Lambda calculus

(Advanced Functional Programming)

Jeremy Yallop

Computer Laboratory
University of Cambridge

January 2015

1/ 29

Course outline

2/ 29

Books

OREILLY

(G

Types and
Programming

Languages

Real World
OCarml

Varon Minsky, Anil Madhavapeddy
& Jason Hickey

Benjamin C. Pierce

OCaml from the very Real World OCaml Types and Programming
beginning Yaron Minsky, Languages

John Whitington Anil Madhavapeddy & Benjamin C. Pierce
Coherent Press (2013) Jason Hickey MIT Press (2002)

O'Reilly Media (2013)

3/ 29

Tooling

]
OPAM
OCaml package manager

10 [+:]:Notepad

1I0Caml

Jocaml

Linux / OSX / VirtualBox

Fw

Fw interpreter

4/ 29

Philosophy and approach

v

practical: with theory as necessary for understanding

v

real-world: patterns and techniques from real applications

v

reusable: general, widely applicable techniques

> current: mostly the topics of ongoing research

5/ 29

Philosophy and approach

» practical: with theory as necessary for understanding

» real-world: patterns and techniques from real applications
» reusable: general, widely applicable techniques

> current: mostly the topics of ongoing research

» opinionated (but you don't have to agree)

5/ 29

Mailing list

cl-acs-28@lists.cam.ac.uk
Announcements, questions and discussion. Feel free to post!
Have a question but feeling shy? Mail a lecturer instead and we'll
anonymise and post your question:

jeremy.yallop@cl.cam.ac.uk leo.white@cl.cam.ac.uk

6/ 29

Exercises assessed and unassessed

Unassessed exercises:

Useful preparation for the assessed exercises, so we recommend
that you work through them. Hand in for feedback, discuss freely

on the mailing list.

Assessed exercises:

Mon 2 Feb Mon 16 Feb Mon 9 March
{ { 1
Mon 9 Feb Mon 2 March Fri 24 April

7/ 29

Course structure

> Technical background
Lambda calculus; type inference

» Themes
Propositions as types; duality; parametricity and abstraction

» (Fancy) types
Higher-rank and higher-kinded polymorphism; modules and
functors; generalised algebraic types; rows

» Applications
Monads and related concepts; domain-specific languages;
datatype-generic programming; staged programming

8/ 29

Motivation & background

System Fw

Function composition in OCaml:

fun f g x—>f (g x)

Function composition in System Fw:

Noa::x .

10/ 29

What's the point of System Fw?

A framework for understanding language features and
programming patterns:

>

the elaboration language for type inference

the proof system for reasoning with propositional logic

the setting for dualities

the background for parametricity properties

the language underlying higher-order polymorphism in OCaml
the elaboration language for modules

the core calculus for GADTs

11/ 29

Roadmap

Fw

j.l

)\—)

12/ 29

Inference rules

premise 1 premise 1 . premise N
conclusion

rule name

13/ 29

Inference rules

premise 1 premise 1 premise N
conclusion
all M are P
% modus barbara

rule name

13/ 29

Inference rules

premise 1 premise 1 . premise N
- rule name
conclusion
all M are P
all S are M
— = ———— modus barbara
all S are P

all programs are buggy
all functional programs are programs
all functional programs are buggy

modus barbara

13/ 29

Typing rules

rN-mM:A—B
Fr’=N:A

TrMN.B elim

14/ 29

Terms, types, kinds

Kinds: K, Kl, K2,

K is a kind

Types: A, B, C, ...

MrM-A: K

Environments: [

[is an environment

Terms: L, M, N, ...

r’=mM:A

15/ 29

)\—)

(simply typed lambda calculus)

16/ 29

A~ by example

In \7: In OCaml:

AX AL X fun x —> x

Af:B—C. fun f g x — f (g x)
Ag:A—B.

Ax:Af (g x)

17/ 29

Kinds in A~

% is a kind +-kind

18/ 29

Kinding rules (type formation) in A~

LEEEE

M=A::x [+ B:: *
r-A— B: %

kind-—

19/ 29

A kinding derivation

kind-B

- kind-B
= kind-—

-8B -8B«
[-B—B:*
r=(B—B)—B:x

o kind-B
CEB s (g —

20/ 29

Environment formation rules

- IS an environment

[is an environment A x
[,x: Ais an environment

21/ 29

Typing rules (term formation) in A~

x:Ael o,
MNk=x:A
r-M:A—B
Nx:A-M:B . FrITEN:A selim
- AM A B nto r-MN:B

22/ 29

A typing derivation for the identity function

SXTAFEXA
“FAXx:Ax: A=A

—-intro

23/ 29

Products by example

In A7 with products: In OCaml:
Ap:(A—B) xA. fun (f,p) — fp
fst p (snd p)
Ax AL (X, x) fun x — (x, x)
A A—C. fun f g (x,y) = (fx,gy)
Ag.B—C.
Ap.AxB.

(f fst p,g snd p)

Ap.AxB.(snd p, fst p) fun (x,y) — (y,x)

24/ 29

Kinding and typing rules for products

M=A:x =B :: *

TEAXB -« kind-x
Fr-M:A (-M:AxB .
Fr-N:B <intro T fst M: A
F[F (M, N):AxB
r-M:AxB .
x-elim-2

[Fsnd M: B

25/ 29

Sums by example

In A\ with sums:

A A—C.
Ag:B—=C.
As:A+B.
case s of
x.f x

| v.gy

As:A+B.
case s of
x.inr [B] x
| y.inr [A] y

In OCaml:
fun f g s —
match s with
Inl x —> f
| Inry —>g
function

Inl x —> Inr
Inr y — Inl

< X

X

26/ 29

Kinding and typing rules for sums

M= A« B ::*

FEA+ B« kind-+
[-M:A L -L:A+B
FEml B M: At B et Mx:AFM:C
MNy:BEN:C .
r'-N:B +-elim

T inr[A|N:AL B +-intro-2 [t case Lof x.M | y.N: C

27/ 29

System F

(polymorphic lambda calculus)

28/ 29

System F by example

No:: % . Ax . x

Ny,
A=,
Agia— [
Mxca.f (g x)

A::x NGk Ap:(a— B)xa.fst p (snd p)

29/ 29

New kinding rules for System F

Moa:KHA::* a:Kerl
’ ; — = tyvar
M Vo KA+ KindV Fa- K~

30/ 29

New environment rule for System F

" is an environment K is a kind

- - M-
I, a::K is an environment

31/ 29

New typing rules for System F

Na:KEFM:A
M= Aa:K.M:Va:K.A

V-intro

[=M:Va:K.A rEB:K
'=MI[B]: Ala = B]

V-elim

32/ 29

Existential types

What's the point of existentials?

v

V and 3 in logic are closely connected to polymorphism and
existentials in type theory

v

As in logic, V and 3 for types are closely related

v

Module types can be viewed as a kind of existential type

v

OCaml’s variant types now support existential variables

34/ 29

Existential intuition

Existentials
correspond to
abstract types

35/ 29

Kinding rules for existentials

Ma:KEA:x
N daK.A %

kind-3

36/ 29

Typing rules for existentials

M= M: Ala = B] I JanK.A

[pack B, M as Ja::K.A: Ja:K.A =-intro
Fr=M:3Ja:K.A
MNno:K,x:A-M B ‘
J-elim

+open Masa,xin M : B

37/ 29

