L28: Advanced functional programming

Exercise 2

Due on March 2nd

1. The following types represent a balanced binary tree:

type z =72 : z

)

type 'n s =S : 'n—> 'n s

type (_, _, _) eql3 =
| EqRefl : (’a, ’a, ’a) eql3

type (’a, _) btree =

| Empty : (’a, z) btree

| Tree : (’a, ’'m) btree * ’a * (’a, ’'n) btree
*

)

(’m, ’n, ’o) eql3 — (’a, 'o s) btree

by enforcing the constraint that branches of a Tree node have equal depth.

An AVL tree is a binary tree where the depth of the two branches of a
Tree node differ by at most 1. By replacing eql3 with a type that enforces

this constraint, we can create a type — similar to btree — which represents
AVL trees.

(i) Fill in the ? in the following code to create a type atree which
represents an AVL tree by enforcing the constraint on the depth of

branches.
type (_, , ) diff =
| Less : (7?7, 7, ?) diff (* Left branch depth one less than right branch *)
| Same (7, 7, ?) diff (*Both branches at the same depth *)
| More (7, 7, ?) diff (*Left branch depth one more than right branch *)

type (’a, ’'d) atree =
‘a

, 7) atree

'm) atree * ’a * (’a, ’'n) atree

(’m,’n,’0) diff —> (’a,’0 s) atree
The following sum type represents the results of comparing two values:
type compare = LessThan | Equal | GreaterThan

such that a comparison function of type 'a -> 'a -> compare returns

e LessThan if the first argument is less than the second

e Equal if the first argument is equal to the second,



e GreaterThan if the first argument is greater than the second

(ii) Implement the membership function member of type:

val member : (’a — ’a —> compare) —> ’a —> (’a, ’d) atree
—> bool

such that member cmp x t returns true iff the value x is present in
the AVL tree t assuming that the elements of the tree are in order
according to the comparison function cmp.

Given

o a binary tree (1) of depth n

o a value (v)

o a binary tree (r) of depth n + 2
then the binary tree Tree(l, v, r) is not a valid AVL tree because it would
break the invariant that the branches’ depths differ by at most 1.

However, the following rotation algorithm will create a binary tree that is a
valid AVL tree and whose elements are in the same order as Tree(l, v, r):

let Tree(rl, rv, rr) = r in
if depth(rl) <= depth(rr) then Tree(Tree (1, v, rl), rv, rr)
else

let Tree(rll, rlv, rlr) = rl in
Tree(Tree (1, v, rll), rlv, Tree (rlr, rv, rr))

(iii) Using the following type for the result of the algorithm:

type (’a, ’d) result =
| SameDepth : (’a, ’d) atree —> (’a, ’d) result
| Deeper : (’a, ’d s) atree —> (’a, ’d) result

Implement the above algorithm as a function rotate_left of type:

val rotate_left : (’a, ’d) atree —> ’a —> (’a, ’d s s) atree
—> (’a, ’d s s) result

(iv) Implement the dual operation which rotates a tree to the right as a
function rotate_right of type:

val rotate_right : (’a, 'd s s) atree —> ’a —> (’a, ’d) atree
—> (’a, ’d s s) result

Insertion of an element into an ordered AVL tree is very similar to inser-
tion of an element into an ordered binary tree, except that in some cases

rotate_left and rotate_right are needed to maintain the constraint
on branch depth.



(v) Implement the insertion function insert of type:

val insert : (’a —> ’a —> compare) —> ’a —> (’a, ’d) atree
—> (’a, ’d) result

such that insert cmp x t returns an ordered AVL tree that contains
the value x and all elements of the ordered AVL tree t. The elements
of t are assumed to be in order according to the comparison function
cmp, and the elements of the resulting tree must also be in order
according to the comparison function cmp. You can assume that the
input trees contain no duplicates and should ensure that the result
contains no duplicates.

AVL trees are a good data-structure for implementing sets.

(vi) Implement a functor Set of module type:

module Set
functor (X : sig type t val compare : t —> t —> compare end) —>

sig
type t
val empty : t
val member : X.t —> t —> bool
val insert : X.t —> t —> t

end

which implements sets using atree.



2. The types in the following module represent fragments of a subset of
XHTML:

module Untyped = struct

type element =
| Data : string —> element (* Alphanumeric strings *)
| P : t —> element (*<p> body </p> *)
| Em : t —> element (* <em> body </em> *)
| A : t —> element (* <a> body </a> *)
| Table : t —> element (* <table> body </table> *)
| Tr : t —> element (* <tr> body </tr> *)
| Td : t —> element (* <td> body </td> *)

and t = element list

end

For example:

let example =
[Untyped.P
[Untyped.Data ”hello 7;

)

Untyped .Em [Untyped.Data ”world ”]]]

represents “<p>hello <em>world</em></p>”.

However, XHTML restricts its values to those which obey the following
grammar:

td ::= <td> flow* </td>

tr ::= <tr> td+ </tr>

flow ::= block | inline

block ::= p | table

P ::= <p> inlinex* </p>

table ::= <table> tr+ </table>
inline ::= DATA | em | a

em ::= <em> inlinex </em>

a ::= <a> inlinex </a>

where foo* is a sequence of 0 or more foos, foo+ is a sequence of 1 or
more foos and DATA is a string of alphanumeric characters.

The GADT t in the following module represents the classes tr, td, inline
and block from the grammar:



module Kind = struct

type tr = Tr
type td = Td

type inline = Inline
type block = Block

type 'k flow =
| Inline : inline flow
| Block : block flow

type ’e t =
| Tr : tr t
| Td : td t
| Flow : 'k flow — 'k flow ¢

end

and the index of the t type reflects its value.

For example, Flow Inline represents the inline grammar class and has
type inline flow t.

Using the same type indices as Kind.t we can create a type to represent
XHTML values that only allows values which obey the XHTML grammar.

(i) Fill in the ? in the following module definition so that Typed.t repre-
sents the XHTML values which are valid according to the grammar:

module Typed = struct

type ’e element =

| Data : string —> ? element
| P: 7?7 t — 7 element

| Em : ? t — ? element

| A : 7 t —> 7 element

| Table : ? t — ? element

| Tr : 7 t — ? element

| Td : 7 t — 7?7 element

Empty : 7 t
Single : 7 element —> 7 t

and 'e t =
|
|
| Cons : ? element * ? t —> 7 ¢



(ii) Write a function verify with type:
val verify : 'k Kind.t —> Untyped.t —> ’k Typed.t option

where verify k u

e returns u converted to a Typed.t if u is valid and is an instance
of the grammar class k

e returns None otherwise

The following function index_table takes a function (£) and an untyped
fragment of XHTML (tbl), and if that fragment represents a table then
it returns a new table that has an additional column whose value is filled
in by £. If tbl does not represent a table, or £ returns XHTML that is
not valid as the contents of a table cell, then index_table returns None.

let rec check inline xs =
let open Untyped in
match xs with

| [] — true

| Data _ :: xs —> check_ inline xs
| P_ :: xs —> check_inline xs

| Em _ :: xs —> check_inline xs

| A_ :: xs —> check_inline xs

| Table _ :: xs —> check_inline xs
| Tr _ :: _ —> false

| Td _ :: _ —> false

let index table f tbl =
let open Untyped in

let rec loop idx = function
| [] = Some []
| (Tr cols) :: rows —> begin
let col = f idx in
if not (check_ inline col) then None
else

match loop (idx + 1) rows with
| None —> None
| Some rows —>
let row = Tr (Td col :: cols) in
Some (row :: rows)
end
| _ —> None
in
match tbl with
| Table rows —> begin
match loop 1 rows with
| None —> None



| Some rows —> Some (Table rows)
end
| _ —> None

(iii) Write a new version of index_table which uses Typed.t instead of
Untyped.t. It should have type:

val index_table : (int — ’a Kind.flow Typed.t) —>
Kind . block Kind. flow Typed.element —>
Kind. block Kind. flow Typed.element option



