
Chapter 10

First-class effects

10.1 Effects in OCaml
Most of the programs and functions we have considered so far are pure: they
turn parameters into results, leaving the world around them unchanged. How-
ever, most useful programs and many useful functions are not pure: they may
modify memory, write to or read from files, communicate over a network, raise
exceptions, and perform many other effects. Practical programming languages
must support some way of performing effects, and OCaml has support for writ-
ing impure functions in the form of language features for mutable memory, for
raising and handling exceptions and for various forms of I/O.

However, there are other useful effects besides those which are provided in
OCaml, including checked exceptions (as found in Java), continuations (as found
in Scheme), nondeterminism (as found in Prolog) and many more. How might
we write programs that make use of effects such as these without switching to
a different language?

One approach to programming with arbitrary effects is to introduce an inter-
face for describing computations — i.e. expressions which perform effects when
evaluated. Programming with computations will allow us to simulate arbitrary
effects, even those not provided by the language.

The role of let A reasonable starting point for building an interface for com-
putations is to look at how impure programs are written in OCaml. OCaml
provides a number of constructs and functions for performing effects — try and
raise for dealing with exceptions, ref, := and ! for programming with mutable
state, and so on. However, in addition to these effect-specific operations, every
effectful program involves some kind of sequencing of effects. Since the order of
evaluation of expressions affects the order in which effects are performed (and
thus the observable behaviour of a program), it is crucial to have some way of
specifying that one expression should be evaluated before another.

For example, consider the following OCaml expression:

141

142 CHAPTER 10. FIRST-CLASS EFFECTS

f (g ()) (h ())

If the functions g and h have observable effects then the behaviour of the
program when the first argument g () is evaluated first is different from the
behaviour when the second argument h () is evaluated first. In OCaml the
order of evaluation of function arguments is unspecified1, so the behaviour of
the program in different environments may vary.

The order of evaluation of two OCaml expressions can be specified using let:
in the following expression e1 is always evaluated before e1:
let x = e1 in e2

To the other functions of let — local definitions, destructuring values, in-
troducing polymorphism, etc. — we may therefore add sequencing.

10.2 Monads
This sequencing behaviour of let can be captured using a monad. Monads have
their roots in abstract mathematics, but we will be treating them simply as a
general interface for describing computations.

10.2.1 The monad interface
The monad interface can be defined as an OCaml signature (Section 6.1.1):
module type MONAD =
sig

type 'a t
val return : 'a → 'a t
val (>>=) : 'a t → ('a → 'b t) → 'b t

end

The type t represents the type of computations. A value of type 'a t rep-
resents a computation that performs some effects and then returns a result of
type 'a; it corresponds to an expression of type 'a in an impure language such
as OCaml.

The function return constructs trivial computations from values. A compu-
tation built with return simply returns the value used to build the computation,
much as some expressions in OCaml simply evaluate to a value without per-
forming any effects.

The >>= operator (pronounced “bind”) combines computations. More pre-
cisely, >>= builds a computation by combining its left argument, which is a
computation, with its right argument, which is a function that builds a com-
putation. As the type suggests, the result of the first argument is passed to
the second argument; the resulting computation performs the effects of both

1In fact, many constructs in OCaml have unspecified evaluation order, and in some cases
the evaluation order differs across the different OCaml compilers. For example, here is a
program which prints "ocamlc" or "ocamlopt" according to which compiler is used:

let r = ref "ocamlc" in print_endline (snd ((r := "ocamlopt"), !r))

10.2. MONADS 143

arguments. The >>= operator sequences computations, much as let sequences
the evaluation of expressions in an impure langauge.

Here is an OCaml expression that sequences the expressions e1 and e2, bind-
ing the result of e1 to the name x so that it can be used in e2:
let x = e1 in e2

And here is an analogous computation written using a monad:
e1 >>= fun x → e2

10.2.2 The monad laws
In order to be considered a monad, an implementation of the MONAD signature
must satisfy three laws. The first law says that return is a kind of left unit for
>>=:

return v >>= k ≡ k v

The second law says that return is a kind of right unit for >>=:
m >>= return ≡ m

The third law says that bind is associative.
(m >>= f) >>= g ≡ m >>= (fun x → f x >>= g)

The higher-order nature of >>= makes these laws a little difficult to read and
remember. If we translate them into the analogous OCaml expressions things
become a little easier. The first law (a 𝛽 rule for let) then says that instead of
using let to bind a value we can substitute the value in the body:

let x = v in e ≡ e[x:=v]

The second law (an 𝜂 rule for let) says that a let binding whose body is simply
the bound variable can be simplified to the right-hand side:

let x = e in x ≡ e

The third law (a commuting conversion for let) says that nested let bindings
can be unnested:

let x = (let y = e1 in e2) in e3
≡

let y = e1 in let x = e2 in e3

(assuming that y does not appear in e3.)

10.2.3 Example: a state monad
The monad interface is not especially useful in itself, but we can make it more
useful by adding operations that perform particular effects. Here is an interface
STATE, which extends MONAD with operations for reading and updating a single
reference cell:

144 CHAPTER 10. FIRST-CLASS EFFECTS

module type STATE =
sig

include MONAD
type state
val get : state t
val put : state → unit t
val runState : 'a t → init:state → state * 'a

end

To the type and operations of MONAD, STATE adds a type state denoting the
type of the cell, and operations get and put for reading and updating the cell.
The types of get and put suggest how they behave: get is a computation without
parameters which returns a result of type state — that is, the contents of the
cell; put is a computation which is parameterised by a state value with which it
updates the cell, and which returns unit. Since the type t of computations is
an abstract type we also add a destructor function runState to allow us to run
computations. The runState function is parameterised by the initial state and it
returns both the final state and the result of running the computation.

The STATE interface makes it possible to express a variety of computations.
For example, here is a simple computation that retrieves the value of the cell
and then stores an incremented value:
get >>= fun s →
put (s + 1)

We might write an analogous program using OCaml’s built-in reference type
as follows:
let s = !r in

r := (s + 1)

This example shows how to use the state monad. How might we implement
STATE? As we shall see, the primary consideration is to find a suitable definition
for the type t; once t is defined the definitions of the other members of the
interface typically follow straightforwardly. The type of runState suggests a
definition: a STATE computation may be implemented as a function from an
initial state to a final state and a result:
type 'a t = state → state * 'a

Then return is a function whose initial and final states are the same:
val return : 'a → 'a t
let return v s = (s, v)

and >>= is a function which uses the final state s' of its first argument as the
initial state of its second argument:
val (>>=) : 'a t → ('a → 'b t) → 'b t
let (>>=) m k s = let (s', a) = m s in k a s'

The get and put functions are even simpler. We can define get as a function
which leaves the state unmodified, and also returns it as the result:
val get : state t
let get s = (s, s)

10.2. MONADS 145

and put as a function which ignores the initial state, replacing it with the
value supplied as an argument:
val put : state → unit t
let put s' _ = (s', ())

Here is a complete definition for an implementation of STATE. We define it as
a functor (Section 6.2.1) so that we can abstract over the state type:
module State (S : sig type t end)

: STATE with type state = S.t =
struct

type state = S.t
type 'a t = state → state * 'a
let return v s = (s, v)
let (>>=) m k s = let s', a = m s in k a s'
let get s = (s, s)
let put s' _ = (s', ())
let runState m ~init = m init

end

10.2.4 Example: fresh names
How might we use State to write an effectful function? Let’s consider a function
which traverses trees, replacing the label at each branch with a fresh name.
Here is our definition of a tree type:
type 'a tree =

Empty : 'a tree
| Tree : 'a tree * 'a * 'a tree → 'a tree

In order to use the State monad we must instantiate it with a particular
state type. We’ll use int, since a single int cell is sufficient to support the fresh
name generation effect
module IState = State (struct type t = int end)

We can define the fresh_name operation as a computation returning a string
in the IState monad:
let fresh_name : string IState.t =

get >>= fun i →
put (i + 1) >>= fun () →
return (Printf.sprintf "x%d" i)

The fresh_name computation reads the current value i of the state using get,
then uses put to increment the state before returning a string constructed from
i. Using fresh_name we can define a function label_tree that traverses a tree,
replacing each label with a fresh name:
let rec label_tree : 'a.'a tree → string tree IState.t =

function
Empty → return Empty

| Tree (l, v, r) →
label_tree l >>= fun l →
fresh_name >>= fun name →
label_tree r >>= fun r →
return (Tree (l, name, r))

146 CHAPTER 10. FIRST-CLASS EFFECTS

Labelling an empty tree is trivial, since there are no labels. Labeling a
branch involves first labeling the left subtree, then generating a fresh name for
the label, then labeling the right subtree, and finally constructing a new node
from the labeled subtrees and the fresh name.

It is instructive to see what happens when we inline the definitions of the
type and operations of the IState monad: get, put, >>= and return. After reducing
the resulting applications we are left with the following:
let rec label_tree : 'a.'a tree → int → int * string tree =

function
Empty → (fun s → (s,Empty))

| Tree (l, v, r) →
fun s0 →
let (s1, l) = label_tree l s0 in
let (s2, n) = fresh_name s1 in
let (s3, r) = label_tree r s2 in

(s3, Tree (l, n, r))

Exposing the plumbing in this way allows us to see how computations in
the state monad are executed. Each computation — label_tree l, fresh_name s1
etc. — is a function which receives the current value of the state and which
returns a pair of the updated state along with a result. We could, of course,
have written the code in this state-passing style in the first place instead of
using monads, but passing state explicitly has a number of disadvantages: it is
easy to inadvertendly pass the wrong state value to a sub-computation, and it
is hard to change the program to incorporate other effects.

10.2.5 Example: an execption monad
Let’s consider a second extension of the MONAD interface which adds operations
for raising and handling exceptions:
module type ERROR =
sig

type error
include MONAD
val raise : error → _ t
val _try_ : 'a t → catch:(error → 'a) → 'a

end

The ERROR signature extends MONAD with a type error of exceptions and two op-
erations. The first operation, raise, is parameterised by an exception and builds
a computation that does not return a result, as indicated by the polymorphic
result type. The second operation, _try_, is a destructor for computations that
can raise exceptions. We might write
try c
~catch:(fun exn → e')

to run the computation c, returning either the result of c or, if c raises an
exception, the result of evaluating e' with exn bound to the raised exception.

How might we implement ERROR? As before, we begin with the definition of
the type t. There are two possible outcomes of running an ERROR computation, so

10.2. MONADS 147

we define t as a variant type with a constructor for representing a computation
that returns a value and a constructor for representation a computation that
raises an exception:
type 'a t =

Val : 'a → 'a t
| Exn : error → 'a t

It is then straightforward to define an implementation of Error. As with
State, we define Error as a functor to support parameterisation by the exception
type:
module Error (E: sig type t end)

: ERROR with type error = E.t =
struct

type error = E.t
type 'a t =

Val : 'a → 'a t
| Exn : error → 'a t

let return v = Val v
let raise e = Exn e
let (>>=) m k =

match m with
Val v → k v

| Exn e → Exn e
let _try_ m ~catch =

match m with
Val v → v

| Exn e → catch e
end

The implementations of return and raise are straightforward: return con-
structs a computation which returns a value, while raise constructs a compu-
tation which raises an exception. The behaviour of >>= depends on its first
argument. If the first argument is a computation which returns a value then
that value is passed to the second argument and the computation continues. If,
however, the first argument is a computation which raises an exception then
the result of >>= is the same computation. That is, the first exception raised
by a computation in the error monad aborts the whole computation. The _try_
function runs a computation in the error monad, either returning the value or
passing the raised exception to the argument function catch as appropriate.

Like the state monad, the error monad makes it possible to express a wide
variety of computations. For example, we can write an analogue of the find
function from the standard OCaml List module. The find function searches a
list for the first element which matches a user-supplied predicate. Here is a
definition of find:
let rec find p = function

[] → raise Not_found
| x :: _ when p x → x
| _ :: xs → find p xs

If no element in the list matches the predicate then find raises the exception
Not_found. Here is the type of find:

148 CHAPTER 10. FIRST-CLASS EFFECTS

val find : ('a → bool) → 'a list → 'a

We might read the type as follows: find accepts a function of type 'a → bool
and a list with element type 'a, and if it returns a value, returns a value of type
'a. There is nothing in the type that mentions that find can raise Not_found,
since the OCaml type system does not distinguish functions which may raise
exceptions from functions which always return successfully.

In order to implement an analogue of find using the ERROR interface we must
first instantiate the functor, specifying the error type:
module Error_exn = Error(struct type t = exn end)

We can then implement the function as a computation in the Error_exn
monad:
let rec findE p = Error_exn.(function

[] → raise Not_found
| x :: _ when p x → return x
| _ :: xs → findE p xs)

The definition of findE is similar to the definition of find, but there is one
difference: since findE builds a computation in a monad, we must use return to
return a value.

Here is the type of findE:
val findE : ('a → bool) → 'a list → 'a Error_exn.t

The type tells us that findE accepts a function of type 'a → bool and a list
with element type 'a, just like find. However, the return type is a little more
informative: it tells us that findE builds a computation in the Error_exn monad
which when run will either raise an exception or return a value of type 'a.

10.3 Indexed monads
Up to this point we have not gained a great deal by using monads to write effect-
ful functions. Since OCaml has both state and exceptions as primitive effects,
we could give simpler and more efficient implementations of all the functions
that we’ve seen so far without using monads.

The benefits of the monadic style become clear when it becomes necessary
to use effects that are not primitive in OCaml. In some cases (Exercise 3)
these effects can be implemented by adding additional value members to MONAD,
just as we added get and put to support state, and raise to support exceptions.
However, in order to implement some effects with special typing rules we need
to extend the MONAD interface in a different direction, by adding parameters to
the type t.

The INDEXED_MONAD interface extends MONAD by adding an additional type pa-
rameter 'e to the type t:
module type INDEXED_MONAD =
sig

type ('e, 'a) t

10.3. INDEXED MONADS 149

val return : 'a → (_, 'a) t
val (>>=) : ('e,'a) t →

('a → ('e,'b) t) →
('e,'b) t

end

Except for the additional type parameter the INDEXED_MONAD interface is iden-
tical to MONAD. The monad laws (Section 10.2.2) are also unchanged.

10.3.1 Example: an indexed monad for exceptions
We can use the extra type parameter of indexed monads to give more precise
types to computations. Here is a second version of the exception monad (Sec-
tion 10.2.5) based on INDEXED_MONAD:
module type IERROR =
sig

include INDEXED_MONAD
val raise : 'e → ('e, _) t
val _try_ : ('e, 'a) t → catch:('e → 'a) → 'a

end

Whereas the ERROR signature included a type error of exceptions, the IERROR
signature instead indexes every computation by the type 'e of exceptions which
that particular computation might raise.

Here is an implementation of the IERROR interface:
module IError : IERROR =
struct

type ('e, 'a) t =
Val : 'a → ('e, 'a) t

| Exn : 'e → ('e, 'a) t
let return v = Val v
let raise e = Exn e
let (>>=) m k =

match m with
Val v → k v

| Exn e → Exn e
let _try_ m ~catch =

match m with
Val v → v

| Exn e → catch e
end

The implementation IError is broadly similar to the Error implementation of
the unindexed exception monad. Whereas the Error module was parameterised
by the type of exceptions, in IError each computation is parameterised by the
exception type, so there is no need to make the module a functor. Besides these
differences in types the implementations are otherwise the same.

Indexed monads and rows Structural types such as rows (Chapter 9) can
be used as a kind of expression language for the index in an indexed monad.
When used in this way, rows correspond to labeled effect descriptions: ([`A:
x | `B: y], z)t is the type of a computation which may perform an effect A of

150 CHAPTER 10. FIRST-CLASS EFFECTS

type x and may perform an effect B of type y, then return a result of type z.
For the error monad we can interpret A and B as particular exceptions which the
computation may raise.

Here is a second definition of findE using IError, with polymorphic variants
(Section 9.3) for exceptions:
let rec findE p = function

[] → raise `Not_found
| x :: _ when p x → return x
| _ :: xs → findE p xs

This definition of findE has the folowing type:
val findE : ('a → bool) → 'a list → ([>`Not_found], 'a) IError.t

The type tells us that findE accepts a function of type 'a → bool and a list
with element type 'a, and builds a computation in an error monad, just like
our original definition. However, the return type is more informative: it tells
us that findE builds a computation which will either raise an error `Not_found or
return a value of type 'a.

The List module also contains a function tl which returns all but the first
element of a list or, if the list is empty, raises the Failure exception. Here is a
definition of tl:
let tl = function

[] → raise (Failure "tl")
| _ :: xs → xs

As with find, the type of tl shows the type of the values which tl might
return, but reveals nothing about the exception Failure:
val tl : 'a list → 'a list

We can write an analogue of tl using IError:
let tlE = function

[] → raise (`Failure "tl")
| _ :: xs → return xs

As with findE, the type of tlE is more informative:
val tlE : 'a list → ([>`Failure of string], 'a list) IError.t

That is, tlE accepts a list with element type 'a and either raises the exception
`Failure with a string argument, or returns a list with element type 'a.

When we combine two computations in the IError monad the advantages of
using rows become clear. First, here is a program written using find and tl:
let gt_0 x = x > 0 in
let xs = tl [] in
let y = find gt_0 xs in

y

Since the predicate gt_0 has type int → bool, the OCaml type inference al-
gorithm deduces that the list has element type int and gives the whole program
the type int.

Here is an analogous computation written using findE and tlE:

10.4. PARAMETERISED MONADS 151

let gt_0 x = x > 0 in
tlE [] >>= fun xs →
findE gt_0 xs >>= fun y →

return y

Once again the type checker determines that the list has element type int.
However, the unification algorithm also combines the rows used to type the ex-
ception indexes for findE and tlE to give a type that shows that the computation
may raise either `Failure or `Not_found:

([> `Failure of string | `Not_found], int) IError.t

10.4 Parameterised monads
We have seen how indexed monads make it possible to give more precise types
to computations, especially when combined with structural types such as rows.
We will now consider an alternative refinement of the monad interface which
makes it possible to capture the changes that take place as a computation runs.

Here is the parameterised monad interface:

module type PARAMETERISED_MONAD =
sig

type ('s,'t,'a) t
val return : 'a → ('s,'s,'a) t
val (>>=) : ('r,'s,'a) t →

('a → ('s,'t,'b) t) →
('r,'t,'b) t

end

The PARAMETERISED_MONAD interface has the same three members as the MONAD
interface of Section 10.2.1, but includes additional type parameters. The type
t of computations has three parameters. The first parameter, 's, represents the
state in which the computation starts; the second parameter, 't, represents the
state in which the computation ends, and the final parameter 'a represents the
result of the computation. The instantiations of the two additional type param-
eters in the types of return and >>= reflect the behaviour of those operations. In
the type of return the start and end parameter have the same type 's, indicat-
ing that a computation constructed with return does not change the state of the
computation. The type of >>= reflects the ordering between the computations
involved. The first argument to >>= is a computation which starts in state 'r
and finishes in state 's; the second argument constructs a computation which
starts in state 's and finishes in state 't. Combining the two computations us-
ing >>= produces a computation which starts in state 'r and finishes in state 't,
indicating that it runs the effects of the first argument of >>= before the effects
of the second argument.

The laws for parameterised monads are the same as the laws for monads,
except for the types of the expressions involved.

152 CHAPTER 10. FIRST-CLASS EFFECTS

10.4.1 Example: a parameterised monad for state
We saw in Section 10.3 that indexed monads are a good fit for exceptions: we
can use the index type to indicate the exceptions that a particular computation
may raise. Perhaps the simplest example of parameterised monads is to improve
the typing of computations involving state. By interpreting the additional type
parameters as the type of a reference cell we can define a more powerful state
monad in which the type of the cell can change over the course of a computation.
As we saw in Chapter 3, OCaml does not support polymorphic references, so
our enhanced state monad will allow us to build computations that it is not
possible to write in an imperative style.

Here is an interface for a parameterised state monad:
module type PSTATE =
sig
include PARAMETERISED_MONAD
val get : ('s,'s,'s) t
val put : 's → (_,'s,unit) t
val runState : ('s,'t,'a) t → init:'s → 't * 'a

end

The PSTATE interface extends PARAMETERISED_MONAD with functions get, put and
runState, much like the STATE interface which extended MONAD (Section 10.2.3).
The type parameters of each operation indicate what effect the operation has
on the state of the reference cell. Since get retrieves the contents of the cell,
leaving it unchanged, the start and end parameters match both each other and
the result type. The type of put also reflects its behaviour: since put over-
writes the reference cell with the value passed as argument, the end state of
the computation matches the type 's of the parameter. Finally, runState runs
a computation which turns a reference of type 's into a reference of type 't; it
is therefore parameterised by an initial state of type 's and returns a value of
type 't, along with the result of the computation.

Here is an implementation of PSTATE:
module PState : PSTATE =
struct

type ('s, 't, 'a) t = 's → 't * 'a
let return v s = (s, v)
let (>>=) m k s = let s', a = m s in k a s'
let get s = (s, s)
let put s' _ = (s', ())
let runState m ~init = m init

end

As with State (Section 10.2.3) the type t of computations is defined as a
function from the initial state of the computation to a pair of the final state
and the result. Since the type state is allowed to vary, the initial and final
state types are now type parameters rather than the fixed type state used in
the unparameterised State monad. Since we no longer need to parameterise the
whole definition by a single state type it is not necessary for PState to be a
functor.

10.4. PARAMETERISED MONADS 153

Comparing PState with the State implementation of Section 10.2.3 reveals
that the implementations are otherwise identical; only the types have changed.

Programming with polymorphic state

The parameterised state monad makes it possible to construct a variety of com-
putations. We will use it to build a simple typed stack machine.

…

x

y

…

x+y

add

…

y

x

c

…

(y,x)[c]

if

… …

c

pushconst

Figure 10.1: Stack machine operations

Figure 10.1 shows the three operations of the stack machine and their effects
on the stack. The first instruction, add, replaces the top two elements on the
stack with their sum. The second instruction, if, removes the top three elements
from the stack and adds either the second or the third element back according
to whether the top element was true or false. The third instruction, pushconst,
adds a value to the top of the stack.

We can give the types of the stack operations as a module signature2:
module type STACK_OPS =
sig

type ('s,'t,'a) t
val add : unit → (int * (int * 's),

int * 's, unit) t
val _if_ : unit → (bool * ('a * ('a * 's)),

'a * 's, unit) t
val push_const : 'a → ('s,

'a * 's, unit) t
end

The type ('s, 't, 'a)t represents stack machine programs which transform
a stack of type 's into a stack of type 't and return a result of type 'a. The type
of each operation shows how the operation changes the type of the stack. The

2The unit arguments to add and _if_ save us from running into problems with the value
restriction.

154 CHAPTER 10. FIRST-CLASS EFFECTS

add operation turns a stack of type int * (int * 's) into a stack of type int * 's
— that is it replaces the top two (i.e. leftmost) integers on the stack with a
single integer, leaving the rest of the stack unchanged. The _if_ operation turns
a stack of type bool * ('a * ('a * 's)) into a stack of type 'a * 's — that is,
it removes a bool value from the top of the stack and removes one of the two
values below the bool, leaving the rest of the stack unchanged. The push_const
value turns a stack of type 's into a stack of type 'a * 's — that is, it adds a
value to the top of the stack.

We can combine the stack operations with the parameterised monad signa-
ture to build a signature for a stack machine:
module type STACKM = sig
include PARAMETERISED_MONAD
include STACK_OPS

with type ('s,'t,'a) t := ('s,'t,'a) t
val stack : unit → ('s, 's, 's) t
val execute : ('s,'t,'a) t → 's → 't * 'a

end

Just as in the STACK_OPS signature, a computation of type ('s, 't, 'a)t is
a stack machine program which transforms a stack of type 's into a stack of
type 't. As with the monads we’ve seen already, the return function builds a
trivial computation and the >>= function builds a computation from the two
computations passed as arguments. More precisely, return builds a program
that leaves the stack untouched, and >>= builds a program that runs its two
arguments in sequence. In addition to the stack machine operations there is one
additional primitive computation, stack, which makes it possible to observe the
state of the stack at a particular point in the computation: calling stack builds a
computation which returns the current stack as its result. The execute function
plays the same role as runState for the State monad and _try_ for the Error monad
— that is, it runs a computation. More precisely, execute takes a computation
representing a stack machine program together with an input stack and returns
a pair of the output stack together with the result of the computation.

We can implement StackM using the parameterised state monad PState:
module StackM : STACKM =
struct

include PState

let add () =
get >>= fun (x,(y,s)) →
put (x+y,s)

let _if_ () =
get >>= fun (c,(t,(e,s))) →
put ((if c then t else e),s)

let push_const k =
get >>= fun s →
put (k, s)

let stack () = get

10.5. MONADS AND HIGHER-ORDER EFFECTS 155

let execute c s = runState ~init:s c
end

The implementation is a straightforward use of the parameterised state
monad. A computation in the stack machine monad is interpreted directly as a
computation in the parameterised state monad, with the reference cell holding
the stack. Each of the instruction operations (add, _if_ and push_const) builds a
computation which retrieves the current stack, performs an appropriate trans-
formation, and stores the updated stack. The stack function uses get to retrieve
the current stack, and execute is implemented directly using runState.

10.5 Monads and higher-order effects
The examples of monadic computations that we’ve seen so far have been fairly
simple. However, the higher-order nature of the >>= operator makes the monad
interface powerful enough to express a wide variety of computations.

Like OCaml’s built-in effects, monadic effects are dynamic, in the sense that
the result of one computation can be used to build subsequent computations.
For example, here is a fragment of OCaml which calls a (presumably effectful)
function f and passes the result to a second function g:
let x = f () in
let y = g x in

…

and here is an analogous computation written using monads:
f >>= fun x →
g x >>= fun y →

…

This is a kind of first-order dynamic dependence, in which results from one
computation appear as parameters to another. A second form of dynamic de-
pendence allows the computations themselves, not just their parameters, to be
determined by earlier computations. Here is a second OCaml fragment which
calls a function f which returns a function, and then calls that function:
let x = f () in
let y = x () in

…

and here is an analogous computation written using monads:
f >>= fun x →
x >>= fun y →

…

It is clear that the monad interface offers a great deal of flexibility to the user.
However, by the same token it demands a great deal from the implementor. As
we shall see, there are situations where monads are too powerful, and both user
and implementor are better served by a more restrictive interface.

156 CHAPTER 10. FIRST-CLASS EFFECTS

10.6 Applicatives
Applicatives3 offer a second interface to effectful computation which is less pow-
erful and therefore, from a certain perspective, more general than monads.

10.6.1 Computations without dependencies
As we have seen, computations constructed using the MONAD interface correspond
to the sort of computations that we can write with let … in in OCaml (Sec-
tion 10.1). Like let, the monadic >>= operation both sequences computations
and makes the result of one computation available for constructing other com-
putations (Section 10.5). However, let … in is not always the most appropriate
construct for combining computations in OCaml. In particular, if there are
no dependencies between two expressions e1 and e2 then it is sometimes more
appropriate to use the less-powerful construct let … and. For example, when
reading the following OCaml fragment the reader might wonder where the vari-
able b on the second line is bound. Since the variables introduced by first line
are in scope in the second line the reader must scan both the first line and the
surrounding environment to find the nearest binding for b.
let x = f a in
let y = g b in

…

Since the variable x bound by the first line is not used in the second line the
code can be rewritten to use the less-powerful binding construct let … and4:
let x = f a
and y = g b
in …

Now it is immediately clear that none of the variables bound with let are
used before the in on the last line, easing the cognitive burden on the reader.

10.6.2 The applicative interface
As we have seen, there is a correspondence between computations that use the
MONAD interface and programs written using let … in. The APPLICATIVE interface
captures computations which have no interdependencies between them, in the
spirit of let … and.

Here is the interface for applicatives:
module type APPLICATIVE =
sig

3The full name for “applicative” is for “applicative functor”, but we’ll stick with the shorter
name. Several of the papers in the further reading section (page 173) use the name “idioms”
under which applicatives were originally introduced.

4Unfortunately the OCaml definition leaves the evaluation order of expressions bound with
let … and unspecified, so we must also consider whether we are happy for the two lines to be
executed in either order. This is rather an OCaml-specific quirk, though, and does not affect
the thrust of the argument, which is about scope, not evaluation order.

10.6. APPLICATIVES 157

type 'a t
val pure : 'a → 'a t
val (<∗>) : ('a → 'b) t → 'a t → 'b t

end

Comparing APPLICATIVE with MONAD (Section 10.2.1) reveals a number of minor
differences — the operations are called pure and <∗> (pronounced “apply”) rather
than return and >>=, and the function argument to <∗> comes first rather than
second — and one significant difference. Here is the type of >>=:

'a t → ('a → 'b t) → 'b t

and here is the type of <∗>, with the order of arguments switched to ease com-
parison:

'a t → ('a → 'b) t → 'b t

As the types show, the arguments to >>= are a computation and a function
which constructs a computation, allowing >>= to pass the result of the compu-
tation as argument to the function. In contrast, the arguments to <∗> are two
computations, so <∗> cannot pass the result of one computation to the other.
The different types of >>= and <∗> result in a significant difference in power
between monads and applicatives, as we shall see.

10.6.3 Applicative normal forms
There are typically many ways to write any particular computation. For exam-
ple, if we would like to call three functions f, g and h, and collect the results in
a tuple then we might write either of the following equivalent programs:
let (x, y) =

let x = f ()
and y = g () in

(x, y)
and z = h ()
in (x, y, z)

let x = f ()
and (y, z) =

let y = g ()
and z = h ()

in (x, y, z)

In this case it is fairly easy to see that the programs are equivalent. For
situations where determining equivalence is not so easy it is useful to have
a way of translating programs into a normal form — that is, a syntactically
restricted form into which we can rewrite programs using the equations of the
language. If we have a normal form then checking equivalence of two programs is
a simple matter of translating them both into the normal form then comparing
the results for syntactic equivalence.

For programs written with let … and we might use a normal form that is
free from nested let. We can rewrite both the above programs into the following
form:

158 CHAPTER 10. FIRST-CLASS EFFECTS

let x = f ()
and y = g ()
and z = h ()
in (x, y, z)

Applicative computations also have a normal form. Every applicative com-
putation is equivalent to some computation of the following form:
pure f <∗> c1 <∗> c2 <∗> … <∗> c𝑛

where c1,c2, … ,c𝑛 are primitive computations which do not involve the com-
putation constructors pure and <∗>.

10.6.4 The applicative laws and normalization
There are four laws (equations) which implementations of APPLICATIVE must sat-
isfy. These four laws are sufficient to rewrite any applicative computation into
the normal form of Section 10.6.3.

The first applicative law says that pure is a homomorphism for application.
pure (f v) ≡ pure f <∗> pure v

The second law says that a lifted identity function is a left unit for applicative
application.

u ≡ pure id <∗> u

The third law says that nested applications can be flattened using a lifted com-
position operation.

u <∗> (v <∗> w) ≡ pure compose <∗> u <∗> v <∗> w

(Here compose is defined as fun f g x → f (g x).) The fourth law says that pure
computations can be moved to the left or right of other computations.

v <∗> pure x ≡ pure (fun f → f x) <∗> v

In summary, the laws make it possible to introduce and eliminate pure com-
putations, and to flatten nested computations, allowing every computation to be
rearranged into the normal form of Section 10.6.3, which consists of an unnested
application with a single occurrence of pure.

Let’s look at an example. The following computation is not in normal form,
since there are two uses of pure, and a nested <∗>:
pure (fun (x,y) z → (x, y, z))
<∗> (pure (fun x y → (x, y)) <∗> f <∗> g)
<∗> h

We can flatten the nested applications a little by using the third applicative
law:
pure compose
<∗> pure (fun (x,y) z → (x, y, z))
<∗> (pure (fun x y → (x, y)) <∗> f)
<∗> g
<∗> h

The adjacent pure computations can be coalesced using the first law:

10.6. APPLICATIVES 159

pure (compose (fun (x,y) z → (x, y, z)))
<∗> (pure (fun x y → (x, y)) <∗> f)
<∗> g
<∗> h

The remaining nested application can be flattened using the third law:
pure compose
<∗> pure (compose (fun (x,y) z → (x, y, z)))
<∗> pure (fun x y → (x, y))
<∗> f
<∗> g
<∗> h

We now have three adjacent pure computations that can be combined using
the first law:
pure ((compose (compose (fun (x,y) z → (x, y, z)))) (fun x y → (x, y))

)
<∗> f
<∗> g
<∗> h

Expanding the definition of compose and beta-reducing gives us the following
normal form term:
pure (fun x y z → (x, y, z))
<∗> f
<∗> g
<∗> h

10.6.5 Applicatives and monads
There is a close relationship between applicatives and monads, which can be
expressed as a functor:
module Applicative_of_monad (M:MONAD) :

APPLICATIVE with type 'a t = 'a M.t =
struct

type 'a t = 'a M.t
let pure = M.return
let (<∗>) f p =

M.(f >>= fun g →
p >>= fun q →
return (g q))

end

The Applicative_of_monad functor builds an implementation of the APPLICATIVE
interface from an implementation of the MONAD interface, preserving the definition
of the type t. The definition of pure is trivial; all the interest is in the definition
of <∗>, which is defined in terms of both >>= and return. First >>= extracts
the results from the two computations which are arguments to <∗>; next, these
results are combined by applying the first result to the second result; finally,
return turns the result of the application back into a computation. We might
consider this definition of <∗> in terms of >>= as analogous to the way that

160 CHAPTER 10. FIRST-CLASS EFFECTS

computations written using let … and can be written using let … in. For
example, we might rewrite the following program
let g = f
and q = p

g q

as
let g = f in
let q = p in

g q

(provided g does not appear in p, which we can always ensure by renaming the
variable.)

The Applicative_of_monad functor shows how we might rewrite computations
which use the applicative operations as computations written in terms of return
and >>=. For example, here is the normalised applicative computation from
Section 10.6.4:
pure (fun x y z → (x, y, z)) <∗> f <∗> g <∗> h

Substituting in the definitions of pure and <∗> from Applicative_of_monad gives
us the following monadic computation:

((return (fun x y z → (x, y, z)) >>= fun u →
f >>= fun v →
return (u v)) >>= fun w →
g >>= fun x →
return (w x)) >>= fun y →

h >>= fun z →
return (y z)

This is not as readable as it might be, but we can use the monad laws
to reassociate the >>= operations and eliminate the multiple uses of return,
resulting in the following term:
f >>= fun e →
g >>= fun x →
h >>= fun z →
return (e, x, z)

10.6.6 Example: the state applicative
As we have seen, we can use the Applicative_of_monad functor to turn applica-
tive computations into monadic computations. Viewing things from the other
side, we can also use Applicative_of_monad to turn implementations of MONAD into
implementations of APPLICATIVE. For example, we can build an applicative from
the State monad:
module StateA(S : sig type t end) :
sig

type state = S.t
include APPLICATIVE
val get : state t

10.6. APPLICATIVES 161

val put : state → unit t
val runState : 'a t → init:state → state * 'a

end =
struct

type state = S.t
module M = State(S)
include Applicative_of_monad(M)
let (get, put, runState) = M.(get, put, runState)

end

Besides the monad type and operations we must transport the additional
elements — the state type and the operations (get, put and runState — to the
new interface.

10.6.7 Example: fresh names
We have converted the Statemonad to an corresponding applicative (Section 10.6.6).
Can we write an applicative analogue to the label_tree function of Section 10.2.4?

Unfortunately, the applicative interface is not sufficiently powerful to write
a computation that behaves like label_tree. In fact, we cannot even write the
operation fresh_name. Here is the definition of fresh_name again:
let fresh_name : string IState.t =

get >>= fun i →
put (i + 1) >>= fun () →
return (Printf.sprintf "x%d" i)

The crucial difficulty is the use of the result i of the computation get in
constructing the parameter to put. It is precisely this kind of dependency that
the monadic >>= supports and the applicative <∗> does not.

Instead of defining a fresh name computation using primitive computations
get and put, we must make fresh_name itself a primitive computation in the
applicative, where we have the full power of the underlying monad available:
module NameA :
sig

include APPLICATIVE
val fresh_name : string t
val run : 'a t → 'a

end =
struct

module M = State(struct type t = int end)
include Applicative_of_monad(M)
let fresh_name = M.(

get >>= fun i →
put (i + 1) >>= fun () →
return (Printf.sprintf "x%d" i))

let run a = let _, v = M.runState a ~init:0 in v
end

Once we have defined fresh_name it is straightforward to write an applicative
version of label_free:
let rec label_tree : 'a tree → string tree NameA.t =

function

162 CHAPTER 10. FIRST-CLASS EFFECTS

Empty → pure Empty
| Tree (l, v, r) →

pure (fun l name r → Tree (l, name, r))
<∗> label_tree l
<∗> fresh_name
<∗> label_tree r

Comparing this definition with the monadic implementation of Section 10.2.4
reveals a difference in style. While the monadic version has an imperative feel,
with the result of each computation bound in sequence, the applicative version
retains the functional programming style, with a single pure function on the left
of the computation applied to a colllection of arguments.

10.6.8 Composing applicatives
Section 10.6.5 shows how we can build applicative implementations from monad
implementations. Another easy way to obtain new applicative implementations
is to compose two existing applicatives. Unlike monads (Exercise 7), the compo-
sition of any two applicatives produces a new applicative implementation. We
can define the composition as a functor:
module Compose (F : APPLICATIVE)

(G : APPLICATIVE) :
APPLICATIVE with type 'a t = 'a G.t F.t =

struct
type 'a t = 'a G.t F.t
let pure x = F.pure (G.pure x)
let (<∗>) f x = F.(pure G.(<∗>) <∗> f <∗> x)

end

The type of the result of the Compose functor is built by composing the type
constructors of the input applicatives F and G. Similarly, pure is defined as the
composition of F.pure and G.pure. The definition of <∗> is only slightly more
involved. First, G’s <∗> function is lifted into the result applicative by applying
F.pure. Second, this lifted function is applied to the arguments f and x using F’s
<∗>. It is not difficult to verify that the result satisfies the applicative laws so
long as F and G do (Exercise 9).

10.6.9 Example: the dual applicative
As we have seen (p156), OCaml’s let … and construct leaves the order of eval-
uation of the bound expressions unspecified. This underspecification is possible
because of the lack of dependencies between the expressions; if an expression e2
uses the value of another expression e1, then it is clear that e1 must be evaluated
before e2 in an eager language such as OCaml.

The applicative interface, which offers no way for one computation to de-
pend upon the result of another, suggests a similar freedom in the order in which
computations are executed. However, unlike OCaml’s let … and construct, ap-
plicative implementations typically fix the execution order — for example, the
state applicative of Section 10.6.6 is based on the Applicative_of_monad functor

10.6. APPLICATIVES 163

(Section 10.6.5), whose implementation of <∗> always executes the first operand
before the second.

Although individual applicative implementations do not typically underspec-
ify evaluation order, it is still possible to take advantage of the lack of dependen-
cies between computations to vary the order. The following functor converts
an applicative implementation into a dual applicative implementation which
executes computations in the reverse order.
module Dual_applicative (A: APPLICATIVE)

: APPLICATIVE with type 'a t = 'a A.t =
struct

type 'a t = 'a A.t
let pure = A.pure
let (<∗>) f x =

A.(pure (|>) <∗> x <∗> f)
end

The Dual_applicative functor leaves the argument type A.t unchanged, since
computations in the output applicative perform the same types of effect as
computations in the input applicative. The pure function is also unchanged,
since changing the order of effects makes no difference for pure computations.
All of the interest is in the <∗> function, which reverses the order of its arguments
and uses pure (|>) to reassamble the results in the appropriate order. (The | >
operator performs reverse application, and behaves like the expression fun y g
→ g y.)

It is straightforward to verify that the applicative laws hold for the result
Dual_applicative(A) if they hold for the argument applicative A (Exercise 4).

We can use the Dual_applicative to convert NameA into an applicative that runs
its effects in reverse:
module NameA' :
sig

include APPLICATIVE
val fresh_name : string t
val run : 'a t → 'a

end =
struct

include Dual_applicative(NameA)
let (fresh_name, run) = NameA.(fresh_name, run)

end

As we saw when applying the Applicative_of_monad functor in Section 10.6.6,
we must manually transport the fresh_name and run functions to the new ap-
plicative.

Here is an example of the behaviour of NameA and NameA' on a small compu-
tation:
NameA.(run (pure (fun x y → (x, y)) <∗> fresh_name <∗> fresh_name))

;;
- : string * string = ("x0", "x1")
NameA'.(run (pure (fun x y → (x, y)) <∗> fresh_name <∗> fresh_name))

;;
- : string * string = ("x1", "x0")

164 CHAPTER 10. FIRST-CLASS EFFECTS

10.6.10 Example: the phantom monoid applicative
We saw in Section 10.6.5 that we can build an implementation of APPLICATIVE from
a MONAD instance using the Applicative_of_monad functor. We have also seen that
the two interfaces are not strictly equivalent, since there are some computations,
such as fresh_name which can be defined using MONAD (Section 10.2.4), but not
using APPLICATIVE (Section 10.6.7). Are there, then, any implementations of
APPLICATIVE which do not correspond to any MONAD implementation?

Here is one such example. The Phantom_counter module represents compu-
tations which track the number of times a primitive effect count is invoked.
(Exercise 2 involves writing a computation using Phantom_counter.)
module Phantom_counter :
sig

include APPLICATIVE with type 'a t = int
val count : 'a t
val run : 'a t → int

end
=

struct
type 'a t = int
let pure _ = 0
let count = 1
let (<∗>) = (+)
let run c = c

end

As the type shows, Phantom_counter implements the APPLICATIVE interface.
However, it is not possible to use the Phantom_counter type to implement MONAD
. The difficulty comes when trying to write >>=. Since a value of type 'a
Phantom_counter.t does not actually contain an 'a value (that is, the 'a is “phan-
tom” in the sense discussed in Section 6.5.2), there is no way to extract a result
from the first operand of >>= to pass to the second operand. The monad interface
promises more than Phantom_counter is able to offer.

In fact, Phantom_counter is one of a family of non-monadic applicatives pa-
rameterised by a monoid. The monoid interface contains a type t together with
constructors zero and ++:
module type MONOID =
sig

type t
val zero : t
val (++) : t → t → t

end

We can generalize the definition of Phantom_counter to arbitrary monoids by
turning the module into a functor parameterised by MONOID:
module Phantom_monoid (M: MONOID)

: APPLICATIVE with type 'a t = M.t =
struct

type 'a t = M.t
let pure _ = M.zero
let (<∗>) = M.(++)

end

10.7. PARAMETERISED AND INDEXED APPLICATIVES 165

We’ll return to monoids in more detail in Section 10.8.

10.7 Parameterised and indexed applicatives
Sections 10.3 and 10.4 introduced the notions of indexed and parameterised
monads. The same ideas extend naturally to applicatives. Here is a signa-
ture for parameterised applicatives, in which the type t is given two additional
parameters 's and 't to represent the start and end states of a computation:
module type PARAMETERISED_APPLICATIVE =
sig

type ('s,'t,'a) t
val pure : 'a → ('s,'s,'a) t
val (<∗>) : ('r,'s,'a → 'b) t

→ ('s,'t,'a) t
→ ('r,'t,'b) t

end

The instantiation of the first two parameters echos the definition of PARAMETERISED_MONAD
: pure computations have the same start and end states, while computations
built using <∗> combine a computation that changes state from 'r to 's and
a computation that changes state from 's to 't to build a computation that
changes state from 'r to 't.

As in the unparameterised case, it is possible to define a functor that builds
a parameterised applicative from a parameterised monad (Exercise 5).

Similarly, here is a signature for indexed applicatives, which extends the
type t with an additional parameter 'e, just as INDEXED_MONAD extends the MONAD
signature.
module type INDEXED_APPLICATIVE =
sig

type ('e,'a) t
val pure : 'a → ('e,'a) t
val (<∗>) : ('e,'a → 'b) t → ('e,'a) t → ('e,'b) t

end

10.7.1 Example: optimising stack machines
How should we choose whether to expose a particular computational effect (such
as state, naming, or exceptions) as an applicative or as a monad? In some cases
the decision is easy, since certain applicatives do not correspond to any monad
(Section 10.6.10), so using the MONAD interface is not possible. However, it is
often the case that a particular computational effect can be exposed under
either interface (Section 10.6.5). One consideration is the degree of expressive
power that we would like to expose to the user. If we would like to offer the
user as much power as possible then the MONAD interface is clearly the better
choice (Section 10.6.7). However, as we shall now see, exposing a less powerful
interface can sometimes make it possible to implement an effect more efficiently.

We introduced parameterised monads by showing how to implement a typed
stack machine which operates by transforming a stack represented as a nested

166 CHAPTER 10. FIRST-CLASS EFFECTS

tuple. Since programs are typically run than once we we might like to optimise
our stack machine programs to run more efficiently. For example, we can tell
without running the program, and without knowing anything about the current
state of the stack, that the following program fragment will end with 7 at the
top of the stack:
push_const 3 >>= fun () →
push_const 4 >>= fun () →
add ()

and so we might like to transform the instruction sequence into the following
more efficient fragment:
push_const 7

Unfortunately, the implementation of STACKM in Section 10.4.1 is not very
amenable to optimisations of this sort. The difficulty is that we do not have a
concrete representation of the stack machine instructions — indeed, it is diffulct
to see how we such a representation is possible with monads, since the dynamic
dependencies supported by the MONAD interface (Section 10.5) allow the instruc-
tions to be synthesised as the stack machine program runs. In particular, we
can write a computation using StackM that uses the stack function to observe the
stack, and then decides which instruction to run next based on the result:

stack () >>= fun (top, (next, _)) →
if top < next

then add ()
else push_const true >>= fun () → _if_ ()

Optimising our stack machine programs before they run will become much
easier if we switch from a higher-order representation of instructions to a first-
order representation, which requires switching from the powerful MONAD interface
with its dynamic dependencies to the less powerful APPLICATIVE interface, which
cannot be used to write programs like the above.

We will start with a representation of indivudal instructions. The instr type
is a GADT whose constructors have types which are derived directly from the
types of the STACK_OPS interface:
type (_, _) instr =

Add : (int * (int * 's),
int * 's) instr

| If : (bool * ('a * ('a * 's)),
'a * 's) instr

| PushConst : 'a → ('s,
'a * 's) instr

A program consists of a sequence of instructions. Since each instruction has
a different type we define a custom list type instrs rather than using OCaml’s
list:
type (_, _) instrs =

Stop : ('s, 's) instrs
| :: : ('s1, 's2) instr * ('s2, 's3) instrs → ('s1, 's3) instrs

As with instr, the two type parameters for instrs represent the state of the
stack before and after the instructions run. The Stop constructor represents an

10.7. PARAMETERISED AND INDEXED APPLICATIVES 167

empty sequence of instructions which leaves the state of the stack unchanged.
The type of the :: constructor shows that instructions are run left-to-right: first
the left argument (a single instruction) changes the state of the stack from 's1
to 's2, then the right argument (a sequence of instructions) changes the state
of the stack from 's2 to 's3.

Here is an example program:
let program =

PushConst 3 :: PushConst 4 :: PushConst 5 ::
PushConst true :: If :: Add :: Stop

The type of this program is ('s, int * 's)instrs — that is it transforms a
stack of type 's by adding an int to the top.

Rather than deal with concrete programs directly, we will build an interface
for constructing programs based on APPLICATIVE. We can build a suitable interface
by combining PARAMETERISED_APPLICATIVE with STACK_OPS:
module type STACKA = sig
include PARAMETERISED_APPLICATIVE
include STACK_OPS

with type ('s,'t,'a) t := ('s,'t,'a) t
val execute : ('s,'t,'a) t → 's → 't * 'a
val stack : unit → ('s, 's, 's) t

end

In order to implement STACKA we need a couple of auxiliary functions. The
first function, @., appends two instruction lists:
let rec (@.) : type a b c. (a,b) instrs → (b,c) instrs → (a,c) instrs

=
fun l r → match l with

Stop → r
| x :: xs → x :: (xs @. r)

The implementation of @. looks just like the implementation of an append
function for regular lists; only the types are different.

The second function, exec, executes a list of instructions:
let rec exec : type r s. (r, s) instrs → r → s =

fun instrs s → match instrs, s with
Stop, _ → s

| Add :: instrs, (x, (y, s)) → exec instrs (x + y, s)
| If :: instrs, (c, (t, (e, s))) → exec instrs ((if c then t else e),

s)
| PushConst c :: instrs, s → exec instrs (c, s)

The function is defined by simultaneous matching over the instruction list
and the stack. The type refinement (Section 8.1.1) that takes place when the
instructions are matched assigns different types to the stack in each branch.

Here is an implementation of STACKA:
let const x _ = x

module StackA : STACKA =
struct

type ('s, 't, 'a) t = ('s, 't) instrs * ('s → 'a)

168 CHAPTER 10. FIRST-CLASS EFFECTS

let pure v = (Stop, const v)
let add () = (Add :: Stop, const ())
let _if_ () = (If :: Stop, const ())
let push_const c = (PushConst c :: Stop, const ())
let stack () = (Stop, (fun s → s))
let (<∗>) (f, g) (x, y) = (f @. x, (fun s → g s (y (exec f s))))
let execute (i, k) s = (exec i s, k s)

end

The type t is a pair of an instruction list and a function over stacks. As
with STACKM the three type parameters to t represent the type of the stack before
a computation runs, the type of the stack after the computation runs, and the
result of the computation.

The pure function takes an argument v and builds an empty instruction
list and a function which ignores the input stack, simply returning v. The three
instruction functions add, _if_ and push_const, build singleton lists of instructions,
along with functions which ignore the input stack and return the unit value ().
The stack function makes it possible to observe the stack during the execution
of a computation. Calling stack builds an empty instruction list together with
a function which extracts the current value of the stack as the result of the
computation. The <∗> function combines two computations (f,g) and (x,y).
The resulting instruction list is the concatenation of the instruction lists f and
x. The second component of the pair is a function which passes the input stacks
for f and x to g and y, and then combines the results by application.

Finally, execute runs a computation (i, k) by executing the set of instructions
i against an input stack s to build the output stack and additionally passing s
to k to determine the computation’s result.

Optimising the stack machine Now that we have a concrete (first-order)
representation of instructions, it is easy to optimize programs as we construct
them. Here is a function, optimize, which transforms a list of instructions to
reduce addition of known constants:
let rec optimize : type r s a. (r, s, a) t → (r, s, a) t = function

PushConst x :: PushConst y :: Add :: ops →
optimize (PushConst (x + y) :: ops)

| op :: ops → op :: optimize ops
| Stop → Stop

The type of optimize gives us some reassurance that the optimization is sound,
since both the input and the output instruction lists transform a stack of type
r to a stack of type r.

Here is a second implementation of <∗> which applies optimize to simplify
the newly-constructed argument list:

let (<∗>) (f, g) (x, y) = (optimize (f @. x),
(fun s → g s (y (exec f s))))

It would not be difficult to add new optimizations for other instruction se-
quences. We will return to the question of stack machine optimization in Chap-
ter 13, where we will use staging to further improve the performance of stack
machine programs.

10.8. MONOIDS 169

10.7.2 Applicatives and monads: interfaces and imple-
mentations

Figures 10.2 and 10.3 summarise the relationship between applicatives and mon-
ads.

computations

<∗>
>>=

Figure 10.2: Monadic computations
include applicative computations

implementations

>>=
<∗>

Figure 10.3: Applicative implementa-
tions include monadic implementations

Figure 10.2 is about computations. As we have seen (Section 10.6.5), every
computation which can be expressed using APPLICATIVE can also be expressed
using MONAD. Furthermore, there are some computations that can be expressed
using MONAD that cannot be expressed using APPLICATIVE (Section 10.6.7).

Figure 10.3 is about implementations. As we have seen (Section 10.6.5),
for every implementation of MONAD there is a corresponding implementation of
APPLICATIVE. Furthermore, there are some implementations of APPLICATIVE which
do not correspond to any implementation of MONAD (Section 10.6.10).

These inclusion relationships can serve as a guideline for deciding when to use
applicatives and when to use monads. When writing computations you should
prefer applicatives where possible, since applicatives give the implementor more
freedom. On the other hand, when writing implementations you should expose
a monadic interface where possible, since monads give the user more power.

10.8 Monoids
We have seen that applicatives offer a less powerful interface to computation
than monads. A less powerful interface gives more freedom to the implemen-
tor, so it is possible to optimise applicative computations in ways that are not
possible for computations written with monads. The question naturally arises,
then, whether there are interfaces to effectful computation that are even less
powerful than applicatives.

Monoids offer one such interface. Here is the monoid interface, which we
first saw in Section 10.6.10:

170 CHAPTER 10. FIRST-CLASS EFFECTS

module type MONOID =
sig

type t
val zero : t
val (++) : t → t → t

end

The MONOID interface corresponds approximately to APPLICATIVE with the type
parameter removed. There are two constructors: zero, which builds a computa-
tion with no effects, and ++, which builds a computation from two computations.
As with applicatives, there is a normal form which contains no nesting, allowing
each monoid to be rearranged into the following shape:

zero ++ m1 ++ m2 ++ … ++ m𝑛

There are three laws, which say that ++ is associative and that zero is a left
and right unit for ++:

m ++ (n ++ o) ≡ (m ++ n) ++ o
m ++ zero ≡ m
zero ++ m ≡ m

Many familiar data types can be given MONOID implementations, often in sev-
eral different ways. For example, lists form a monoid, taking the empty list for
zero and concatenation for ++, and integers form a monoid under either addition
or multiplication.

Interpreted as computations, monoids correspond to impure expressions
which do not return a useful value. In OCaml we can sequence such expressions
using the semicolon:

m;
n;
o;
()

Finally, we have seen how to build an implementation of APPLICATIVE from
an implementation of MONOID. It is also possible to build an implementation of
MONOID from an instance of APPLICATIVE (Exercise 15.)

10.9 Exercises
1. [HH] Define a module satisfying the following signature

module TraverseTree (A : APPLICATIVE) :
sig
val traverse_tree : ('a → 'b A.t) → 'a tree → 'b tree A.t

end

and use it to give a simpler definition of label_tree.

2. [H] Use Traverse together with Phantom_counter (Section 10.6.10) to build a
computation that counts the number of nodes in a tree.

3. [HH] Write a module with the signature

10.9. EXERCISES 171

MONAD with type 'a t = 'a list

and with the following behaviour (demonstrated in the OCaml top-level):
[1;2;3] >>= fun x ->

["a";"b";"c"] >>= fun y ->
return (x, y);;

- : (int * string) ListM.t =
[(1, "a"); (1, "b"); (1, "c");
(2, "a"); (2, "b"); (2, "c");
(3, "a"); (3, "b"); (3, "c")]

(Hint: start by working out what types return and >>= should have if 'a t
is defined as 'a list.)

4. [HH] Show that if A is an applicative implementation satisfying the ap-
plicative laws then Dual_applicative(A) is also an applicative implementa-
tion satisfying the applicative laws.

5. [H] The functor Applicative_of_monad (Section 10.6.5) builds an applica-
tive implementation from a monad implementation. Define an analogous
function Parameterised_applicative_of_parameterised_monad that builds a pa-
rameterised applicative implementation from a parameterised monad im-
plementation.

6. [HH] Show that if M is a monad implementation satisfying the monad laws
then Applicative_of_monad(M) is an applicative implementation satisfying
the applicative laws.

7. [HH] The Compose functor of Section 10.6.8 builds an applicative by com-
posing two arbitrary applicatives. Show that there is no analogous functor
that builds a monad by composing two arbitrary monads.

8. [HHH] The normal form for applicatives (Section 10.6.3) can be defined
as an OCaml data type:
type _ t =

Pure : 'a → 'a t
| Apply : ('a → 'b) t * 'a A.t → 'b t

where A is a module implementing the APPLICATIVE interface. Using this
definition it is possible to define a functor Normal_applicative which turns
any implementation of APPLICATIVE into a second APPLICATIVE implementa-
tion which constructs computations in normal form. Complete the imple-
mentation of Normal_applicative, including the functions lift and observe
which convert between the normalised representation and the underlying
applicative:
module Normal_applicative(A: APPLICATIVE) :
sig

include APPLICATIVE
val lift : 'a A.t → 'a t
val observe : 'a t → 'a A.t

172 CHAPTER 10. FIRST-CLASS EFFECTS

end =
struct

type _ t =
Pure : 'a → 'a t

| Apply : ('a → 'b) t * 'a A.t → 'b t

(* add definitions for pure, <∗>, lift and observe *)
end

9. [HH] Show that if the arguments to the Compose functor of Section 10.6.8
satisfy the applicative laws then the output module also satisfies the laws.

10. [HH] Show that the Compose functor is associative — that is, show that
Compose(F)(Compose(G)(H)) produces the same result as Compose(Compose(F)(G
))(H) for any applicative implementations F, G and H.

11. [H] Define an implementation Id of the APPLICATIVE interface that is an iden-
tity for composition, so that Compose(Id)(A) and Compose(A)(Id) are equiva-
lent to A.

12. [HHH] Show that Compose(F)(G) is not the same as Compose(G)(F) for all ap-
plicatives F and G — i.e. that applicative composition is not commutative.

13. [HHH] Here is an alternative way of defining applicatives:
module type APPLICATIVE' =
sig

type _ t
val pure : 'a → 'a t
val map : ('a → 'b) → 'a t → 'b t
val pair : 'a t → 'b t → ('a * 'b) t

end

Show how to convert between APPLICATIVE and APPLICATIVE' using functors.
What laws should implementations of APPLICATIVE' satisfy?

14. [HH] Show that if M is a monoid implementation satisfying the monoid laws
then Phantom_monoid(M) (Section 10.6.10) is an applicative implementation
satisfying the applicative laws.

15. [HHH] Define a Monoid_of_applicative functor whose input is an APPLICATIVE
and whose output is a MONOID. How is it related to the Phantom_monoid func-
tor? In particular, how is Phantom_monoid(Monoid_of_applicative(A)) related
to A? How is Monoid_of_applicative(Phantom_monoid(M)) related to M?

16. [HH] Show that if A is an applicative implementation satisfying the ap-
plicative laws then Monoid_of_applicative(A) (Exercise 15) is a monoid im-
plementation satisfying the monoid laws.

10.9. EXERCISES 173

Further reading

• Applicatives are a convenient basis for building concurrent computa-
tions, since the applicative interface does not provide a way to make
one computation depend on the result of another. The following paper
describes an internal concurrent Facebook service based on applica-
tives.
There is no fork: an abstraction for efficient, concurrent, and concise
data access
Simon Marlow, Louis Brandy, Jonathan Coens and Jon Purdy
International Conference on Functional Programming (2014)

• Algebraic effects and handlers are a recent refinement of monadic ef-
fects which make it easier to compose independently-defined effects.
The following paper investigates variants of algebraic effects based on
applicatives (idioms) and arrows.
Algebraic effects and effect handlers for idioms and arrows
Sam Lindley
Workshop on Generic Programming (2014)

• Parameterised monads are useful in a dependently-typed setting,
where the indexes describing the state of a computation can be ar-
bitrary terms rather than types. The following paper presents a safe
file-access interface using parameterised monads, and investigates the
connection to Hoare logic.
Kleisli arrows of outrageous fortune Conor McBride
Journal of Functional Programming (2011)

• Arrows offer an interface to computation that is intermediate in
strength between applicatives and monads. With arrows, one com-
putation can be parameterised by the result of another, but it is not
possible to construct and run arbitrary computations dynamically.
The following two papers present a core calculus for arrows and com-
pare the relative expressive power of arrows, applicatives and monads.
The arrow calculus
Sam Lindley, Philip Wadler, and Jeremy Yallop
Journal of Functional Programming (2010)
Idioms are oblivious, arrows are meticulous, monads are promiscuous
Sam Lindley, Philip Wadler, and Jeremy Yallop
Mathematically Structured Functional Programming (2008)

• Hughes introduced arrows as a more general variant of monads in the
following paper:

174 CHAPTER 10. FIRST-CLASS EFFECTS

Generalising monads to arrows
John Hughes
Science of Computer Programming (1998)

• The usefulness of parameterised monads extends well beyond the
typed state monad that we have considered in this chapter. The
following paper presents parameterised monads in detail with many
examples, including typed I/O channels, delimited continuations and
session types.
Parameterised notions of computation
Robert Atkey
Journal of Functional Programming (2009)

• As we saw in Section 10.6.8, applicatives can be built by composing
simpler applicatives. The following paper shows how to compose three
simple applicatives to build a reusable abstraction for web program-
ming.
The essence of form abstraction
Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop
Asian Symposium on Programming Languages and Systems (2008)

• The following paper explores a number of strategies for error han-
dling in OCaml, including the approach based on indexed monads
and polymorphic variants (rows) described in Section 10.3:
Catch me if you can: Looking for type-safe, hierarchical, lightweight,
polymorphic and efficient error management in OCaml.
Arnaud Spiwack, David Teller and Till Varoquaux
Implementation and Application of Functional Languages(2008)

• McBride and Paterson’s 2008 paper introduced the applicative inter-
face:
Applicative programming with effects
Conor McBride and Ross Paterson
Journal of Functional Programming (2008)

• Parser combinators have become a standard example for using mon-
ads to structure programs. The typical presentations of parser com-
binators are more suited to lazy languages like Haskell than eager
languages like OCaml. The following paper is a tutorial introduction
to monadic parser combinators.
Monadic parser combinators
Graham Hutton and Erik Meijer
Technical Report, University of Nottingham (1996)

10.9. EXERCISES 175

• The higher-order nature of the monadic interface makes it impossible
to analyse parsers before running them, leading to inefficiencies and
delayed error reporting. Swierstra and Duponcheel structure parsers
using an applicative interface to make them more amenable to static
analysis. Applicatives aren’t discussed explicitly in the paper, since
they were only identified as a separate abstraction some years later.
Deterministic, Error-Correcting Combinator Parsers
S. Doaitse Swierstra and Luc Duponcheel
Advanced Functional Programming (1996)

• Wadler introduced monads as a way of structuring functional pro-
grams in the early 1990s. The following paper focuses on using mon-
ads for I/O in a pure language:
How to declare an imperative
Philip Wadler
International Logic Programming Symposium (1995)

• Although monads do not compose directly, the related concept of
monad transformers, described in the following paper, can be used to
compose monadic effects.
Monad Transformers and Modular Interpreters
Sheng Liang, Paul Hudak and Mark P. Jones
Principles of Programming Languages (1995)

176 CHAPTER 10. FIRST-CLASS EFFECTS

