
L28: Advanced functional programming
Exercise 1
Due on Febuary 9th

For these questions, you may assume that all the definitions given in Figure 1
are available in System F𝜔.

1. Give a typing derivation for Λ𝛼 ∶∶ ∗.𝜆𝑥 ∶ 𝛼.⟨𝑥, 𝑥⟩ (3 marks)

2. Algorithm J is defined recursively over the structure of terms. The case
for function application (M N) is as follows:

J (Γ , M N) = 𝛽
where A = J (Γ , M)
and B = J (Γ , N)
and uni fy ’ ({A = B → 𝛽}) succeeds
and 𝛽 i s f r e s h

Give similar cases to handle the following constructs:

(i) Constructing a pair (⟨M, N⟩)
(ii) Projecting the first element of a pair (fst M)
(iii) Constructing a sum using inl (inl M)
(iv) Destructing a sum (case L of x.M | y.N)

(5 marks)

3. The following OCaml type represents ternary trees:

type ’ a t t r e e =
| Empty : ’ a t t r e e
| Tree : ’ a * ’ a t t r e e * ’ a t t r e e * ’ a t t r e e −> ’ a t t r e e

(i) Give an encoding of this type in System F𝜔 consisting of a type
operator (TTree) of kind ∗⇒∗, a function for each constructor (empty
and tree), and a function (foldTTree) for folding over trees.

(3 marks)

(ii) Write a function

tota lNatTree : TTree Nat → Nat

that computes the total of a ternary tree of Nats in System F𝜔.
(1 marks)

1

4. Using existentials, products, the List type, the Nat type and the Option
type, implement a queue data structure in System F𝜔 with a type corre-
sponding to the following OCaml signature:

type ’ a t
val empty : ’ a t
val enqueue : ’ a −> ’ a t −> ’ a t
val dequeue : ’ a t −> ’ a t * ’ a opt ion
val s i z e : ’ a t −> in t

(6 marks)

5. (i) Why does the type checker reject the following program? Specifically,
what potentially unsafe behaviour is the type checker’s rejection of
the program intended to prevent?

let rec make s i z e elem =
i f s i z e <= 0 then []
else elem : : (make (s i z e − 1) elem)

let f oo =
l et make_three = make 3 in

make_three ” h e l l o ” ,
make_three 5

(3 marks)
(ii) Replace make with a function of the same type which would make

the program unsafe if the type checker did not reject it.

(1 mark)

(iii) Adjust the definition of make_three so that the program is accepted
by the type-checker, without changing the result of the program.

(1 mark)

(iv) The following program is also rejected by the type-checker:

let make s i z e =
Pr in t f . p r i n t f ”Making l i s t s of l ength %d\n” s i z e ;
l et rec loop s i z e elem =

i f s i z e <= 0 then []
else elem : : (loop (s i z e − 1) elem)

in
loop s i z e

let f oo =
l et make_three = make 3 in

make_three ” h e l l o ” ,
make_three 5

2

It is not possible to make this program pass the type-checker by only
changing make_three without affecting the program’s observable be-
haviour (i.e. the number of times the message is printed).
However, using a record field with a universal type, it is possible to
wrap the result of make so that it can be used polymorphically.
Using this technique, adjust the program so that it passes the type-
checker without affecting its observable behaviour.

(2 marks)

3

Nat = ∀𝛼 : : * . 𝛼 → (𝛼 → 𝛼) → 𝛼

zero = Λ𝛼 : : * . 𝜆z :𝛼 .𝜆s :𝛼 → 𝛼 . z

succ = 𝜆n : Nat .Λ𝛼 : : * . 𝜆z :𝛼 .𝜆s :𝛼 → 𝛼 . s (n [𝛼] z s)

add = 𝜆m: Nat .𝜆n : Nat .m [Nat] n succ

L i s t = 𝜆𝛼 : : * . ∀𝜑 : : *⇒* .𝜑 𝛼 → (𝛼 → 𝜑 𝛼 → 𝜑 𝛼) → 𝜑 𝛼

n i l = Λ𝛼 : : * . Λ𝜑 : : *⇒* .𝜆 n i l :𝜑 𝛼 .𝜆cons :𝛼 → 𝜑 𝛼 → 𝜑 𝛼 . n i l

cons = Λ𝛼 : : * . 𝜆x :𝛼 .𝜆xs : L i s t 𝛼 .
Λ𝜑 : : *⇒* .𝜆 n i l :𝜑 𝛼 .𝜆cons :𝛼 → 𝜑 𝛼 → 𝜑 𝛼 .

cons x (xs [𝜑] n i l cons)

f o l d L i s t = Λ𝛼 : : * . Λ𝛽 : : * .
𝜆c :𝛼 → 𝛽 → 𝛽 .𝜆n :𝛽 .𝜆 l : L i s t 𝛼 .

l [𝜆𝛾 : : * . 𝛽] n c

append = Λ𝛼 : : * .
𝜆 l : L i s t 𝛼 .𝜆r : L i s t 𝛼 .

f o l d L i s t [𝛼] [L i s t 𝛼] (cons [𝛼]) l r

r e v e r s e = Λ𝛼 : : * .
𝜆 l : L i s t 𝛼 .

f o l d L i s t [𝛼] [L i s t 𝛼 →Li s t 𝛼]
(𝜆x :𝛼 . 𝜆k : L i s t 𝛼 →Li s t 𝛼 . 𝜆xs : L i s t 𝛼 . k (cons [𝛼] x xs))
(𝜆xs : L i s t 𝛼 . xs) l (n i l [𝛼])

Option = 𝜆𝛼 : : * . ∀𝜑 : : *⇒* .𝜑 𝛼 → (𝛼 → 𝜑 𝛼) → 𝜑 𝛼

none = Λ𝛼 : : * . Λ𝜑 : : *⇒* .𝜆none :𝜑 𝛼 .𝜆some :𝛼 → 𝜑 𝛼 . none

some = Λ𝛼 : : * . 𝜆x :𝛼 .
Λ𝜑 : : *⇒* .𝜆none :𝜑 𝛼 .𝜆some :𝛼 →𝜑 𝛼 .

some x

fo ldOpt ion = Λ𝛼 : : * . Λ𝛽 : : * .
𝜆s :𝛼 → 𝛽 .𝜆n :𝛽 .𝜆o : Option 𝛼 .

o [𝜆𝛾 : : * . 𝛽] n s

Figure 1: Definitions in System F𝜔

4

