
Interactive Formal Verification (L21)

Exercises

Prof. Lawrence C Paulson
Computer Laboratory, University of Cambridge

Lent Term, 2015

Interactive Formal Verification consists of twelve lectures and four prac-
tical sessions. The handouts for the first two practical sessions will not be
assessed. You may find that these handouts contain more work than you can
complete in an hour. You are not required to complete these exercises; they
are merely intended to be instructive. Many more exercises can be found
at http://isabelle.in.tum.de/exercises/. Note that many of these on-line ex-
amples are very simple, the assessed exercises are considerably harder. You
are strongly encouraged to attempt a variety of exercises, and perhaps to
develop your own.

The handouts for the last two practical sessions will be assessed to de-
termine your final mark (50% each). For each assessed exercise, please
complete the indicated tasks and write a brief document explaining your
work. You may prepare these documents using Isabelle’s theory presenta-
tion facility (See section 4.2 of the Isabelle/HOL manual) but this is not
required. You can combine the resulting output with a document produced
using your favourite word processing package. Please ensure that your spec-
ifications are correct (because proofs based on incorrect specifications could
be worthless) and that your Isabelle theory actually runs.

Each assessed exercise is worth 100 marks.

• 50 marks are for completing the tasks. Proofs should be competently
done and tidily presented. Be sure to delete obsolete material from
failed proof attempts.

• 20 marks are for a clear, basic write-up. It can be just a few pages,
and no longer than 6 pages. It should explain your proofs, preferably
displaying these proofs if they are not too long. It could perhaps
outline the strategic decisions that affected the shape of your proof
and include notes about your experience in completing it.

• The final 30 marks are for exceptional work. To earn some of these
marks, you may need to vary your proof style, maybe expanding some

1

http://isabelle.in.tum.de/exercises/


apply-style proofs into structured proofs. The point is not to make
your proofs longer (brevity is a virtue) but to demonstrate a variety
of Isabelle skills, perhaps even techniques not covered in the course.
An exceptional write-up also gains a few marks in this category, while
untidy proofs will lose marks.

Isabelle theory files for all four sessions can be downloaded from the course
materials website. These files contain necessary Isabelle declarations that
you can use as a basis for your own work.

You must work on these assignments as an individual; collaboration is
not permitted. Here are the deadline dates. Exercises are due at 12 noon.

• 1st exercise: Tuesday, 17th February 2015

• 2nd exercise: Thursday, 5th March 2015

Please deliver a printed copy of each completed exercise to student adminis-
tration, and also send the corresponding theory file to lp15@cam.ac.uk. The
latter should be enclosed in a directory bearing your name.

2

lp15@cam.ac.uk


1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.

consts replace :: "’a ⇒ ’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.

theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: del1 x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.

consts del1 :: "’a ⇒ ’a list ⇒ ’a list"
delall :: "’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems.

theorem "del1 x (delall x xs) = delall x xs"
theorem "delall x (delall x xs) = delall x xs"
theorem "delall x (del1 x xs) = delall x xs"
theorem "del1 x (del1 y zs) = del1 y (del1 x zs)"
theorem "delall x (del1 y zs) = del1 y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "del1 y (replace x y xs) = del1 x xs"
theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(del1 x xs) = del1 x (rev xs)"
theorem "rev(delall x xs) = delall x (rev xs)"

3



2 Power, Sum

2.1 Power

Define a primitive recursive function pow x n that computes xn on natural
numbers.

consts
pow :: "nat => nat => nat"

Prove the well known equation xm·n = (xm)n:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural
numbers: sum[n1, . . . , nk] = n1 + · · ·+ nk.

consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k − 1: Sum f k =
f 0 + · · ·+ f(k − 1).

consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions. De-
termine first what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + l) = Sum f k + Sum whatever l"

What is the relationship between sum and Sum? Prove the following equation,
suitably instantiated.

theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j] on
lists in theory List.

4



3 Assessed Exercise I: Functional Arrays

Braun trees implement functional arrays subscripted by positive integers,
based on their representation as binary numbers. Naturally enough, the
underlying data structure is the binary tree. A location in the tree is found
by starting at the root, testing whether the subscript is even or odd, and
descending into the left or right subtree, respectively; this process terminates
when 1 is reached. The numbers in the diagram are not the labels of branch
nodes, but indicate the subscript positions of array elements where data is
stored.

2�

4� 6�

8� 12� 10� 14�

3�

5� 7�

9� 13� 11� 15�

1�

More information can be found in the lecture notes for the Part IA course
Foundations of Computer Science, starting at page 80. See also ML for the
Working Programmer [1], page 154.

To start off, we declare the datatype of binary trees and the lookup function,
which returns the label of a functional array designated by a subscript.
Observe the test for an even number and the use of division by two, which
in the case of an odd number, discards the remainder.

datatype ’a tree = Lf | Br "’a" "’a tree" "’a tree"

fun lookup :: "’a tree ⇒ nat ⇒ ’a option"
where
"lookup Lf k = None"

| "lookup (Br v t1 t2) k =
(if k=1 then Some v
else
if even k then lookup t1 (k div 2)

else lookup t2 (k div 2))"

The update operation for a functional array is declared as follows. This
function can also extend the array, but only if this can be done without
inserting intermediate elements: if it reaches the fringe of the tree then it
does nothing unless k=1. Provided we extend the tree with consecutive
subscripts, there will be no gaps and the tree will be strongly balanced: the
size of any right subtree is less than or equal to that of the left and the
difference is no greater than one.

fun update :: "’a tree ⇒ nat ⇒ ’a ⇒ ’a tree"

5



where
"update Lf k v = (if k=1 then Br v Lf Lf else Lf)"

| "update (Br w t1 t2) k v =
(if k=1 then Br v t1 t2
else
if even k then Br w (update t1 (k div 2) v) t2
else Br w t1 (update t2 (k div 2) v))"

Task 1 Define an Isabelle function defined of type ’a tree ⇒ nat set, to
return the set of set of defined subscripts in a binary tree. The outer form
is given below, and you only need to define the function dpl. [7 marks]

fun defined :: "’a tree ⇒ nat set"
where
"defined Lf = {}"

| "defined (Br v t1 t2) = dpl (defined t1) (defined t2)"

Task 2 Prove the following theorems about lookup. [10 marks]

lemma lookup_None_eq: "lookup t k = None ←→ k /∈ defined t"
lemma lookup_Some_eq: "k ∈ defined t ←→ (∃ v. lookup t k = Some v)"

Task 3 Prove the following theorems about update. [10 marks]

lemma df_subset_df_update: "defined t ⊆ defined (update t k v)"
lemma df_upd_subs: "defined (update t k v) ⊆ insert k (defined t)"

Task 4 Prove the following lemmas, which will be useful for the next task.
[6 marks]

lemma dpl_D1: "{Suc 0..<2*m} ⊆ dpl A1 A2 =⇒ {Suc 0..<m} ⊆ A1"
lemma dpl_D2: "{Suc 0..<Suc(2*m)} ⊆ dpl A1 A2 =⇒ {Suc 0..<m} ⊆ A2"

Task 5 Prove the following theorems, which show that update defines a new
array element under suitable conditions. [17 marks]

lemma df_imp_df_update:
"[[0<k; {1..<k} ⊆ defined t]] =⇒ k ∈ defined (update t k v)"

lemma df_update:
"[[0<k; {1..<k} ⊆ defined t]]
=⇒ defined (update t k v) = insert k (defined t)"

Remark : no proof should require more than a dozen lines. However, the
difficulty of a proof depends critically on the overall strategy. Carefully
consider which induction rule to use. You may need to prove some lemmas
to help simplify expressions involving division by 2 or to reason about even
and odd numbers sensibly.

6



4 Assessed Exercise II: Binomial Coefficients

The binomial coefficients arise in the binomial theorem. They are the el-
ements of Pascal’s triangle and satisfy a great many mathematical identi-
ties. The theory HOL/Number_Theory/Binomial contains basic definitions and
proofs. Information about binomial coefficients. is widely available on the
Internet, including the lecture course notes available here:
http://www.cs.columbia.edu/~cs4205/files/CM4.pdf

Task 1 Prove the following theorem about binomial coefficients. (Note that
0 - 1 = 0 on the natural numbers.) [5 marks]

lemma times_binomial:
"Suc k * (n choose Suc k) = n * ((n - 1) choose k)"

Task 2 Prove the following theorem, which relates to a weighted sum of a
row of Pascal’s triangle. (It involves arithmetic on type real as well as nat,
so the function real is implicitly inserted at multiple points.) [15 marks]

lemma choose_row_sum:
"(

∑
k = 0..m. (r choose k) * (r/2 - k)) =

(Suc m) /2 * (r choose (Suc m))"

Task 3 Prove the following lemma, which will be useful below. [10 marks]

lemma setsum_choose_drop_zero:
"(

∑
k = 0..Suc n. if k=0 then 0 else (Suc n - k) choose (k - 1)) =

(
∑

j = 0..n. (n-j) choose j)"

Task 4 Prove the following theorem, which relates binomial coefficients with
Fibonacci numbers. [20 marks]

lemma ne_diagonal_fib:
"(

∑
k = 0..n. (n-k) choose k) = fib (Suc n)"

Remark : as in Assessed Exercise I, choose your induction rule with care in
each proof. The precise statement of the induction formula is also important.
Some of the proofs are best done using calculational reasoning.

7



References

[1] Lawrence C. Paulson. ML for the Working Programmer. 2nd edition,
1996.

8


	Replace, Reverse and Delete
	Power, Sum
	Power
	Summation

	Assessed Exercise I: Functional Arrays
	Assessed Exercise II: Binomial Coefficients

