Modern Processor Architectures

L25: Modern Compiler Design
The 1960s - 1970s

- Instructions took multiple cycles
- Only one instruction in flight at once
- Optimisation meant minimising the number of instructions executed
- Sometimes replacing expensive general-purpose instructions with specialised sequences of cheaper ones
The 1980s

- CPUs became pipelined
- Optimisation meant minimising pipeline stalls
- Dependency ordering such that results were not needed in the next instruction
- Computed branches became very expensive when not correctly predicted
Stall Example

```
for (int i = 100 ; i != 0 ; i--)
{
    ...
}
```

```
start:
    ...
    add r1, r1, -1
    jne r1, 0, start
```
Stall Example

for (int i=100 ; i!=0 ; i--)
{
 ...
}

start:

 ...
 add r1, r1, -1
 jne r1, 0, start
for (int i=100 ; i!=0 ; i--)
{
 ...
}

start:
 ...
 add r1, r1, -1
 jne r1, 0, start
Stall Example

```
for (int i = 100; i != 0; i--)
{
    ...
}

start:
    ...
    add r1, r1, -1
    jne r1, 0, start
```
for (int i=100 ; i!=0 ; i--) {
 ...
}

start:
 ...
 add r1, r1, -1
 jne r1, 0, start
Stall Example

for (int i = 100; i != 0; i--)
{
 ...
}

start:
 ...
 add r1, r1, -1
 jne r1, 0, start
Stall Example

```
for (int i=100 ; i!=0 ; i--)
{
    ...
}
```

```
start:
    ...
    add r1, r1, -1
    jne r1, 0, start
```
Fixing the Stall

```c
for (int i=100 ; i!=0 ; i--)
{
    ...
}
```

```assembly
start:
    add r1, r1, 1
    ...
    jne r1, 0, start
```
Fixing the Stall

for (int i=100 ; i!=0 ; i--)
{
 ...
}

start:
 add r1, r1, 1
 ...
 jne r1, 0, start

Is this a good solution?
Note about efficiency

- In-order pipelines give very good performance per Watt at low power
- Probably not going away any time soon (see ARM Cortex A7)
- Compiler optimisations can make a big difference!
The Early 1990s

- CPUs became much faster than memory
- Caches hid some latency
- Optimisation meant maximising locality of reference, prefetching
- Sometimes, recalculating results is faster than fetching from memory
- Note: Large caches consume a lot of power!
The Mid 1990s

- CPUs became superscalar
 - Independent instructions executed in parallel
- CPUs became out-of-order
 - Reordered instructions to reduce dependencies
- Optimisation meant structuring code for highest-possible ILP
- Loop unrolling no longer such a big win
Can dispatch up to six instructions at once, via 6 pipelines:

1. ALU, VecMul, Shuffle, FpDiv, FpMul, Blend
2. ALU, VecAdd, Shuffle, FpAdd
3. Load / Store address
4. Load / Store address
5. Load / Store data
6. ALU, Branch, Shuffle, VecLogic, Blend
Branch Predictors

- Achieve 95+\% accuracy on modern CPUs
- No cost when branch is correctly predicted
- Long and wide pipelines mean very expensive for the remaining 5\%!

With 140 instructions in-flight on the Pentium 4 and branches roughly every 7 cycles, what’s the probability of filling the pipeline?
Branch Predictors

- Achieve 95+% accuracy on modern CPUs
- No cost when branch is correctly predicted
- Long and wide pipelines mean very expensive for the remaining 5%!

With 140 instructions in-flight on the Pentium 4 and branches roughly every 7 cycles, what’s the probability of filling the pipeline?
Only 35%!
Branch Predictors

- Achieve 95+% accuracy on modern CPUs
- No cost when branch is correctly predicted
- Long and wide pipelines mean very expensive for the remaining 5%!

With 140 instructions in-flight on the Pentium 4 and branches roughly every 7 cycles, what’s the probability of filling the pipeline?

Only 35%!

Only 12% with a 90% hit rate!
The Late 1990s

- SIMD became mainstream
- Factor of 2-4× speedup when used correctly
- Optimisation meant ensuring data parallelism
- Loop unrolling starts winning again, as it exposes later optimisation opportunities (more on this later)
The Early 2000s

- (Homogeneous) Multicore became mainstream
- Power efficiency became important
- Parallelism provides both better throughput and lower power
- Optimisation meant exploiting fine-grained parallelism
The Late 2000s

- Programmable GPUs became mainstream
- Hardware optimised for stream processing in parallel
- Very fast for massively-parallel floating point operations
- Cost of moving data between CPU and CPU is high
- Optimisation meant offloading operations to the GPU
Modern processors come with multiple CPU and GPU cores
All cores behind the same memory interface, cost of moving data between them is low
Increasingly contain specialised accelerators
Often contain general-purpose (programmable) cores for specialised workload types (e.g. DSPs)
Optimisation is hard.
Lots of jobs for compiler writers!
Common Programming Models

- Sequential (can we automatically detect parallelism)?
- Explicit message passing (e.g. MPI, Erlang)
- Annotation-driven parallelism (e.g. OpenMP)
- Explicit task-based parallelism (e.g. libdispatch)
- Explicit threading (e.g. pthreads, shared-everything concurrency)
Parallelising Loop Iterations

- Same techniques as for SIMD (more on this later)
- Looser constraints: data can be unaligned, flow control can be independent
- Tighter constraints: loop iterations must be completely independent
- (Usually) more overhead for creating threads than using SIMD lanes
Communication and Synchronisation Costs

- Consider OpenMP’s parallel-for
Communication and Synchronisation Costs

- Consider OpenMP’s parallel-for
- Spawn a new thread for each iteration?
- Spawn one thread per core, split loop iterations between them?
- Spawn one thread per core, have each one start a loop iteration and check the current loop induction variable before doing the next one?
- Spawn one thread per core, pass batches of loop iterations to each one?
- Something else?
HELIX: Parallelising Sequential Segments in Loops

- Loop iterations each run a sequence of (potentially expensive) steps
- Run each step on a separate core
- Each core runs the same number of iterations as the original loop
- Use explicit synchronisation to detect barriers
Execution Models for GPUs

- GPUs have no standardised public instruction set
- Code shipped as source or some portable IR
- Compiled at install or load time
- Loaded to the device to run
SPIR

- Standard Portable Intermediate Representation
- Khronos Group standard, related to OpenCL
- Subsets of LLVM IR (one for 32-bit, one for 64-bit)
- Backed by ARM, AMD, Intel (everyone except nVidia)
- OpenCL programming model extensions as intrinsics
PTX

- Parallel Thread eXecution
- IR created by nVidia
- Semantics much closer to nVidia GPUs
HSAIL

- Heterogeneous Systems Architecture Intermediate Language
- Cross-vendor effort under the HSA umbrella
- More general than PTX (e.g. allows function pointers)
Single Instruction Multiple Thread (SIMT)

- SIMD with independent register sets, varying-sized vectors
- Program counter (PC) shared across threads
- All threads perform the same operation, but on different data
- Diverging threads get their own PC
- Only one PC used at a time
- Throughput halves for each divergent branch until only one thread is running
Thread Groups

- GPU programs run the same code (kernel) on every element in an input set
- Threads in a group can communicate via barriers and other synchronisation primitives
- Thread groups are independent
GPU Memory Model

- Per-thread memory (explicitly managed, equivalent to CPU cache)
- Shared memory between thread groups (equivalent to CPU shared L3 cache)
- Global memory (read-write, cache coherent)
- Texture memory (read-only or write-only, non-coherent)
Costs for GPU Use

- Setup context (MMU mappings on GPU, command queue). Typically once per application.
- Copying data across the bus is very expensive, may involve bounce buffers.
- Newer GPUs share a memory controller with the CPU (might not share an address space).
- Calling into the OS kernel to send messages (userspace command submission helps here).
- Synchronisation (cache coherency) between CPU and GPU.
Thought Experiment: memcpy(), memset()

- GPUs and DSPs are fast stream processors
- Ideal for things like memcpy(), memset()
- What bottlenecks prevent offloading all memset() / memcpy() calls to a coprocessor?
- How could they be fixed?
Autoparallelisation vs Autovectorisation

- Autovectorisation is a special case of autoparallelisation
- Requires dependency, alias analysis between sections
- GPU SIMT processors are suited to the same sorts of workloads as SIMD coprocessors
- (Currently) only sensible when working on large data or very expensive calculations
Loop offloading

- Identify all inputs and outputs
- Copy all inputs to the GPU
- Run the loop as a GPU kernel
- Copy all outputs back to main memory
- Why can this go wrong?
Loop offloading

- Identify all inputs and outputs
- Copy all inputs to the GPU
- Run the loop as a GPU kernel
- Copy all outputs back to main memory
- Why can this go wrong?
- What happens if you have other threads accessing memory?
- Shared everything is hard to reason about
Avoiding Divergent Flow Control: If Conversion

- Two threads taking different paths must be executed sequentially
- Execute both branches
- Conditionally select the result
- Also useful on superscalar architectures - reduces branch predictor pressure
- Early GPUs did this in hardware
OpenCL on the CPU

- Can SIMD emulate SIMT?
- Hardware is similar, SIMT is slightly more flexible
- Sometimes, OpenCL code runs faster on the CPU if data is small
- Non-diverging flow is trivial
- Diverging flow requires special handling
Diverging Flow

- Explicit masking for if conversion
- Each possible path is executed
- Results are conditionally selected
- Significant slowdown for widely diverging code
- Stores, loads-after-stores require special handling
OpenCL Synchronisation Model

- Explicit barriers block until all threads in a thread group have arrived.
- Atomic operations (can implement spinlocks)
 - Why would spinlocks on a GPU be slow?

Branches are slow, non-streaming memory-access is expensive...

Random access to workgroup-shared memory is cheaper than texture memory...
OpenCL Synchronisation Model

- Explicit barriers block until all threads in a thread group have arrived.
- Atomic operations (can implement spinlocks)
 - Why would spinlocks on a GPU be slow?
 - Branches are slow, non-streaming memory-access is expensive...
 - Random access to workgroup-shared memory is cheaper than texture memory
Barriers and SIMD

- Non-diverging flow, barrier is a no-op
- Diverging flow requires rendezvous
- Pure SIMD implementation (single core), barrier is where start of a basic block after taking both sides of a branch
- No real synchronisation required
OpenCL with SIMD on multicore CPUs

- Barriers require real synchronisation
- Can be a simple pthread barrier
- Alternatively, different cores can run independent thread groups
Questions?