace system-call entry probe
AUDIT_SYSCALL_ENTER Security event auditing
sa->callp->sy_call System-call implementation! Woo!
AUDIT_SYSCALL_EXIT Security event auditing
systrace_probe_func DTrace system-call return probe
syscall_thread_exit Thread drain barrier (module unload)
sv_set_syscall_retval ABI-specific return value

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 8 / 19

System calls

getauid: return process audit ID
int
sys_getauid(struct thread *td, struct getauid_args *uap)
{

int error;

if (jailed(td->td_ucred))
return (ENOSYS);

error = priv_check(td, PRIV_AUDIT_GETAUDIT);
if (error)

return (error);
return (copyout(&td->td_ucred->cr_audit.ai_auid, uap->auid,

sizeof(td->td_ucred->cr_audit.ai_auid)));
}

I Current thread, system-call argument structure
I Security checks: lightweight virtualisation, privilege
I Copy value to user address space – can’t write to it directly!
I No synchronisation as all fields thread-local

I Does it matter how fresh the credential pointer is?

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 9 / 19

System calls

System-call return – the guts: syscallret
userret Complicated things like signals
→ KTRUSERRET ktrace syscall return
→ g_waitidle Wait for disk probe to settle
→ addupc_task System-time profiling charge
→ sched_userret Scheduler adjusts priority

... various debugging assertions ...
p_throttled racct resource throttling
ktrsysret Kernel tracing: syscall return
ptracestop ptrace syscall return breakpoint
thread_suspend_check Single-threading check
P_PPWAIT vfork wait

I That is a lot of stuff that largely never happens
I The trick is making all this nothing fast – e.g., via a small number

of per-thread flags and globals that remain in the cache

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 10 / 19

System calls

System calls in practice: dd

time dd if=/dev/zero of=/dev/null bs=10m count=1 status=none
0.000u 0.396s 0:00.39 100.0% 25+170k 0+0io 0pf+0w

syscall:::entry /execname == "dd"/ {
self->start = timestamp;
self->insyscall = 1;

}

syscall:::return /execname == "dd" && self->insyscall != 0/ {
length = timestamp - self->start;
@syscall_time[probefunc] = sum(length);
@totaltime = sum(length);
self->insyscall = 0;

}

END {
printa(@syscall_time);
printa(@totaltime);

}

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 11 / 19

System calls

System calls in practice: dd (2)
time dd if=/dev/zero of=/dev/null bs=10m count=1 status=none
0.000u 0.396s 0:00.39 100.0% 25+170k 0+0io 0pf+0w

sysarch 7645
issetugid 8900
lseek 9571
sigaction 11122
clock_gettime 12142
ioctl 14116
write 29445
readlink 49062
access 50743
sigprocmask 83953
fstat 113850
munmap 154841
close 176638
lstat 453835
openat 562472
read 697051
mmap 770581

3205967

NB: ≈ 3ms total – but time(1) reports 396ms system time?
Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 12 / 19

System calls

Traps in practice: dd (1)
syscall:::entry /execname == "dd"/ {

@syscalls = count();
self->insyscall = 1;
self->start = timestamp;

}

syscall:::return /execname == "dd" && self->insyscall != 0/ {
length = timestamp - self->start; @syscall_time = sum(length);
self->insyscall = 0;

}

fbt::trap:entry /execname == "dd" && self->insyscall == 0/ {
@traps = count(); self->start = timestamp;

}

fbt::trap:return /execname == "dd" && self->insyscall == 0/ {
length = timestamp - self->start; @trap_time = sum(length);

}

END {
printa(@syscalls); printa(@syscall_time);
printa(@traps); printa(@trap_time);

}

65
2953756

5185
380762894

NB: 65 system calls at ≈3ms; 5185 traps at ≈381ms! But which traps?
Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 13 / 19

System calls

Traps in practice: dd (1)
profile-997 /execname == "dd"/ { @traces[stack()] = count(); }

...
kernel‘PHYS_TO_VM_PAGE+0x1
kernel‘trap+0x4ea
kernel‘0xffffffff80e018e2
5

kernel‘vm_map_lookup_done+0x1
kernel‘trap+0x4ea
kernel‘0xffffffff80e018e2
5

kernel‘pagezero+0x10
kernel‘trap+0x4ea
kernel‘0xffffffff80e018e2
346

I A sizeable fraction of time is spent in pagezero: on-demand
zeroing of previously untouched pages; but why ≈5120 faults?

I This is ironic, as the kernel is presumably filling pages with zeroes
only to immediately copyout() zeros to it from /dev/zero

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 14 / 19

Revisiting virtual memory

So: back to virtual memory (VM)
I The process model’s isolation guarantees incur real expenses
I But the virtual-memory subsystem works quite hard to avoid them

I Memory sharing – and Copy-on-Write, ‘page flipping’
I ‘Page flipping’: both process/kernel and between processes
I Background page zeroing
I Superpages to improve TLB efficiency

I VM optimisation avoids work, but also manage memory footprint
I Memory as a cache of secondary storage (files, swap)
I Demand paging vs. I/O clustering
I LRU / Preemptive swapping/paging to maintain free page pool
I Working-set modelling
I Memory compression and deduplication

I These ideas were known before Mach, but ...
I Acetta, et al turn them into an art form
I Provide a model beyond V→P mappings in page tables
I And ideas such as the message-passing–shared-memory duality

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 15 / 19

Revisiting virtual memory

Last time: virtual memory (quick but painful primer)

Virtual address
space 1

Virtual address
space 2Physical

memory

data

zero

data

code

rwx

rx
rx

r + cow
rwH

ea
p

C
od

e
St

ac
k

0

∞/2

rwx

St
ac

k
H

ea
p

rx

C
od

e

code

data

r + cow

r + cow code
rw
rx

data

Li
br

ar
y

code

r + cow
rxLi

br
ar

y

data

data

code

data

rw
rx

∞

Ke
rn

el

rw
(superpage)

data
(superpage)

r + cow

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 16 / 19

Revisiting virtual memory

A (kernel) programmer model for virtual memory

Machine-independent virtual memory (VM) Machine-dependant physical map (PMAP)

page

Read/write,
grows down,
anonymous

objectSt
ac

k

Read/write,
anonymous

objectH
ea

p
Li

br
ar

y Read/copy-on-
write, named

object

C
od

e Read/copy-on-
write, named

object

“vmspace”,
“vm_map”

“vm_map_entry”

anonymous
swap-backed

VM object

vnode
VM object

page

“vm_object”

shadow
anonymous

swap-backed
VM object

page
page

“vm_page”

swap pager

page
page

swap pager

vnode pager

“vm_pager”

vnode
“/bin/dd”

page
page

pte

data

data

data

code

codepage-table
directory

page-table
entry

superpage
data

pte

pde

pte
pte
pte

pte
pte

pte

physical
map

pde

pde

“pmap”

physical
memory

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 17 / 19

Revisiting virtual memory

Mach VM in other operating systems
I In Mach, VM mappings, objects, pages, etc, were first-class

objects exposed to userspace via system calls
I In two directly derived systems, quite different stories:

Mac OS X Although XNU is not a microkernel, Mach’s VM/IPC
APIs are visible to applications, and used frequently.

FreeBSD Mach VM is used as a foundation and are only
available as a Kernel Programming Interface (KPI)

I In FreeBSD, Mach VM KPIs are used:
I In efficiently implement UNIX APIs such as fork() and execve()
I For memory-management APIs such as mmap() and mprotect()
I By the filesystem to implement a merged VM-buffer cache
I By device drivers that manage memory in interesting ways (e.g.,

GPU drivers mapping pages into user processes)
I By a set of VM worker threads, such as the page daemon,

swapper, syncer, and page-zeroing thread.

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 18 / 19

Conclusion

For next time

I The first lab: DTrace and I/O
I Dig into processes, system calls, etc

I Gregg and Mauro, Chapter 1 (Introduction to DTrace) and Chapter
2 (D Language)

I Handout L41: DTrace Quick Start

If you are having trouble getting hold of the course texts: Please
ask the department librarian or your college librarian to order copies.

Dr Robert N. M. Watson L41 - Lecture 4: The Process Model (2) 4 March 2015 19 / 19

	Introduction
	System calls
	Revisiting virtual memory
	Conclusion

