Row polymorphism

Record operations

1. An empty record (empty)
2. Extend a record with a field (extend)

3. Access the contents of a field (access)

2/ 25

Presence variables

extendy ;e
Va:x. VB:x. Vy:x. Vd:x. Vp:x = x.
d — Record a 8 7 — Record (¢) B ~

where ¢ is a type constructor variable that can be instantiated
with:

» Present

» (Aa:x. Absent)

3/ 25

[[l-formed records

Polymorphic record types allow some ill-formed type expressions:

» Record Int (Present String) (Present String)
» List (Present Int)

These are prevented using the kind system by creating a new kind
presence such that:

Absent : presence
Present : % = presence
Record

presence = presence = presence =

4/ 25

Infinite records

What if we had infinite record types:

{...; foo: bar; ...}

5/ 25

Infinite records

empty : {... ; : Absent ; ...}
extend,,
V a:x. V B:presence.V 7,:presence.
V ¢:% = presence.
a—=-{... ;m: B8, ... ;1 oy =
{... - m:oa; ... ;| 7~ ...}
access,,
V arx.V B;:presence.
{... ; m: Present «a ; : [CPE S
o

6/ 25

Infinite records

Each record type appearing above can be divided into two parts:
1. A finite part

2. A co-finite part where either every type parameter is a free
variable or every type parameter is Absent.

7/ 25

Infinite records

{... : Absent ; ...}

8/ 25

Infinite records

{... : Absent ; ...}

{} { ... ;| : Absent ; ...}

Finite Co-finite

8/ 25

Infinite records

9/ 25

Infinite records

{ m: g | M ¥
{m : 5} {... S)
Finite Co-finite

9/ 25

Infinite records

10/ 25

Infinite records

{m : ¢ a} {... S)

Finite Co-finite

10/ 25

Infinite records

{... s m: Present « ; ... ; | 3, ; ...}

11/ 25

Infinite records

{... s m: Present « ; ... ; | 3, ; ...}
{m: Present o« } {... ;| B : ...}
Finite Co-finite

11/ 25

Row variables

{ ... : Absent ; ...}

12/ 25

Row variables

{ ... : Absent ; ...}

{1}

12/ 25

Row variables

{... ; m: Present a ; ... ; | = B8 ; ...}

13/ 25

Row variables

{... ; m: Present a ; ... ; | = B8 ; ...}

{m : Present a | p}

13/ 25

Row variables

empty : {}

extend,, : Va:x. V B:presence. V p:row(m).
V p:% = presence.
a—={m: g | p}—={m: ¢al p}

access,, : VYa:x. YV p:row(m).
{m : Present a | p} = «

14/ 25

Variant operations

1. Match a variant with no constructors (match_empty)
2. Extend a match with a variant constructor (extend_match)

3. Use a variant constructor (create)

15/ 25

Variant operations

let square =
extend_matchy,,(fun i —> create,, (i * i))
(extend_match g . (fun f — create g (f
match_empty)

¥)

let print_constant =
extend_matchy,,(fun i — print_int i)
(extend_match g, . (fun f — print_float f)
(extend_matchg,.;p,(fun s —> print_string s)
match_empty))

let () = print_constant (square (create,; 5))

16/ 25

Variant operations

match_empty: V a:x. [| = «

extend_match ,,:
YV a:x. V [:presence. V ~y:x.
V p:row(M). V ¢: % = presence.

(a =)= (M: 8| p] =7)—

M= pal| p] =7y

create,; : VYa:x. Vp:row(M).

a— [M : Present a| p]

17/ 25

Object types

< foo : int; bar : float >

An object type where the method foo has type int and the
method bar has type float.

Both methods are present, and all other methods are absent.

18/ 25

Object types

< foo : int; bar : float; .. >

The object may contain other methods besides foo and bar. In
other words, the .. represents an unnamed row variable.

19/ 25

Object limitations

Instead of extend,, we have:

val create;,,, : 'a—> 'b-—> "c —>

20/ 25

Polymorphic variant types

[‘Foo of int | 'Bar of float |

Represents a variant type where the constructor “Foo has type int
and the constructor “Bar has type float. Both constructors are
definitely present.

21/ 25

Polymorphic variant types

[< 'Foo of int | ‘Bar of float |

The variant is polymorphic in the presence of both constructors. In
other words, the < represents two unnamed presence variables.

22/ 25

Polymorphic variant types

[< ‘Foo of int | ‘Bar of float > ‘Bar]

The variant is only polymorphic in the presence of the “Foo
constructor — the “Bar constructor is definitely present. In other
words, the < represents a single unnamed presence variable
associated with “Foo.

23/ 25

Polymorphic variant types

[> ‘Foo of int | ‘Bar of float]

The variant may contain more constructors than just “Foo and

“Bar. In other words, the > represents an unnamed row variable.

Constructors “Foo and “Bar are definitely present.

24/ 25

Variant limitations

Instead of extend_match,,, we have:

val matchp n -
(‘a—> 'd) > ('b—> 'd
[< 'L of 'a | "M of '
'd

25/ 25

