Lambda calculus (Advanced Functional Programming)

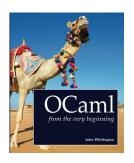
Jeremy Yallop

Computer Laboratory University of Cambridge

January 2015

Course outline

Books



OCaml from the very beginning John Whitington

Coherent Press (2013)

Real World OCaml

TRICTORIA PROGRAMMENT OF THE MAJOS.

Varon Miroley, Ani Madhavopeddy 8, Jason Hickey

Real World OCaml Yaron Minsky, Anil Madhavapeddy & Jason Hickey O'Reilly Media (2013)

Types and Programming Languages Benjamin C. Pierce MIT Press (2002)

Tooling

OPAM OCaml package manager

Philosophy and approach

- practical: with theory as necessary for understanding
- real-world: patterns and techniques from real applications
- ► reusable: general, widely applicable techniques
- current: mostly the topics of ongoing research

Philosophy and approach

- practical: with theory as necessary for understanding
- real-world: patterns and techniques from real applications
- ► reusable: general, widely applicable techniques
- current: mostly the topics of ongoing research
- opinionated (but you don't have to agree)

Mailing list

cl-acs-28@lists.cam.ac.uk

Announcements, questions and discussion. Feel free to post!

Have a question but feeling shy? Mail a lecturer instead and we'll anonymise and post your question:

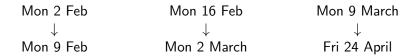
jeremy.yallop@cl.cam.ac.uk leo.white@cl.cam.ac.uk

Exercises assessed and unassessed

Unassessed exercises:

Useful preparation for the assessed exercises, so we recommend that you work through them. Hand in for feedback, discuss freely on the mailing list.

Assessed exercises:



Course structure

Technical background Lambda calculus; type inference

► Themes Propositions as types; duality; parametricity and abstraction

(Fancy) types Higher-rank and higher-kinded polymorphism; modules and functors; generalised algebraic types; rows

Applications

Monads and related concepts; domain-specific languages; datatype-generic programming; staged programming

Motivation & background

System $F\omega$

Function composition in OCaml:

```
fun f g x \rightarrow f (g x)
```

Function composition in System $F\omega$:

```
\Lambda \alpha :: *.

\Lambda \beta :: *.

\Lambda \gamma :: *.

\lambda f : \alpha \to \beta.

\lambda g : \gamma \to \alpha.

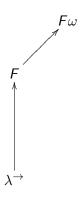
\lambda x :: \gamma . f (g x)
```

What's the point of System $F\omega$?

A framework for understanding language features and programming patterns:

- the elaboration language for type inference
- the proof system for reasoning with propositional logic
- the setting for dualities
- the background for parametricity properties
- the language underlying higher-order polymorphism in OCaml
- the elaboration language for modules
- the core calculus for GADTs

Roadmap



Inference rules

premise 1	premise 1		premise N	
conclusion				rule name

Inference rules

premise 1	premise 1		premise N	محمده ماسده
	conclus	on		rule name
all M are P all S are M all S are P			s barbara	

Inference rules

pı	remise 1	premise 1	on	premise N	rule name
all M are P all S are M all S are P					
all programs are buggy					
all functional programs are programs			hauhaua		
	all functional programs are buggy modus barbara			barbara	

Typing rules

$$\frac{\Gamma \vdash M : A \to B}{\Gamma \vdash N : A} \to -\text{elim}$$

Terms, types, kinds

Kinds: K_1, K_2, \ldots

K is a kind

Types: A, B, C, . . .

 $\Gamma \vdash A :: K$

Environments: **□**

Γ is an environment

Terms: L, M, N, ...

 $\Gamma \vdash M : A$

(simply typed lambda calculus)

λ^{\rightarrow} by example

In λ^{\rightarrow} :

 $\lambda x : A . x$

 $\lambda f: B \rightarrow C$.

 $\lambda g: A {
ightarrow} B$.

 $\lambda x : A.f (g x)$

In OCaml:

 $fun \times -> x$

 $\textbf{fun} \ f \ g \ x \ -\!\!> \ f \ (g \ x)$

Kinds in λ^{\rightarrow}

* is a kind *-kind

Kinding rules (type formation) in λ^{\rightarrow}

$$\overline{\Gamma \vdash \mathcal{B} :: *}$$
 kind- \mathcal{B}

$$\frac{\Gamma \vdash A :: * \qquad \Gamma \vdash B :: *}{\Gamma \vdash A \to B :: *} \text{ kind-} \rightarrow$$

A kinding derivation

Environment formation rules

Typing rules (term formation) in λ^{\rightarrow}

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \text{ tvar}$$

$$\frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash \lambda x:A.M:A\to B}\to -\text{intro}$$

$$\frac{\Gamma\vdash M:A\to B}{\Gamma\vdash M:A\to B}\to -\text{elim}$$

A typing derivation for the identity function

$$\frac{\cdot, x : A \vdash x : A}{\cdot \vdash \lambda x : A : A \to A} \to -intro$$

Products by example

In λ^{\rightarrow} with products:	In OCaml:
$\lambda p:(A\rightarrow B)\times A$. fst p (snd p)	fun $(f,p) \rightarrow fp$
λx : A . $\langle x$, $x angle$	$fun \times -> (x, x)$
λ f:A \rightarrow C. λ g.B \rightarrow C. λ p.A \times B. \langle f fst p,g snd p \rangle	fun f g $(x,y) \rightarrow (fx,gy)$
$\lambda p.A \times B.\langle snd p, fst p \rangle$	fun $(x,y) \rightarrow (y,x)$

Kinding and typing rules for products

$$\frac{\Gamma \vdash A :: * \qquad \Gamma \vdash B :: *}{\Gamma \vdash A \times B :: *} \text{ kind-} \times$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash N : B} \times -intro$$

$$\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash fst M : A} \times -elim-1$$

$$\frac{\Gamma \vdash M : A \times B}{\Gamma \vdash snd M : B} \times -elim-2$$

Sums by example

In λ^{\rightarrow} with sums:

```
\lambda f : A \rightarrow C.

\lambda g : B \rightarrow C.

\lambda s : A + B.

case s of

x \cdot f \times A + B.
```

In OCaml:

function

Kinding and typing rules for sums

$$\frac{\Gamma \vdash A :: * \qquad \Gamma \vdash B :: *}{\Gamma \vdash A + B :: *} \text{ kind-+}$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \text{inl } [B] M : A + B} + \text{-intro-1}$$

$$\frac{\Gamma \vdash N : B}{\Gamma \vdash \text{inr } [A] N : A + B} + \text{-intro-2}$$

$$\frac{\Gamma \vdash A :: * \qquad \Gamma \vdash B :: *}{\Gamma \vdash \text{case } L \text{ of } x.M \mid y.N : C} + \text{-elim}$$

System F

(polymorphic lambda calculus)

System F by example

```
\Lambda \alpha :: * . \lambda x : \alpha . x
\Lambda \alpha :: *.
     \Lambda\beta::*.
           \Lambda \gamma :: *.
                 \lambda f: \beta \to \gamma.
                       \lambda g : \alpha \to \beta.
                              \lambda x : \alpha . f (g x)
\Lambda \alpha :: *.\Lambda \beta :: *.\lambda p : (\alpha \rightarrow \beta) \times \alpha . fst p (snd p)
```

New kinding rules for System F

$$\frac{\Gamma, \alpha :: \mathcal{K} \vdash A :: *}{\Gamma \vdash \forall \alpha :: \mathcal{K}.A :: *} \text{ kind-} \forall$$

$$\frac{\alpha :: K \in \Gamma}{\Gamma \vdash \alpha :: K}$$
 tyvar

New environment rule for System F

 $\frac{\Gamma \text{ is an environment}}{\Gamma, \alpha :: K \text{ is an environment}} K \text{ is a kind} \Gamma -::$

New typing rules for System F

$$\frac{\Gamma, \alpha :: K \vdash M : A}{\Gamma \vdash \Lambda \alpha :: K.M : \forall \alpha :: K.A} \forall \text{-intro}$$

$$\frac{\Gamma \vdash M : \forall \alpha :: K.A}{\Gamma \vdash M [B] : A[\alpha := B]} \forall \text{-elim}$$

Existential types

What's the point of existentials?

- ightharpoonup and \exists in logic are closely connected to polymorphism and existentials in type theory
- ightharpoonup As in logic, \forall and \exists for types are closely related
- ▶ Module types can be viewed as a kind of existential type
- OCaml's variant types now support existential variables

Existential intuition

Existentials correspond to abstract types

Kinding rules for existentials

$$\frac{\Gamma, \alpha :: K \vdash A :: *}{\Gamma \vdash \exists \alpha :: K.A :: *} \text{ kind-} \exists$$

Typing rules for existentials