
Chapter 6

Abstraction and
parametricity

Type structure is a syntactic discipline for maintaining levels of
abstraction – John Reynolds, “Types, Abstraction and Parametric
Polymorphism”

6.1 Abstraction
Abstraction, also known as information hiding, is fundamental to computer
science. When faced with creating and maintaining a complex system, the
interactions of different components can be simplified by hiding the details of
each component’s implementation from the rest of the system.

Details of a component’s implementation are hidden by protecting it with
an interface. An interface describes the information which is exposed to other
components in the system. Abstraction is maintained by ensuring that the rest
of the system is invariant to changes of implementation that do not affect the
interface.

6.1.1 Modules
The most powerful form of abstraction in OCaml is achieved using the mod-
ule system. The module system is basically its own language within OCaml,
consisting of modules and module types. All OCaml definitions (e.g. values,
types, exceptions, classes) live within modules, so the module system’s support
for abstraction includes support for abstraction of any OCaml definition.

Structures

A structure creates a module from a collection of OCaml definitions. For exam-
ple, the following defines a module with the definitions of a simple implementa-

63

64 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

tion of a set of integers:
module In tSe t = struct

type t = in t l i s t

let empty = []

let is_empty = function
| [] −> true
| _ −> fa l se

let equal_member (x : i n t) (y : i n t) =
x = y

let rec mem x = function
| [] −> fa l se
| y : : r e s t −>

i f (equal_member x y) then true
else mem x r e s t

let add x t =
i f (mem x t) then t
else x : : t

let rec remove x = function
| [] −> []
| y : : r e s t −>

i f (equal_member x y) then r e s t
else y : : (remove x r e s t)

let t o_ l i s t t = t

end
The module IntSet uses lists of integers to represent sets of integers. This

is indicated by the inclusion of a type t defined as an alias to int list. The
implementation provides the basic operations of sets as a collection of functions
that operate on these int lists.

The components of a structure are accessed using the . operator. For
example, the following creates a set containing 1, 2 and 3.
let one_two_three : In tSe t . t =

IntSet . add 1 (IntSe t . add 2 (IntSe t . add 3 IntSet . empty))
A structure’s components can also be made available using open to avoid

needing to repeatedly use the . operator:
open In tSe t

6.1. ABSTRACTION 65

let one_two_three : t =
add 1 (add 2 (add 3 empty))

There is also a scoped opening syntax to temporarily make a structure’s com-
ponents available without the . operator:

let one_two_three : In tSe t . t =
IntSet . (add 1 (add 2 (add 3 empty)))

Structures can be built from other structures using include. For example,
we can build a structure containing all the components of IntSet as well as a
singleton function:

module IntSetP lus = struct
include In tSe t

let s i n g l e t o n x = add x empty
end

Signatures

Signatures are interfaces for structures. They are a kind of module type, and
the most general signature is automatically inferred for a structure definition.
The signature inferred for our IntSet structure is as follows:

sig
type t = in t l i s t
val empty : ’ a l i s t
val is_empty : ’ a l i s t −> bool
val equal_member : i n t −> in t −> bool
val mem : i n t −> in t l i s t −> bool
val add : i n t −> in t l i s t −> in t l i s t
val remove : i n t −> in t l i s t −> in t l i s t
val t o_ l i s t : ’ a −> ’ a

end

We can use a signature to hide components of the structure, and also to
expose a component with a restricted type. For example, we can remove the
equal_member function, and restrict empty, is_empty and to_list to only
operate on int lists:

module In tSe t : sig
type t = in t l i s t
val empty : i n t l i s t
val is_empty : i n t l i s t −> bool
val mem : i n t −> in t l i s t −> bool
val add : i n t −> in t l i s t −> in t l i s t
val remove : i n t −> in t l i s t −> in t l i s t

66 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

val t o_ l i s t : i n t l i s t −> in t l i s t
end = struct

. . .
end

For convenience, we can name the signature using a module type declaration:

module type IntSetS = sig
type t = in t l i s t
val empty : i n t l i s t
val is_empty : i n t l i s t −> bool
val mem : i n t −> in t l i s t −> bool
val add : i n t −> in t l i s t −> in t l i s t
val remove : i n t −> in t l i s t −> in t l i s t
val t o_ l i s t : i n t l i s t −> in t l i s t

end

module In tSe t : IntSetS = struct
. . .

end

Abstract types

The above definition of IntSet still exposes the fact that our sets of integers
are represented using int list. This means that code outside of the module
may rely on the fact that our sets are lists of integers. For example,

let pr int_set (s : In tSe t . t) : un i t =
let rec loop = function

| x : : xs −> pr int_int x ; p r in t_s t r i ng ” ” ; loop xs
| [] −> ()

in
pr in t_s t r i ng ”{ ” ;
loop s ;
p r in t_s t r i ng ”}”

Such code is correct, but it will break if we later decide to use a different
representation for our sets of integers.

In order to prevent this, we must make the type alias IntSet.t into an
abstract type, by hiding its definition as an alias of int list. This gives us the
following definition:

module type IntSetS = sig
type t
val empty : t
val is_empty : t −> bool
val mem : i n t −> t −> bool
val add : i n t −> t −> t

6.1. ABSTRACTION 67

val remove : i n t −> t −> t
val t o_ l i s t : t −> in t l i s t

end

module In tSe t : IntSetS = struct
. . .

end

Observe that we also change int list in the types of the functions to t
(except for the result of to_list).

Now that the type is abstract, code outside of IntSet can only pass the set
values around and use the functions in IntSet to create new ones, it cannot use
values of type IntSet.t in any other way because the it cannot see the type’s
definition.

This means that the implementation of IntSet can be replaced with a more
efficient one (perhaps based on binary trees), safe in the knowledge that the
change will not break any code outside of IntSet.

Compilation Units

In OCaml, every source file defines a structure (e.g. “foo.ml” defines a module
named Foo). The signature for these modules is defined in a corresponding
interface file (e.g. “foo.mli” defines the signature of the Foo module). Note that
all such compilation units in a program must have a unique name.

6.1.2 Abstraction in System F𝜔
The abstract types in OCaml’s module system correspond to existential types
in System F𝜔. Just like abstract types, existentials can pack together opera-
tions on a shared type, without exposing the definition of that type. As an
example we will implement our IntSet with an abstract type using existentials
in System F𝜔. For convenience, we will use natural numbers instead of integers
and use simpler, less efficient, implementations of the set operations.

First, we create a type constructor and some functions for dealing with the
products that represent the structures we are implementing:

NatSetImpl =
𝜆𝛼 : : * .

𝛼
× (𝛼 → Bool)
× (Nat → 𝛼 → Bool)
× (Nat → 𝛼 → 𝛼)
× (Nat → 𝛼 → 𝛼)
× (𝛼 → L i s t Nat) ;

empty = Λ𝛼 : : * . 𝜆s : NatSetImpl 𝛼 .𝜋е s ;
is_empty = Λ𝛼 : : * . 𝜆s : NatSetImpl 𝛼 .𝜋Ѳ s ;

68 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

mem = Λ𝛼 : : * . 𝜆s : NatSetImpl 𝛼 .𝜋Ѫ s ;
add = Λ𝛼 : : * . 𝜆s : NatSetImpl 𝛼 .𝜋Ͽ s ;
remove = Λ𝛼 : : * . 𝜆s : NatSetImpl 𝛼 .𝜋Ͻ s ;
t o_ l i s t = Λ𝛼 : : * . 𝜆s : NatSetImpl 𝛼 .𝜋ѣ s ;

Now we can create our implementation of sets of naturals, and give it the
type corresponding to the abstract IntSet signature using pack:
nat_set_package =

pack L i s t Nat , 〈
n i l [Nat] ,
isempty [Nat] ,
𝜆n : Nat . f o l d [Nat] [Bool]

(𝜆x : Nat .𝜆y : Bool . or y (equal_nat n x))
f a l s e ,

cons [Nat] ,
𝜆n : Nat . f o l d [Nat] [L i s t Nat]

(𝜆x : Nat .𝜆 l : L i s t Nat
i f (equal_nat n x) [L i s t Nat] l (cons [Nat] x l))

(n i l [Nat]) ,
𝜆 l : L i s t Nat . l 〉

as ∃𝛼 : : * . NatSetImpl 𝛼 ;
By opening nat_set_package as nat_set in the environment using open

open nat_set_package as NatSet , nat_set ;
we are able to write one_two_three in System F𝜔:
one_two_three =

(add [NatSet] nat_set) one
((add [NatSet] nat_set) two

((add [NatSet] nat_set) three
(empty [NatSet] nat_set))) ;

If we look at the typing rules for existentials (Section 2.3.1), we can see that
the type which is packed (List Nat) is not present in the type of the package
(∃𝛼::*.NatSetImpl 𝛼) – it is replaced by a fresh type variable (𝛼). As with
OCaml’s abstract types, this means code outside of nat_set_package can only
pass the set values around and use the functions in nat_set_package to create
new ones, it cannot use values of type 𝛼 in any other way, because the it cannot
see the type’s definition.

This means that we can replace nat_set_impl with a more efficient im-
plementation, safe in the knowledge that the change will not break code using
nat_set_package.

6.1.3 Existential types in OCaml
We have seen that OCaml’s module system provides abstraction for all OCaml
definitions. This includes abstract types, which are closely related to existential

6.2. PARAMETRICITY 69

types in System F𝜔. However, OCaml also provides more direct support for
existential types within its core language. This can sometimes be more conve-
nient than using the module system, which is quite verbose, but only works for
types of kind *.

Type inference for general existential types is undecidable. As an illustration,
consider the following OCaml function:
fun p x y −> i f p then x else y
This expression could have a number of System F𝜔 types, including:
∀𝛼 : : * . Bool → 𝛼 → 𝛼 → 𝛼

∀𝛼 : : * . ∀𝛽 : : * . Bool → 𝛼 → 𝛽 → ∃𝛾 : : * . 𝛾
and none of these types is more general than the rest, so we require some
annotations in order to type-check programs involving existentials. The required
annotations include explicit pack and open statements, as well as explicitly
specifying the type of the existential created by a pack statement.

Rather than directly using open and pack with type annotations, existential
types in OCaml are provided through sum types. The constructors of the sum
type act as pack statements in expressions, and open statements in patterns.
The declaration of a sum type includes specifying the types of its construc-
tors arguments, which provide us with the required type annotations for pack
statements.

The following definition defines a type corresponding to ∃𝛼.𝛼 × (𝛼 → 𝛼) ×
(𝛼 → string):
type t = E : ’ a * (’ a −> ’ a) * (’ a −> s t r i n g) −> t

Building a value using the E constructor corresponds to the pack operation
of System F𝜔:
let i n t s = E(0 , (fun x −> x + 1) , s t r ing_of_int)
let f l o a t s = E(0 . 0 , (fun x −> x +. 1 . 0) , s t r i ng_o f_ f l oa t)

Destructing a value using the E constructor with let or match corresponds
to the open operation of System F𝜔:
let E(z , s , p) = i n t s in

p (s (s z))

6.2 Parametricity
Polymorphism allows a single piece of code to be instantiated with multiple
types. Polymorphism is parametric when all of the instances behave uniformly.
This is in contrast to ad-hoc polymorphism, where values can behave differently
depending on which type they are being instantiated with.

Parametricity can be thought of as the dual to abstraction. Where abstrac-
tion hides details about an implementation from the outside world, parametric-
ity hides details about the outside world from an implementation.

70 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

6.2.1 Functors
The most powerful form of parametricity in OCaml is provided by functors.
Functors are functions that operate on modules. Since modules can contain any
OCaml definition, functors can be parametric on any OCaml definition.

As an example, we will extend our IntSet module to a Set module that
works uniformly on any module that matches the appropriate signature.

For convenience, we will define a module type for the signature that we
expect of arguments to the functor:

module type Eq = sig
type t
val equal : t −> t −> bool

end

This signature says that we expect the module to contain a type t and a
function equal for comparing two values of type t for equality.

We also create a signature of the functor’s result:

module type SetS = sig
type t
type e l t
val empty : t
val is_empty : t −> bool
val mem : e l t −> t −> bool
val add : e l t −> t −> t
val remove : e l t −> t −> t
val t o_ l i s t : t −> e l t l i s t

end

Now we define our Set functor as follows:

module Set (E : Eq) : SetS with type e l t := E. t = struct

type t = E. t l i s t

let empty = []

let is_empty = function
| [] −> true
| _ −> fa l se

let rec mem x = function
| [] −> fa l se
| y : : r e s t −>

i f (E. equal x y) then true
else mem x r e s t

let add x t =

6.2. PARAMETRICITY 71

i f (mem x t) then t
else x : : t

let rec remove x = function
| [] −> []
| y : : r e s t −>

i f (E. equal x y) then r e s t
else y : : (remove x r e s t)

let t o_ l i s t t = t

end

Note that we have specified the result of the functor to have the signature
SetS with type elt := E.t. This signature is the same as SetS but with
the elt type component removed and all occurrences of it replaced by E.t. If
we had wanted to leave the elt type in the signature, but changed from an
abstract type to an alias for E.t, we could instead have used SetS with type
elt = E.t.

We can apply the functor to recreate IntSet:

module IntEq = struct
type t = in t
let equal (x : i n t) (y : i n t) =

x = y
end

module In tSe t = Set (IntEq)

Since the type E.t is abstract within the body of Set, the implementation
of Set can only pass these values around and compare them using E.equals, it
cannot use values of type E.t in any other way because the it cannot see the
type’s definition. This means that the behaviour of Set cannot depend on the
particular type used for E.t: it must behave uniformly on any Eq module that
it is applied to.

6.2.2 Parametricity in System F𝜔
OCaml functors with abstract types in their arguments correspond to universal
types in System F𝜔. This is not surprising: universal types are the fundamental
concept of the polymorphic lambda calculus (System F), which is intended to
capture the essence of parametric polymorphism.

As an example we will implement our Set functor using universals in Sys-
tem F𝜔.

First, for convenience, we create a type constructor and some functions for
dealing with the products that represent the structures of both the argument
and result structures of Set:

72 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

EqImpl =
𝜆𝛾 : : * . 𝛾 → 𝛾 → Bool ;

equal = Λ𝛾 : : * . 𝜆s : EqImpl 𝛾 . s ;

SetImpl =
𝜆𝛾 : : * . 𝜆𝛼 : : * .

𝛼
× (𝛼 → Bool)
× (𝛾 → 𝛼 → Bool)
× (𝛾 → 𝛼 → 𝛼)
× (𝛾 → 𝛼 → 𝛼)
× (𝛼 → L i s t 𝛾) ;

empty = Λ𝛾 : : * . Λ𝛼 : : * . 𝜆s : SetImpl 𝛾 𝛼 .𝜋е s ;
is_empty = Λ𝛾 : : * . Λ𝛼 : : * . 𝜆s : SetImpl 𝛾 𝛼 .𝜋Ѳ s ;
mem = Λ𝛾 : : * . Λ𝛼 : : * . 𝜆s : SetImpl 𝛾 𝛼 .𝜋Ѫ s ;
add = Λ𝛾 : : * . Λ𝛼 : : * . 𝜆s : SetImpl 𝛾 𝛼 .𝜋Ͽ s ;
remove = Λ𝛾 : : * . Λ𝛼 : : * . 𝜆s : SetImpl 𝛾 𝛼 .𝜋Ͻ s ;
t o_ l i s t = Λ𝛾 : : * . Λ𝛼 : : * . 𝜆s : SetImpl 𝛾 𝛼 .𝜋ѣ s ;

Now we can create our implementation of sets, using Λ to give it a universal
type corresponding to the type of the Set functor.
set_package =

Λ𝛾 : : * . 𝜆eq : EqImpl 𝛾 .
pack L i s t 𝛾 , 〈

n i l [𝛾] ,
isempty [𝛾] ,
𝜆n : 𝛾 . f o l d [𝛾] [Bool]

(𝜆x : 𝛾 .𝜆y : Bool . or y (equal [𝛾] eq n x))
f a l s e ,

cons [𝛾] ,
𝜆n : 𝛾 . f o l d [𝛾] [L i s t 𝛾]

(𝜆x : 𝛾 .𝜆 l : L i s t 𝛾 .
i f (equal [𝛾] eq n x) [L i s t 𝛾] l (cons [𝛾] x l))

(n i l [𝛾]) ,
𝜆 l : L i s t 𝛾 . l 〉

as ∃𝛼 : : * . SetImpl 𝛾 𝛼 ;
If we look at the typing rules for universals (Section 2.3), we can see that

the type parameter of Λ is a fresh type variable. As with abstract types in the
parameters of OCaml functors, this means the body of set_package can only
pass these values around and compare them using eq, it cannot use values of
type 𝛾 in any other way because the it cannot see the type’s definition.

This means that the behaviour of set_package cannot depend on the par-
ticular type used for 𝛾: it must behave uniformly on any type that it is applied
to.

6.2. PARAMETRICITY 73

6.2.3 Universal types in OCaml
In addition to supporting universal types through abstract types in functor
arguments, OCaml also provides more direct support for universal types within
its core language. This is more convenient than using the module system, which
is quite verbose, but only works for types of kind *.

ML polymorphism provides simple universal types. As discussed in Chap-
ter 3, ML polymorphism can be inferred without any type annotations. For
example, the polymorphic identity function, which has type ∀𝛼.𝛼 → 𝛼:
let f x = x

However, this only provides rank-1 or prenex polymorphism, which means
that all universal quantifiers (∀) must appear at the out-most position (i.e. at
the very beginning of the type expression). It does not support higher-rank
universal types such as (∀𝛼.List𝛼 → Int) → Int.

Type inference for higher-rank universal types is undecidable in general. As
an illustration, consider the following OCaml function:

fun f x y −> f x + f y

This expression could have a number of System F𝜔 types, including:

∀𝛼 : : * . (𝛼 → Int) → 𝛼 → 𝛼 → Int

∀𝛼 : : * . ∀𝛽 : : * . (∀𝛾 : : * . 𝛾 → Int) → 𝛼 → 𝛽 → Int

and none of these types is more general than the rest, so we require some
annotations in order to type-check programs involving higher-rank universals.
The required annotations include explicit type abstraction and type application
statements, as well as explicitly specifying the type of the universal created by
a type abstraction.

Rather than directly using type application and type abstraction with type
annotations, universal types in OCaml are provided through record types (sim-
ilar support is also available through object types). Constructing the record
type acts as a type abstraction statement, and destructing the record using a
pattern or projection acts as a type application statement. The declaration of
a record type includes specifying the types of its fields, which provide us with
the required type annotations for type abstraction statements.

The following definition defines a type corresponding to ∀𝛼.List𝛼 → 𝐼𝑛𝑡:
type t = { f : ’ a . ’ a l i s t −> in t }

Building a value of type t corresponds to a type abstraction operation:

let l en = { f = L i s t . l ength }

Destructing a value of type t using a pattern or projection corresponds to
type application:

let g r = r . f [1 ; 2 ; 3] + r . f [1 . 0 ; 2 . 0 ; 3 . 0]

74 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

6.3 Higher-kinded polymorphism
Modules and functors allow abstraction and parametricity for both types (with
kind ∗) and type constructors (with kind ∗ → ∗). However, the existential
and universal polymorphism in the core language only supports types with kind
∗. The reason for this is that type-checking higher-kinded polymorphism, re-
quires type annotations on type application as well as type abstraction. The
module system includes such annotations, but the core language avoids all such
annotations as too verbose.

As an example, consider trying to type-check applications of a function with
type ∀𝐹 ∶∶ ∗ → ∗.∀𝛼 ∶∶ ∗.𝐹 𝛼 → (𝐹 𝛼 → 𝛼) → 𝛼 to a value with type List(Int×
Int). This involves unifying the following two types:

𝐹 𝛼 ∼ List(Int × Int)

There are many possible solutions to this unification, including:

𝐹 = List 𝛼 = Int × Int
𝐹 = Λ𝛽.List(𝛽 × 𝛽) 𝛼 = Int
𝐹 = Λ𝛽.List(Int × Int)

None of which is more general than the others.

6.3.1 Lightweight higher-kinded polymorphism
It is possible to restrict higher-kinded polymorphism so that it can be type-
checked without type annotations on type applications. By restricting the type
functions which can be used to a set of functions for which each function maps
to a different set of types. In other words, a set 𝐅 of functions such that:

∀𝐹, 𝐺 ∈ 𝐅. 𝐹 ≠ 𝐺 ⇒ ∀𝑡.𝐹(𝑡) ≠ 𝐺(𝑡)
This is how Haskell provides higher-kinded polymorphism: it only supports

type constructors which create fresh types. For example, Haskell has no equiv-
alent of the OCaml type1:

type ’ a t = (’ a * ’ a) l i s t

This restricted form of higher-kinded polymorphism can also be used in
OCaml with an encoding based on defunctionalisation (Reynolds [1972]). For
example, the following type definition:

type l s t = L i s t
type opt = Option

1A Haskell type synonym can be created which looks like this OCaml definition, however
it is very different because it cannot be abstracted

6.4. RELATIONAL ABSTRACTION AND RELATIONAL PARAMETRICITY75

type (’ a , ’ f) app =
| Lst : ’ a l i s t −> (’ a , l s t) app
| Opt : ’ a opt ion −> (’ a , opt) app

Allows us to represent 'a list as ('a, lst) app and 'a option as ('a, opt)
app. Then we can use polymorphism in the second parameter of app to encode
higher-kinded polymorphism over list and option. For example:
type ’ f map = {

map : ’ a ’b . (’ a −> ’b) −> (’ a , ’ f) app −> (’b , ’ f) app ;
}

let lmap : l s t map = {map = fun f (Lst l) −> Lst (L i s t .map f l)}
let omap : opt map = {map = fun f (Opt o) −> Opt (Option .map f o)}

let f : ’ b map −> (int , ’b) app −> (s t r i ng , ’b) app =
fun m c −> m.map (fun x −> ” Int : ” ^ (s t r ing_of_int x)) c

let l = f lmap (Lst [1 ; 2 ; 3])
let o = f omap (Opt (Some 6))

The higher library (Yallop and White [2014]), extends this idea by providing
a general app type that any type constructor can be injected into.

6.4 Relational abstraction and relational para-
metricity

In the previous sections we have been quite loose in our description of abstraction
and parametricity. We have talked about abstraction as invariance under change
of implementation, and parametricity as uniformity of behaviour, but we have
not made these notions precise.

We can give precise descriptions of parametricity and abstraction using rela-
tions between types. To keep things simple we will restrict ourselves to System F
for this discussion.

6.4.1 Changing set implementations
We have talked about abstraction in terms of a system being invariant under a
change of a component’s implementation that does not affect the component’s
interface. In order to give a precise definition to abstraction, we must consider
what it means to change a component’s implementation without affecting its
interface.

For example, consider the interface for sets of integers in Fig. 6.1. This is a
reduced version of the set interface used earlier in the chapter, with the addition
of the if_empty function. The if_empty function takes a set and two values as
arguments, if the set is empty it returns the first argument, otherwise it returns
the second argument.

76 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

type t

val empty : t

val is_empty : t −> bool

val mem : t −> in t −> bool

val add : t −> in t −> t

val if_empty : t −> ’ a −> ’ a −> ’ a

Figure 6.1: A set interface

Two implementations of this interface are shown in Fig. 6.2 and Fig. 6.3–
one based on lists, the other based on ordered trees.

We would like to know that swapping one implementation with the other
will not affect the rest of our program. In other words, how do we show that
switching between these implementations will not affect the interface?

Relations between types

If the t types in our two implementations both represent sets then there must
be some relation between these that describes how sets in one representation
can be represented in the other representation.

In other words, given a set represented as a list and a set represented as a
tree there must be a relation that tells us if they represent the same set. For
example, the list [] and the tree Empty both represent the empty set. Similarly
the lists [1; 2] and [2; 1], and the trees Node(Node(Empty, 1, Empty),
2, Empty) and Node(Empty, 1, Node(Empty, 2, Empty)) all represent a set
containing 1 and 2.

Throughout this chapter we shall use relations of the following form:

(𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵).𝜙[𝑥, 𝑦]
where A and B are System F types, and 𝜙[𝑥, 𝑦] is a logical formula involving 𝑥
and 𝑦.

We will not overly concern ourselves with the particular choice of logic used
for these formulae, but we will assume the existence of certain kinds of term:

• We will assume the that we have basic logical connectives:

𝜙 ∶∶= 𝜙 ∧ 𝜓 | 𝜙 ∨ 𝜓 | 𝜙 ⇒ 𝜓

• We will assume that we have universal quantification over terms, types
and relations:

𝜙 ∶∶= ∀𝑥 ∶ 𝐴.𝜙 | ∀𝛼.𝜙 | ∀𝑅 ⊂ 𝐴 × 𝐵.𝜙

6.4. RELATIONAL ABSTRACTION AND RELATIONAL PARAMETRICITY77

type t list = in t l i s t

let emptylist = []

let is_empty list = function
| [] −> true
| _ −> fa l se

let rec memlist x = function
| [] −> fa l se
| y : : r e s t −>

i f x = y then true
else memlist x r e s t

let addlist x t =
i f (memlist x t) then t
else x : : t

let if_empty list t x y =
match t with
| [] −> x
| _ −> y

Figure 6.2: List implementation of the set interface

78 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

type t tree =
| Empty
| Node of t tree * i n t * t tree

let emptytree = Empty

let is_emptytree = function
| Empty −> true
| _ −> fa l se

let rec memtree x = function
| Empty −> fa l se
| Node (l , y , r) −>

i f x = y then true
else i f x < y then memtree x l
else memtree x r

let rec addtree x t =
match t with
| Empty −> Node(Empty , x , Empty)
| Node (l , y , r) as t −>

i f x = y then t
else i f x < y then Node(addtree x l , y , r)
else Node (l , y , addtree x r)

let if_emptytree t x y =
match t with
| Empty −> x
| _ −> y

Figure 6.3: Tree implementation of the set interface

6.4. RELATIONAL ABSTRACTION AND RELATIONAL PARAMETRICITY79

and similarly for existential quantification:

𝜙 ∶∶= ∃𝑥 ∶ 𝐴.𝜙 | ∃𝛼.𝜙 | ∃𝑅 ⊂ 𝐴 × 𝐵.𝜙

• We will assume that we can apply a relation to terms:

𝜙 ∶∶= 𝑅(𝑡, 𝑢)

• We will assume that we have equality on terms at a given type:

𝜙 ∶∶= (𝑡 =ಸ 𝑢)

which represents the equational theory of System F (e.g. beta equalities,
eta equalities).

In the case of our set implementations we leave the precise logical formula
as an exercise for the reader, and will simply refer to the relation as 𝜎.

Relations between values

To show that the values in our implementations implement the same interface,
we must show that they have the same behaviour in terms of the sets being
represented. For each value, this equivalence of behaviour can be represented
by a relation. Considering each of the values in our set interface in turn:

empty The empty values of our implementations behave the same if they rep-
resent the same set. More precisely:

𝜎(emptyೣೠ೪೫, empty೫೩೜೜)

where 𝜎 is the relation between sets as lists and sets as trees.

is_empty The is_empty values behave the same if they agree about which
sets are empty. They should return true on the same sets and false on the
same sets. More precisely:

∀𝑥 ∶ 𝑡ೣೠ೪೫. ∀𝑦 ∶ 𝑡೫೩೜೜.
𝜎(𝑥, 𝑦) ⇒ (is_emptyೣೠ೪೫ 𝑥 = is_empty೫೩೜೜ 𝑦)

mem The mem values behave the same if they agree about which integers are
members of which sets. Their results should be the equivalent when given the
same sets and integers. More precisely:

∀𝑥 ∶ 𝑡ೣೠ೪೫. ∀𝑦 ∶ 𝑡೫೩೜೜. ∀𝑖 ∶ 𝐼𝑛𝑡. ∀𝑗 ∶ 𝐼𝑛𝑡.
𝜎(𝑥, 𝑦) ⇒ (𝑖 = 𝑗) ⇒ (memೣೠ೪೫ 𝑥𝑖 = mem೫೩೜೜ 𝑦𝑗)

80 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

add The relation for add values is similar to that for mem values, except that
instead of requiring that the results be equivalent we require that they represent
the same set:

∀𝑥 ∶ 𝑡ೣೠ೪೫. ∀𝑦 ∶ 𝑡೫೩೜೜. ∀𝑖 ∶ 𝐼𝑛𝑡. ∀𝑗 ∶ 𝐼𝑛𝑡.
𝜎(𝑥, 𝑦) ⇒ (𝑖 = 𝑗) ⇒ 𝜎(addೣೠ೪೫ 𝑥𝑖, add೫೩೜೜ 𝑦𝑗)

if_empty The relation for if_empty is more complicated than the others. We
might be tempted to use the relation:

∀𝛾. ∀𝛿.
∀𝑥 ∶ 𝑡ೣೠ೪೫. ∀𝑦 ∶ 𝑡೫೩೜೜. ∀𝑎 ∶ 𝛾. ∀𝑏 ∶ 𝛾. ∀𝑐 ∶ 𝛿. ∀𝑑 ∶ 𝛿.

𝜎(𝑥, 𝑦) ⇒ (𝑎 = 𝑐) ⇒ (𝑏 = 𝑑) ⇒
(if_emptyೣೠ೪೫ 𝑥𝑎𝑏 = if_empty೫೩೜೜ 𝑦𝑐𝑑)

which would ensure that the behaviour was the same for calls like:

if_empty t 5 6

where t is a value representing a set. However, it would not ensure equivalent
behaviour for calls such as:

if_empty t t (add t 1)

where the second and third arguments are also sets. In this case, we do not
want to guarantee that our if_empty implementations will produce equivalent
sets when given equivalent inputs, since a set represented as a list will never be
equivalent to a set represented as a tree. Instead we would like to guarantee
that our implementations will produce related results when given related inputs.
This leads us to the much stronger relation:

∀𝛾. ∀𝛿. ∀𝜌 ⊂ 𝛾 × 𝛿.
∀𝑥 ∶ 𝑡ೣೠ೪೫. ∀𝑦 ∶ 𝑡೫೩೜೜. ∀𝑎 ∶ 𝛾. ∀𝑏 ∶ 𝛾. ∀𝑐 ∶ 𝛿. ∀𝑑 ∶ 𝛿.

𝜎(𝑥, 𝑦) ⇒ 𝜌(𝑎, 𝑐) ⇒ 𝜌(𝑏, 𝑑) ⇒
𝜌(if_emptyೣೠ೪೫ 𝑥𝑎𝑏, if_empty೫೩೜೜ 𝑦𝑐𝑑)

that must be satisfied by our implementations of if_empty. This condition
ensures that all relations will be preserved by if_empty, including equality
between integers and 𝜎 between sets.

The existence of the relation 𝜎 along with demonstrations that each of the
five relations above hold, is sufficient to demonstrate that our two implementa-
tions implement the same interface. One can safely be replaced by the other,
without affecting any of the other components in the system. By generalising
this approach we can produce a precise definition of abstraction.

6.4. RELATIONAL ABSTRACTION AND RELATIONAL PARAMETRICITY81

val empty:
t 𝜎(emptyೣೠ೪೫, empty೫೩೜೜)

val is_empty:

t -> bool
∀𝑥 ∶ 𝑡ೣೠ೪೫. ∀𝑦 ∶ 𝑡೫೩೜೜.

𝜎(𝑥, 𝑦) ⇒ (is_emptyೣೠ೪೫ 𝑥 = is_empty೫೩೜೜ 𝑦)
val mem:

t -> int -> bool
∀𝑥 ∶ 𝑡ೣೠ೪೫. ∀𝑦 ∶ 𝑡೫೩೜೜. ∀𝑖 ∶ 𝐼𝑛𝑡. ∀𝑗 ∶ 𝐼𝑛𝑡.

𝜎(𝑥, 𝑦) ⇒ (𝑖 = 𝑗) ⇒
(memೣೠ೪೫ 𝑥𝑖 = mem೫೩೜೜ 𝑦𝑗)

val add:

t -> int -> t
∀𝑥 ∶ 𝑡ೣೠ೪೫. ∀𝑦 ∶ 𝑡೫೩೜೜. ∀𝑖 ∶ 𝐼𝑛𝑡. ∀𝑗 ∶ 𝐼𝑛𝑡.

𝜎(𝑥, 𝑦) ⇒ (𝑖 = 𝑗) ⇒
𝜎(addೣೠ೪೫ 𝑥𝑖, add೫೩೜೜ 𝑦𝑗)

val if_empty:

t -> 'a -> 'a -> 'a

∀𝛾. ∀𝛿. ∀𝜌 ⊂ 𝛾 × 𝛿.
∀𝑥 ∶ 𝑡ೣೠ೪೫. ∀𝑦 ∶ 𝑡೫೩೜೜. ∀𝑎 ∶ 𝛾. ∀𝑏 ∶ 𝛾. ∀𝑐 ∶ 𝛿. ∀𝑑 ∶ 𝛿.

𝜎(𝑥, 𝑦) ⇒ 𝜌(𝑎, 𝑐) ⇒ 𝜌(𝑏, 𝑑) ⇒
𝜌(if_emptyೣೠ೪೫ 𝑥𝑎𝑏, if_empty೫೩೜೜ 𝑦𝑐𝑑)

Figure 6.4: Types and relations for the set interface

6.4.2 Relational substitution
The table in Fig. 6.4 compare the types of each of the values in our set interface
with the relations that they must satisfy. From this we can see that the type of
the value completely determines the relation:

• Every t in the type produces as 𝜎 in the relation.

• Every free type variable (e.g. int, bool) in the type produces an equality
in the relation.

• Every -> in the type produces an implication in the relation.

• Every universal quantification over types in the type produces a universal
quantification over relations in the relation.

We can represent this translation of types into relations, as a substitution
of relations for type variables.

Given a type 𝑇 with free variables þÿÿă𝛼 = 𝛼е, … , 𝛼೥ and relations þÿă𝜌 = 𝜌е ⊂
𝐴е × 𝐵е, … , 𝜌೥ ⊂ 𝐴೥ × 𝐵೥, we define the relation 𝑇[þÿă𝜌] ⊂ 𝑇[þÿÿă𝐴] × 𝑇[þÿÿă𝐵] as follows:

• if 𝑇 is 𝛼ೠ then 𝑇[þÿă𝜌] = 𝜌ೠ

82 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

• if 𝑇 is 𝑇ƕ × 𝑇ƕƕ then

𝑇[þÿă𝜌] = (𝑥 ∶ 𝑇[þÿÿă𝐴], 𝑦 ∶ 𝑇[þÿÿă𝐵]).
𝑇ƕ[þÿă𝜌](𝑓𝑠𝑡(𝑥), 𝑓𝑠𝑡(𝑦))
∧ 𝑇ƕƕ[þÿă𝜌](𝑠𝑛𝑑(𝑥), 𝑠𝑛𝑑(𝑦))

• if 𝑇 is 𝑇ƕ + 𝑇ƕƕ then

𝑇[þÿă𝜌] = (𝑥 ∶ 𝑇[þÿÿă𝐴], 𝑦 ∶ 𝑇[þÿÿă𝐵]).
∃𝑢ƕ ∶ 𝑇ƕ[þÿÿă𝐴]. ∃𝑣ƕ ∶ 𝑇ƕ[þÿÿă𝐵].

𝑥 = 𝑖𝑛𝑙(𝑢ƕ) ∧ 𝑦 = 𝑖𝑛𝑙(𝑣ƕ)
∧ 𝑇ƕ[þÿă𝜌](𝑢ƕ, 𝑣ƕ)

∨
∃𝑢ƕƕ ∶ 𝑇ƕƕ[þÿÿă𝐴]. ∃𝑣ƕƕ ∶ 𝑇ƕƕ[þÿÿă𝐵].

𝑥 = 𝑖𝑛𝑟(𝑢ƕƕ) ∧ 𝑦 = 𝑖𝑛𝑟(𝑣ƕƕ)
∧ 𝑇ƕƕ[þÿă𝜌](𝑢ƕƕ, 𝑣ƕƕ)

• if 𝑇 is 𝑇ƕ → 𝑇ƕƕ then

𝑇[þÿă𝜌] = (𝑓 ∶ 𝑇[þÿÿă𝐴], 𝑔 ∶ 𝑇[þÿÿă𝐵]).
∀𝑢 ∶ 𝑇ƕ[þÿÿă𝐴]. ∀𝑣 ∶ 𝑇ƕ[þÿÿă𝐵].

𝑇ƕ[þÿă𝜌](𝑢, 𝑣) ⇒ 𝑇ƕƕ[þÿă𝜌](𝑓 𝑢, 𝑔 𝑣)

• if 𝑇 is ∀𝛽.𝑇ƕ then

𝑇[þÿă𝜌] = (𝑥 ∶ 𝑇[þÿÿă𝐴], 𝑦 ∶ 𝑇[þÿÿă𝐵]).
∀𝛾. ∀𝛿. ∀𝜌ƕ ⊂ 𝛾 × 𝛿.

𝑇ƕ[þÿă𝜌, 𝜌ƕ](𝑥[𝛾], 𝑦[𝛿])

• if 𝑇 is ∃𝛽.𝑇ƕ then

𝑇[þÿă𝜌] = (𝑥 ∶ 𝑇[þÿÿă𝐴], 𝑦 ∶ 𝑇[þÿÿă𝐵]).
∃𝛾. ∃𝛿. ∃𝜌ƕ ⊂ 𝛾 × 𝛿.

∃𝑢 ∶ 𝑇ƕ[þÿÿă𝐴, 𝛾]. ∃𝑣 ∶ 𝑇ƕ[þÿÿă𝐵, 𝛿].
𝑥 = pack 𝛾, 𝑢 as 𝑇[þÿÿă𝐴]
∧ 𝑦 = pack 𝛿, 𝑣 as 𝑇[þÿÿă𝐵]
∧ 𝑇ƕ[þÿă𝜌, 𝜌ƕ](𝑢, 𝑣)

6.4. RELATIONAL ABSTRACTION AND RELATIONAL PARAMETRICITY83

Using this substitution, the relation that our two set implementations must
satisfy to show that they are implementing the same interface can be written:

(𝛼
× (𝛼 → 𝛾)
× (𝛼 → 𝛽 → 𝛾)
× (𝛼 → 𝛽 → 𝛼)
× (∀𝛿. 𝛼 → 𝛿 → 𝛿 → 𝛿))[𝜎, =Int, =Bool](setೣೠ೪೫, set೫೩೜೜)

where setೣೠ೪೫ and set೫೩೜೜ are products containing the implementations of set
using lists and trees respectively.

6.4.3 Identity extension
The relational substitution can be thought of as representing equality between
values of that type under the assumption that the substituted relations represent
equality for values of the free type variables.

In particular, given a type 𝑇 with free variables 𝛼е, … , 𝛼೥, if we substitue
equality relations (=) for a type’s free variables we get the equality relation of
that type:

∀𝛼е. … ∀𝛼೥. ∀𝑥 ∶ 𝑇. ∀𝑦 ∶ 𝑇.
(𝑥 =ೋ 𝑦) ⇔ 𝑇[=಄е

, … , =಄೥
](𝑥, 𝑦)

This property of the relational substitution is known as identity extension.

6.4.4 A relational definition of abstraction
Using the relational substitution we can now give a precise meaning to the idea
that existential types provide abstraction.

Given a type 𝑇 with free variables 𝛼, 𝛽е, … , 𝛽೥:

∀𝛽е. … ∀𝛽೥. ∀𝑥 ∶ (∃𝛼.𝑇). ∀𝑦 ∶ (∃𝛼.𝑇).

𝑥 = 𝑦 ⇔

∃𝛾. ∃𝛿. ∃𝜎 ⊂ 𝛾 × 𝛿.
∃𝑢 ∶ 𝑇[𝛾, 𝛽е, … 𝛽೥]. ∃𝑣 ∶ 𝑇[𝛿, 𝛽е, … 𝛽೥].

𝑥 = pack 𝛾, 𝑢 as 𝑇[þÿÿă𝐴]
∧ 𝑦 = pack 𝛿, 𝑣 as 𝑇[þÿÿă𝐵]
∧ 𝑇[𝜎, =ಅе

, … , =ಅ೥
](𝑢, 𝑣)

This formula can be read as: For two values 𝑥 and 𝑦 with existential type,
if there is a way to view their implementation types (𝛾 and 𝛿) as representing
the same thing – captured by the relation 𝜎 – and their implementations (𝑢 and
𝑣) behave the same with respect to 𝜎, then 𝑥 and 𝑦 are equal: they will behave
the same in all contexts.

84 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

This is the essence of abstraction: if two implementations behave the same
with respect to some relation, then once they have been packed into an existen-
tial type they are indistinguishable.

The above abstraction property for existential types can be derived from
identity extension applied to existentials by expanding out the relational sub-
stitution.

6.4.5 A relational definition of parametricity
We can also use the relational substitution to give a precise meaning to the idea
that universal types provide parametricity.

Given a type 𝑇 with free variables 𝛼, 𝛽е, … , 𝛽೥:

∀𝛽е. … ∀𝛽೥. ∀𝑥 ∶ (∀𝛼.𝑇).
∀𝛾. ∀𝛿. ∀𝜌 ⊂ 𝛾 × 𝛿.

𝑇[𝜌, =ಅе
, … , =ಅ೥

](𝑥[𝛾], 𝑥[𝛿])

This formula can be read as: For a value 𝑥 with universal type, two types 𝛾
and 𝛿, and any way of viewing 𝛾 and 𝛿 as representing the same thing – captured
by a relation 𝜌 – 𝑥[𝛾] will behave the same as 𝑥[𝛿] with respect to 𝜌.

This is the essence of parametricity: a value with universal type will behave
uniformly for any types it is applied to.

The above parametricity property for universal types can be derived from
identity extension applied to universals by expanding out the relational substi-
tution.

6.5 Invariants
Now that we have a precise description of abstraction, we can talk about the
implications of abstraction beyond the ability to replace one implementation
with another. In particular, abstraction allows us to preserve invariants on
types, allowing types to represent more than just the representation of data.

Consider the following module:

module Pos i t i v e : sig
type t
val zero : t
val succ : t −> t
val to_int : t −> in t

end = struct
type t = in t
let zero = 0
let succ x = x + 1
let to_int x = x

end

6.5. INVARIANTS 85

Here the abstract type t is represented by an int. However, we can also
show that, thanks to abstraction, all values of type t will be positive integers2.

Informally, this is because all values of type t must be created using either
zero (which is a positive integer), or succ (which returns a positive integer
when given a positive integer), so all values of type t must be positive integers.

The ability for types to represent invariants beyond their particular data
representation is a key difference between languages with abstraction (e.g. Sys-
tem F) and languages without it (e.g the simply typed lambda calculus). It
fundementally changes the notion of what a type is, greatly increasing their
utility as a programming tool.

6.5.1 Preserving invarints
We can represent an invariant 𝜙[𝑥] on a type 𝛾 as a relation 𝜌 ⊂ 𝛾 × 𝛾:

𝜌(𝑥 ∶ 𝛾, 𝑦 ∶ 𝛾) = (𝑥 = 𝑦) ∧ 𝜙[𝑥]

Using this representation, 𝑇[𝜌](𝑢, 𝑢) holds for some value 𝑢 of type 𝑇[𝛾] iff 𝑢
preserves the invariant 𝜙 on type 𝛾.

Given

• a type 𝑇 with free variable 𝛼

• a type 𝛾

• a value 𝑢 of type 𝑇[𝛾]

• an expression 𝐸 with free variable 𝑥 such that if 𝑥 has type 𝛽 then 𝐸 also
has type 𝛽

it can be shown from the abstraction property of existentials that:

∀𝜌 ⊂ 𝛾 × 𝛾. 𝑇[𝜌](𝑢, 𝑢) ⇒

𝜌க 𝚘𝚙𝚎𝚗 (𝚙𝚊𝚌𝚔 𝛾, 𝑢𝚊𝚜 ∃𝛾. 𝑇[𝛾]) 𝚊𝚜 𝑥, 𝛾 𝚒𝚗 𝐸,
𝚘𝚙𝚎𝚗 (𝚙𝚊𝚌𝚔 𝛾, 𝑢𝚊𝚜 ∃𝛾. 𝑇[𝛾]) 𝚊𝚜 𝑥, 𝛾 𝚒𝚗 𝐸஖

This means that if 𝑢 preserves an invariant on type 𝛾 – represented by
relation 𝜌 – then if 𝑢 is packed up into an existential type the invariant will hold
for any value of (the now abstract) type 𝛾 that are created from 𝑢.

In other words, if we can show that an implementation of an interface pre-
serves an invariant on an abstract type, then that invariant holds for all values
of that abstract type in the program.

2We ignore overflow for the sake of simplicity

86 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

6.5.2 Phantom types
The Positive.t type in the earlier example represented not just the data repre-
sentation (an integer) but also an invaraint (that the integer be positive). Using
higher-kinded types we can take the idea of types as invariants even further: we
can create types for which there is no data representation – they only represent
invariants.

Consider the following file I/O interface:

module F i l e : sig
type t
val open_readwrite : s t r i n g −> t
val open_readonly : s t r i n g −> t
val read : t −> s t r i n g
val wr i t e : t −> s t r i n g −> unit

end = struct
type t = in t
let open_readwrite f i l ename = . . .
let open_readonly f i l ename = . . .
let read f = . . .
let wr i t e f s = . . .

end

It allows files to be opened in either read-only or read-write mode, and it pro-
vides functions to read from and write to these files.

This interface is that it does not prevent you from trying to write to a file
which was opened read-only. Instead, such attempts result in a run-time error:

let f = F i l e . open_readonly ” foo ” in
F i l e . wr i t e f ” bar ” ; ;

Except ion : Inval id_argument ” wr i t e : f i l e i s read−only ” .

This is unfortunate, since such errors could easily be caught at compile-time,
giving us more confidence in the correctness of our programs.

To detect these errors at compile-time we add a type parameter to the File.t
type, which represents whether the file was opened in read-only or read-write
mode. Each mode is represented by a type without a definition (readonly
and readwrite). These types have no data representation – they only exist to
represent invariants:

module F i l e : sig
type readonly
type r eadwr i t e
type ’ a t
val open_readwrite : s t r i n g −> readwr i t e t
val open_readonly : s t r i n g −> readonly t
val read : ’ a t −> s t r i n g
val wr i t e : r eadwr i t e t −> s t r i n g −> unit

6.5. INVARIANTS 87

end = struct
type readonly
type r eadwr i t e
type ’ a t = in t
let open_readwrite f i l ename = . . .
let open_readonly f i l ename = . . .
let read f = . . .
let wr i t e f s = . . .

end

The return types of open_readonly and open_readwite are restricted to pro-
ducing files whose type parameter represents the appropriate mode. Similarly,
write is restricted to only operate on values of type readwrite t. This prevents
the errors we are trying to avoid. However, read is polymorphic in the mode of
the file to be read – it will operate on files opened in either mode.

Note that the File.t type is still defined as an integer. The type parameter
is not actually used in the type’s definition: it is a phantom type. Within the
File module the type readonly t is equal to the type readwrite t – since
they both equal int. However, thanks to abstraction, these types are not equal
outside of the module and the invariant that files opened by open_readonly
cannot be passed to write is preserved.

Using this interface, the previous example now produces a compiler-time
error:

let f = F i l e . open_readonly ” foo ” in
F i l e . wr i t e f ” bar ” ; ;

Characters 51−52:
F i l e . wr i t e f ” bar ” ; ;

^
Error : This expre s s i on has type F i l e . readon ly F i l e . t

but an expre s s i on was expec ted o f type
F i l e . r eadwr i t e F i l e . t
Type F i l e . readon ly i s not compat i b l e wi th type
F i l e . r eadwr i t e

6.5.3 Lightweight static capabilities
To illustrate the kind of invariants that can be enforced using phantom types,
we will look at an example from the paper “Lightweight Static Capabilities”
(Kiselyov and Shan [2007]).

Consider the following interface for an array type:

module Array : sig
type ’ a t = ’ a array
val l ength : ’ a t −> in t
val s e t : ’ a t −> in t −> ’ a −> unit

88 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

val get : ’ a t −> in t −> ’ a
end

We can use this interface to try to write binary search of a sorted array:

let search cmp arr v =
let rec l ook low high =

i f high < low then None
else begin

let mid = (high + low)/2 in
let x = Array . get a r r mid in
let r e s = cmp v x in

i f r e s = 0 then Some mid
else i f r e s < 0 then l ook low (mid − 1)
else l ook (mid + 1) high

end
in

l ook 0 (Array . l ength ar r)

This function takes a comparison function cmp, an array arr sorted according to
cmp and a value v. If v is in arr then the function returns its index, otherwise
it returns None.

However, if we try a few examples with this function, we find that there is
a problem:

let ar r = [| ’ a ’ ; ’ b ’ ; ’ c ’ ; ’ d ’ |] ; ;

v a l arr : char array = [| ’ a ’ ; ’ b ’ ; ’ c ’ ; ’ d ’ |]

let t e s t 1 = search compare ar r ’ c ’ ; ;

v a l t e s t 1 : i n t op t ion = Some 2

let t e s t 2 = search compare ar r ’ a ’ ; ;

v a l t e s t 2 : i n t op t ion = Some 0

let t e s t 3 = search compare ar r ’x ’ ; ;

Except ion : Inval id_argument ” index out o f bounds ” .

Our last example raises an Invalid_argument exception becuase we have tried
to access an index outside the bounds of the array.

The problem is easy enough to fix – we need to change the last line to use
the index of the last element of arr rather than its length:

look 0 ((Array . l ength ar r) − 1)

6.5. INVARIANTS 89

However, we would rather catch such mistakes at compile-time.
To prevent out-of-bounds accesses at compile-time, we add another type

parameter to the array type, which represents the size of the array. We also
replace int with an abstract type index for representing array indices. The
index type is also parameterised by a size type, which indicates that the index
is within the bounds of arrays of that size.

module BArray : sig
type (’ s , ’ a) t
type ’ s index

val l a s t : (’ s , ’ a) t −> ’ s index
val s e t : (’ s , ’ a) t −> ’ s index −> ’ a −> unit
val get : (’ s , ’ a) t −> ’ s index −> ’ a

end

The types of set and get ensure that only indices that are within the bounds
of the array are allowed by enforcing the size parameter of the array and the
index to match.

We could try to use sophisticated types to represent sizes – perhaps en-
coding the size using type-level arithmetic. This would allow us to represent
relationships between the different sizes – for instance allowing us to represent
one array being smaller than another. However, such sophistication comes with
added complexity, so we will take a simpler approach: size types will be abstract.

We extend our array interface with a function brand:

type ’ a brand =
| Brand : (’ s , ’ a) t −> ’ a brand
| Empty : ’ a brand

val brand : ’ a array −> ’ a brand

The Brand constructor contains a value of type ('s, 'a) t, where 's is an
existential type variable. In essence, the brand function takes a regular OCaml
array and returns a combination of an abstract size type and a t value of that
size.

Since the size of each branded array is abstract, we cannot use indices for
one array to access a different array:

let Brand x = brand [| ’ a ’ ; ’b ’ ; ’ c ’ ; ’d ’ |] in
let Brand y = brand [| ’ a ’ ; ’b ’ |] in

get y (l a s t x) ; ;

Characters 96−104:
g e t y (l a s t x) ; ;

^^^^^^^^
Error : This expre s s i on has type s#1 BArray . index

but an expre s s i on was expec ted o f type

90 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

s#2 BArray . index
Type s#1 i s not compat i b l e wi th type s#2

Finally, we add some functions to our interface for manipulating indices.

val zero : ’ s index
val l a s t : (’ s , ’ a) t −> ’ s index

val index : (’ s , ’ a) t −> in t −> ’ s index opt ion
val po s i t i o n : ’ s index −> in t

val middle : ’ s index −> ’ s index −> ’ s index

val next : ’ s index −> ’ s index −> ’ s index opt ion
val prev ious : ’ s index −> ’ s index −>

’ s index opt ion

Each of these functions must maintain the invariant that an index of type 's
index is always valid for an array of type ('s, 'a) t. For example, the next
function, which takes an index and returns the index of the next element in the
array, also takes an additional index parameter and will only return the new
index if it is less than this additional index. This ensures that the new index
lies between two existing indices, and is therefore a valid index.

The full implementation of this safe array interface is given in Fig. 6.5. We
can use it to implement our binary search function without too many changes:

let bsearch cmp arr v =
let open BArray in
let rec l ook barr low high =

let mid = middle low high in
let x = get barr mid in
let r e s = cmp v x in

i f r e s = 0 then Some (po s i t i o n mid)
else i f r e s < 0 then

match prev ious low mid with
| Some prev −> look barr low prev
| None −> None

else
match next mid high with
| Some next −> look barr next high
| None −> None

in
match brand ar r with
| Brand barr −> look barr zero (l a s t barr)
| Empty −> None

This function is guaranteed not to make an out-of-bounds access to the array,
giving us greater confidence in the correctness of its implementation.

6.5. INVARIANTS 91

type (’ s , ’ a) t = ’ a array

type ’ a brand =
| Brand : (’ s , ’ a) t −> ’ a brand
| Empty : ’ a brand

let brand ar r =
i f Array . l ength ar r > 0 then Brand ar r
else Empty

type ’ s index = in t

let index ar r i =
i f i > 0 && i < Array . l ength ar r then Some i
else None

let po s i t i o n idx = idx

let zero = 0
let l a s t a r r = (Array . l ength ar r) − 1
let middle idx1 idx2 = (idx1 + idx2)/2

let next idx l im i t =
l et next = idx + 1 in

i f next <= l im i t then Some next
else None

let prev ious l im i t idx =
l et prev = idx − 1 in

i f prev >= l im i t then Some prev
else None

let s e t = Array . s e t

let get = Array . get

Figure 6.5: Implementation of the safe array interface

92 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

Abstraction is the key to this technique. Thanks to abstraction we know that
if the implementation of BArray preserves our invariant then so must the entire
program. In essence, we have reduced the problem of proving our invariant for
the whole problem to proving our invariant for a small trusted kernel – if we
trust the implementation of this kernel we can trust the entire program.

As an additional benefit, we can safely adjust our implementation to use the
unsafe variants of OCaml’s get and set primitives:
let s e t = Array . unsafe_set

let get = Array . unsafe_get
This means that our array accesses will not perform any runtime checks for
out-of-bounds accesses: by using abstraction to preserve a safety invariant we
are able to improve the performance of our programs.

6.6 Theorems for free
In the previous section we applyed the abstraction property to a particular
kind of relation to show that abstraction guarantees code outside of a compo-
nent preserves invariants. Similarly, we can apply the parametricity property
to particular relations to show that parametricity guarantees code inside of a
component behaves in certain ways.

For example, applying parametricity to the type ∀𝛼.𝛼 → 𝛼, gives us the
following formula:

∀𝑓 ∶ (∀𝛼.𝛼 → 𝛼).
∀𝛾. ∀𝛿. ∀𝜌 ⊂ 𝛾 × 𝛿.

∀𝑢 ∶ 𝛾. ∀𝑣 ∶ 𝛿.
𝜌(𝑢, 𝑣) ⇒ 𝜌(𝑓[𝛾] 𝑢, 𝑓[𝛿] 𝑣)

By defining a relation is೬ to represent being equal to a value 𝑢 ∶ 𝑇:

is೬(𝑥 ∶ 𝑇, 𝑦 ∶ 𝑇) = (𝑥 =ೋ 𝑢) ∧ (𝑦 =ೋ 𝑢)

and using it to instantiate 𝜌, we obtain the following formula:

∀𝑓 ∶ (∀𝛼.𝛼 → 𝛼).
∀𝛾.∀𝑢 ∶ 𝛾.

is೬(𝑢, 𝑢) ⇒ is೬(𝑓[𝛾]𝑢, 𝑓[𝛾]𝑢)

which can be reduced to:

∀𝑓 ∶ (∀𝛼.𝛼 → 𝛼).
∀𝛾.∀𝑢 ∶ 𝛾.

𝑓[𝛾] 𝑢 =ಆ 𝑢

6.7. PRACTICAL LIMITATIONS 93

This shows that any value 𝑓 of type ∀𝛼.𝛼 → 𝛼 must be the identity func-
tion. Properties like this, which use parametricity to give guarantees about the
behaviour of all values of a given type, are often called free theorems after an
influential paper on the subject (Wadler [1989]).

As a second example, we can apply parametricity to the type ∀𝛼.List𝛼 →
List𝛼:

∀𝑓 ∶ (∀𝛼.List𝛼 → List𝛼).
∀𝛾. ∀𝛿. ∀𝜌 ⊂ 𝛾 × 𝛿.

∀𝑢 ∶ List 𝛾. ∀𝑣 ∶ List 𝛿.
(List𝛼)[𝜌](𝑢, 𝑣) ⇒ (List𝛼)[𝜌](𝑓[𝛾] 𝑢, 𝑓[𝛿] 𝑣)

By defining a family of relations ⟨𝑔⟩ to represent functions 𝑔 ∶ 𝐴 → 𝐵:

⟨𝑔⟩(𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵) = (𝑔 𝑥 =ಹ 𝑦)

and instantiating 𝜌 with such a relation, we obtain the following property:

∀𝑓 ∶ (∀𝛼.List𝛼 → List𝛼).
∀𝛾. ∀𝛿. ∀𝑔 ∶ 𝛾 → 𝛿

∀𝑢 ∶ List 𝛾. ∀𝑣 ∶ List 𝛿.
(List𝛼)[⟨𝑔⟩](𝑢, 𝑣) ⇒ (List𝛼)[⟨𝑔⟩](𝑓[𝛾] 𝑢, 𝑓[𝛿] 𝑣)

Applying the relational substitution of List to a function’s relation gives a
relation representing mapping the function over the list:

(List𝛼)[⟨𝑔⟩](𝑥𝑠 ∶ 𝐿𝑖𝑠𝑡 𝐴, 𝑦𝑠 ∶ 𝐿𝑖𝑠𝑡 𝐵) = (map 𝑔 𝑥𝑠 =ೃೠ೪೫ ಹ 𝑦𝑠)

which means the formula can be reduced to:

∀𝑓 ∶ (∀𝛼.List𝛼 → List𝛼).
∀𝛾. ∀𝛿. ∀𝑔 ∶ 𝛾 → 𝛿

∀𝑢 ∶ List 𝛾. ∀𝑣 ∶ List 𝛿.
map 𝑔 (𝑓[𝛾] 𝑢) = 𝑓[𝛿] (map 𝑔 𝑢)

This shows that any function 𝑓 of type ∀𝛼.List𝛼 → List𝛼 is a “rearrange-
ment” function: the output of 𝑓 is a list whose elements all come from the input
to 𝑓.

6.7 Practical limitations
The previous two sections have described how abstraction and parametricity can
give guarantees about program behaviour. However, these guarantees rely on
some assumptions that do not necesserily hold in real programming languages.

94 CHAPTER 6. ABSTRACTION AND PARAMETRICITY

Side-effects

In a pure language such as System F𝜔, a function accepts an input value and
produces an output value. The relation between inputs and outputs completely
defines the behaviour of a function. However, programming languages are not
generally pure, they allow functions to perform side-effects. Such side-effects
include:

• Printing to the console

• Raising exceptions

• Failing to terminate

Side-effects affect the guarantees that are provided by abstraction and para-
metricity. For example, we showed that parametricity ensures that all func-
tions of type ∀𝛼.𝛼 → 𝛼 are the identitiy function. However, the following three
OCaml functions have that type and are not the identity function:

let f (x : ’ a) : ’ a =
Pr i n t f . p r i n t f ”Lanch m i s s i l e s \n ” ;
x

let f (x : ’ a) : ’ a = r a i s e Exit

let rec f (x : ’ a) : ’ a = f x

The issue here is that the function type in OCaml is a different type from
the function type in System F – since it supports side-effects. This means
that the relational substitution for OCaml’s function type is different from the
relational substitution that we gave for System F. The relational substituion
for OCaml’s function type should ensure not only that related inputs produce
related outputs, but that the side-effects of the function preserve relations.

This has a number of consequences in practice:

• When replacing one implementation with another, we must ensure that
the side-effects of the two implementations are also equivalent.

• When using abstraction to preserve an invariant, we must also ensure that
the side effects preserve that invariant.

• When interpreting a “free theorem” we must consider the possible affect
of side-effects on a function’s behaviour.

For example, whilst we do not know that all functions of type ∀𝛼.𝛼 → 𝛼 are
the identitiy function, we do know that if such a function returns a value then
it will be equal to the function’s input.

6.7. PRACTICAL LIMITATIONS 95

Non-parametric values

Abstraction and parametricity only hold if there are no non-parametric poly-
morphic functions available in the environment.

For example, applying parametricity to the type ∀𝛼.𝛼 → 𝛼 → Bool gives us
the following formula:

∀𝑓 ∶ (∀𝛼.𝛼 → 𝛼 → Bool).
∀𝛾. ∀𝛿. ∀𝜌 ⊂ 𝛾 × 𝛿.

∀𝑢 ∶ 𝛾. ∀𝑣 ∶ 𝛿. ∀𝑢ƕ ∶ 𝛾. ∀𝑣ƕ ∶ 𝛿.
𝜌(𝑢, 𝑣) ⇒ 𝜌(𝑢ƕ, 𝑣ƕ) ⇒

(𝑓[𝛾] 𝑢 𝑢ƕ =ಹ೦೦ೣ 𝑓[𝛿]𝑣𝑣ƕ)

If we instantiate 𝜌 with the trivial relation that is always true, then we get the
following free theorem:

∀𝑓 ∶ (∀𝛼.𝛼 → 𝛼 → Bool).
∀𝛾. ∀𝛿.

∀𝑢 ∶ 𝛾. ∀𝑣 ∶ 𝛿. ∀𝑢ƕ ∶ 𝛾. ∀𝑣ƕ ∶ 𝛿.
(𝑓[𝛾] 𝑢 𝑢ƕ =ಹ೦೦ೣ 𝑓[𝛿]𝑣𝑣ƕ)

This means that any parametric function of type ∀𝛼.𝛼 → 𝛼 → Bool must be a
constant function: a function that returns the same value for all inputs.

However, OCaml provides the following built-in structural equality function:

val (=) : ’ a −> ’ a −> bool

Even though it has this type, it is not a constant function. This means that it
is not parametric.

The existance of this function and several similar ones in OCaml, can break
the guarantees provided by abstraction and parametricity. However, not all
guarantees are broken, for instance the preservation of invariants is not affected
by any of the built-in functions available in OCaml.

In practice, this means that such functions should only be used at known
types. Using them on abstract types produces non-parametric code whose cor-
rectness may rely on details of an implementation that are not exposed in its
interface.

Bibliography

John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Reprinted from the proceedings of the 25th ACM National Confer-
ence, pages 717–740. ACM, 1972.

Jeremy Yallop and Leo White. Lightweight higher-kinded polymorphism. In
Michael Codish and Eijiro Sumii, editors, Functional and Logic Program-
ming - 12th International Symposium, FLOPS 2014, Kanazawa, Japan,
June 4-6, 2014. Proceedings, volume 8475 of Lecture Notes in Com-
puter Science, pages 119–135. Springer, 2014. ISBN 978-3-319-07150-3.
doi: 10.1007/978-3-319-07151-0_8. URL http://dx.doi.org/10.1007/
978-3-319-07151-0_8.

Oleg Kiselyov and Chung-chieh Shan. Lightweight static capabilities. Electr.
Notes Theor. Comput. Sci., 174(7):79–104, 2007. doi: 10.1016/j.entcs.2006.
10.039. URL http://dx.doi.org/10.1016/j.entcs.2006.10.039.

Philip Wadler. Theorems for free! In FPCA, pages 347–359, 1989. doi: 10.
1145/99370.99404. URL http://doi.acm.org/10.1145/99370.99404.

Andrew K. Wright. Simple imperative polymorphism. Lisp Symb. Comput., 8
(4):343–355, December 1995. ISSN 0892-4635.

173

http://dx.doi.org/10.1007/978-3-319-07151-0_8
http://dx.doi.org/10.1007/978-3-319-07151-0_8
http://dx.doi.org/10.1016/j.entcs.2006.10.039
http://doi.acm.org/10.1145/99370.99404

	Abstraction and parametricity
	Abstraction
	Modules
	Abstraction in System Fω
	Existential types in OCaml

	Parametricity
	Functors
	Parametricity in System Fω
	Universal types in OCaml

	Higher-kinded polymorphism
	Lightweight higher-kinded polymorphism

	Relational abstraction and relational parametricity
	Changing set implementations
	Relational substitution
	Identity extension
	A relational definition of abstraction
	A relational definition of parametricity

	Invariants
	Preserving invarints
	Phantom types
	Lightweight static capabilities

	Theorems for free
	Practical limitations

