L114 Lexical Semantics

Session 5: The Semantics of Verbs

Simone Teufel

Natural Language and Information Processing (NLIP) Group

Simone.Teufel@cl.cam.ac.uk

2014/2015

Lexical relations between verbs

Verbs can be

- synonyms, e.g., pass away—die
- hyponyms, e.g., walk-move
- meronyms, e.g., wash soak, scrub, wring out, (dry). [rare]
- opposites
 - indirect converses such as bequeath-inherit; give-receive
 - reversives such as enter-leave, mount-dismount

Overall, lexical relationships between verbs are weak and unsystematic in comparison to those in operation between nouns.

Hyponymy vs Entailment

X is a verbal **hyponym** of Y if the following test frame succeeds:

Test frame *"To X is necessarily to Y"*

To murder someone is necessarily to kill them. To strangle someone is necessarily to kill them.

Entailment: a causal relationship between propositions, which includes and goes beyond hyponymy.

He killed the bee – The bee died. He snored – He was sleeping.

Troponymy

Troponymy: subtype of hyponymy; manner of an action. (Cruse (1979) calls this property **verbal taxonymy**.)

Test frame: "To X is a way of Y-ing"

To strangle/?murder somebody is a way of killing. To crawl/?travel is a way of moving.

Thus, *strangle* is a troponym of *kill. murder* is not a troponym of *kill*, but of *commit a crime*.

WordNet distinguishes four types of lexical relations between verbs: hyponymy, troponymy, entailment, meronymy. Few instances in comparison to nouns.

NLP methods for finding verb similarities

Verbs with similar semantics tend to ...

- have similar subcategorisation behaviour → cluster verbs by their subcategorisation patterns; e.g., Schulte (2006); Sun and Korhonen (2009)
- have similar **selectional restrictions** \rightarrow determine the difference between two verbs' selectional restrictions; e.g., Resnik (1995)
- have similar thematic roles, i.e., participants in the actions they denote → perform semantic role labelling, e.g., Gildea and Jurafsky (2002)
- undergo the same diathesis alternations. → manually classify verbs (Levin 1993)

Linguistic Selection

A selector imposes semantic constraints on its selectees.

Head-complement construction

I have been waiting for hours. (for-PP argument)
I have been waiting for the bus. (for-PP argument)

Selector: verb, Selectee: arguments

Head-modifier constructions

graceful degradation

Selector: modifier, Selectee: head

Verb-subject constructions

The water froze within seconds.

Selector: verb, Selectee: subject (most linguists would agree)

Selectional restrictions

Selectional restrictions: Violation of selector's presuppositions results in paradox or incongruity.

- This cannot be resolved by replacement with synonym
- But it can be resolved by replacement with near hypernym (in the case of paradox).

```
? my male <u>aunt</u> – paradox; resolvable (relation).
? the <u>cat</u> barked – paradox; resolvable (animal).
```

? a lustful <u>affix</u> – incongruity; unresolvable (except by thing).

... vs collocational restrictions

Collocational restrictions: Violation of selector's presuppositions results in inappropriateness; resolvable by replacement with synonym.

? The aspidistra kicked the bucket – resolvable (died).

	unblemished	spotless	flawless	immaculate	impeccable
performance					
argument					
complexion					
behaviour					
kitchen					
record					
reputation					
taste					
order					
credentials					

... vs collocational restrictions

Collocational restrictions are highly unpredictable.

	unblemished	spotless	flawless	immaculate	impeccable
performance	-	-	X	X	X
argument	-	-	X	-	?
complexion	?	?	X	-	-
behaviour	-	-	-	-	X
kitchen	-	X	-	X	-
record	X	X	X	?	X
reputation	?	X	-	?	-
taste	-	-	X	?	X
order	-	-	-	X	X
credentials	-	-	-	-	X

Quantifying selectional preferences: Resnik 1995

- Selectional preference strength $S_R(v)$ of verb v: the degree of selectiveness of a predicate about the semantic class of its arguments; expressed in bits of information.
- Semantic classes c are WordNet synsets
- $S_R(v)$ is based on difference in distribution between
 - P(c) likelihood of direct object of falling into semantic class c
 - P(c|v) likelihood of direct object of falling into semantic class c if associated with verb v
- Use KL divergence to determine $S_R(v) = D(P(c|v)||P(c))$:

$$S_R(v) = \sum_c P(c|v)log \frac{P(c|v)}{P(c)}$$

Resnik (1995), ctd

 Selectional association between a verb and a class (synset) is the relative contribution to the overall selectionality of the verb

$$A_R(v,c) = \frac{1}{S_R(v)} P(c|v) log \frac{P(c|v)}{P(c)}$$

Example result:

Verb	Dir. Obj. (preferred)	Assoc	Dir Obj. (dispreferred)	Assoc
read	WRITING	6.80	ACTIVITY	-0.20
write	WRITING	7.26	COMMERCE	0
see	ENTITY	5.79	METHOD	-0.01

The Resnik algorithm can be used to perform WSD.

Diathesis alternation; Levin (1993)

Definition

Systematic variations in the expression of arguments, sometimes accompanied by changes in meaning (Levin, 1993)

Famous example:

Dative alternation

- Doris gives flowers to the headmistress.
- Doris gives the headmistress flowers.

This pattern is meaning-preserving and covers several semantic classes:

- verbs of "future having": advance, allocate, offer, owe, lend
- verbs of "sending": forward, hand, mail
- verbs of "throwing": kick, pass, throw

Example: "gullying"

The sailors gullied the whales.

"gully" is an archaic whaling term. What does it mean?

Example: "gullying"

The sailors gullied the whales.

• "gully" is an archaic whaling term. What does it mean?

Whales gully easily.

• Has your hypothesis changed?

Example: "gullying"

The sailors gullied the whales.

"gully" is an archaic whaling term. What does it mean?

Whales gully easily.

- Has your hypothesis changed?
- We observe a strong correlation between syntactic behaviour and semantic class.

Other diathesis alternations

- John loaded the truck with hay.
- John loaded hay on the truck.

Semantic difference?

Other verbs following this pattern? (*spray? fill? pour? dump? cover?* (this is called the locative alternation.)

- John cuts the bread.
- The bread cuts nicely. (middle)
- John cut Mary's arm/Mary on the arm (bodypart possessor ascension)
- John cut at the bread (conative)

Other verbs following this pattern?

An Example

Diathesis Alternation	touch	hit	cut	break
conative		\otimes	\otimes	
bodypart possessor ascension	\otimes	\otimes	\otimes	
middle			\otimes	\otimes
	pat, stroke,	bash,	hack,	crack,
		kick,	saw,	rip,
	tickle	pound,	scratch,	scat-
		tap,	slash	ter,
		whack		snap

Alternations and Semantic Dimensions

- Bodypart Possessor Ascension Alernation is sensitive to contact — separating out *break* as a non-contact verb (pure change of state)
- Conative Alternation is sensitive to both motion and contact
 — separating out touch as a verb of contact (non-change of state)
- Middle Altenation is sensitive to change of state identifying hit as non-change-of-state (contact by motion verb), whereas cut is a verb of "cause of change of state by moving sth int contact with entity that changes state"

Levin's (1993) Verb Classification

- Based on 79 diathesis alternations
- Covers 3200 verbs in 48 main classes (191 subdivided ones)
- break class contains: break, chip, crack, crash, crush, fracture, rip, shatter, smash, snap, splinter, split and tear.
- Diathesis alternations are difficult to detect automatically
- But: we can use the fact that similar alternations result in similar SCF (subcategorisation frames).

Verb clustering with subcategorisation frames and selectional restrictions

- Sun and Korhonen: Improving Verb Clustering with Automatically Acquired Selectional Preferences. EMNLP 2009.
- Use spectral clustering algorithm and many features
- Evaluation:
 - Standard Test set 1 (TS1): 15 course- and fine-grained Levin classes, 10-15 verbs per class; 205 verbs
 - Test set 2 (TS2): 17 fine-grained Levin classes with 12 members each, resulting in 204 verbs
- Use all occurrences of verb (up to 10,000 occurrences) from corpora
- But: verbs with fewer than 40 occurrences discarded
- Better results than previous literature (unsupervised); 0.58
 F-measure (previously 0.31) on T1; 0.80 E-measure on T2

Sun and Korhonen's Features

- Collocation (CO): 4 words immediately preceding and following lemmatised verb. Remove stop words, keep 600 most frequent words.
- Prepositional preference (PP): type and frequency of prepositions in direct object relation
- Lexical Preference (LP): type and frequency of nouns and prepositions in subject, object, indirect object relation (these relations are called grammatical relations or GR)
- Subcategorisation frames (SCF): and relative frequencies with verbs
- Selectional Preferences: 20 clusters (of 200 nouns) used instead of LP
- Tense of verb
- Discard SCFs and GRs with frequencies lower than 40 or occurring with 4 or fewer different verbs

- Due to Fillmore (1976);
- a frame describes a prototypical situation;
- it is evoked by a frame evoking element (FEE);
- it can have several frame elements (semantic roles).

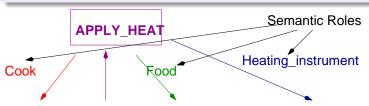
- Due to Fillmore (1976);
- a frame describes a prototypical situation;
- it is evoked by a frame evoking element (FEE);
- it can have several frame elements (semantic roles).

Mathilde fried the catfish in a heavy iron skillet.

- Due to Fillmore (1976);
- a frame describes a prototypical situation;
- it is evoked by a frame evoking element (FEE);
- it can have several frame elements (semantic roles).

Mathilde fried the catfish in a heavy iron skillet.

- Due to Fillmore (1976);
- a frame describes a prototypical situation;
- it is evoked by a frame evoking element (FEE);
- it can have several frame elements (semantic roles).



Mathilde fried the catfish in a heavy iron skillet.

Properties of Frame Semantics

- Provides a shallow semantic analysis (no modality, scope);
- generalizes well across languages;
- can benefit various NLP tasks (IR, QA).

Types of thematic roles

- Verb-specific frames and domain-specific roles:
 - kiss Kisser Kissee
 - From-Airport, To-Airport, Departure-Time
- Only two roles: Proto-Agent, Proto-Patient
- Mid-level: AGENT, EXPERIENCER, INSTRUMENT, OBJECT, SOURCE, GOAL, LOCATION, TIME, and PATH (Fillmore, 1971).
- Granularity in FrameNet is situated between mid-level and verb-specific.

FrameNet Corpus

FrameNet is a corpus with frame semantics markup:

- uses a tagset of 76 semantic roles (frame elements) from 12 general semantic domains (body, cognition, communication);
- consists of a sample of sentences from the BNC annotated with frame elements;
- 49,013 sentences and 99,232 frame elements in total;
- this includes 927 verbs, 339 nouns, 175 adjectives.

The sentences in the corpus were not chosen from the BNC at random; rather representative usages were selected.

Some FrameNet Examples for RISK

- She risked her life on the ascent of K2.
- You would not really want to risk annoying her.

Agent/Protagonist, BadOutcome, Asset, Action

She risked **one of her elaborate disguises** when she went out that day

- ... because she had been hidden in that hotel room for long enough.
- ... because she suspected they already had a photo of her in it.

RISK in FrameNet

DARING	an Agent performs an Action which	to hazard, to risk, to	
	can harm the Agent and which is con-	chance, to dare, to ven-	
	sidered imprudent.	ture, to take a risk	
RUN_RISK	Protagonist is exposed to a danger-	the risk, the danger, to run	
	ous situation, which may result in a	a risk, the peril, endan-	
	BadOutcome or the loss of an Asset.	gered	
	There is no implication of intention-		
	ality on behalf of the Protagonist.		
RISKY_SITUATION	a Situation is likely to result in a	the risk, dangerous,	
	(non-mentioned) harmful event be-	(un)safe, threat, dan-	
	falling an Asset	ger	
BEING_AT_RISK	An Asset is exposed to or other-	secure, security, safe,	
	wise liable to be affected by a Harm-	risk	
	fulEvent, which may occur as Dan-		
	gerousEntity.		

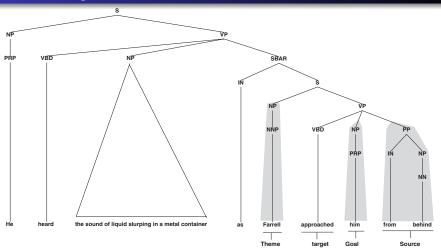
Semantic Role Labelling

Gildea and Jurafsky (2002):

- Parse the training corpus using Collin's parser;
- Match frame elements to constituents;
- Extract features from the parse tree;
- Train probabilistic model on the features.

The start and end word of each parsed constituent is found and matched against a frame element with the same start and end. No match is possible in 13% of the cases (parsing errors).

Matching



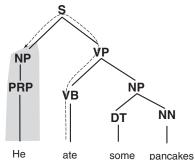
Features

Assume the sentences are parsed, then the following features can be extracted for role labeling:

- Phrase Type: syntactic type of the phrase expressing the semantic role (e.g., NP, VP, S);
- Governing Category: syntactic type of the phrase governing the semantic role (NP, VP); distinguishes subject-NPs from object-NPs;
- Parse Tree Path: path through the parse tree from the target word to the phrase expressing the grammatical role;
- Position: whether the constituent occurs before or after the predicate; useful for incorrect parses;
- Voice: active or passive; use heuristics to identify passives;
- Head Word: the lexical head of the constituent.

Features

Path from target ate to frame element $He: VB\uparrow VP\uparrow S\downarrow NP$



"If there is an underlying AGENT, it becomes the syntactic subject (Fillmore, 1968)"

Paths and Grammatical Roles

Freq.	Path	Description
14.2%	VB↑VP↓PP	PP argument or adjunct
11.8	VB↑VP↑S↓NP	subject
10.1	VB↑VP↓NP	object
7.9	VB↑VP↑VP↑S↓NP	subject of embedded VP
4.1	VB↑VP↓ADVP	adverbial adjunct
3.0	NN↑NP↑NP↓PP	prepos. complement of noun
1.7	VB↑VP↓PRT	adverbial particle
1.6	VB↑VP↑VP↑VP↑S↓NP	subject of embedded VP
14.2		no matching parse constituent
31.4		other

Probabilistic Model

Divide the FrameNet corpus into:

- 10% test set;
- 10% development set;
- 80% training set;

Relatively small training set: average number of sentences per target word is 34, number of sentences per frame is 732.

Probabilistic Model

Build a classifier by combining conditional distributions of the features. Compute the distribution from the training data, e.g.:

$$P(r|pt,t) = \frac{\#(r,pt,t)}{\#(pt,t)}$$
 (1)

r semantic role

pt phrase type

gov governing category

pos position

voice voice

h head word

t target word (predicate)

Evaluation

Measure the performance of a distribution using the following metrics:

- Coverage: percentage of the test data for which the conditioning event has been seen in the training data.
- Accuracy: percentage of covered test data for which the correct role is predicted.
- Performance: product of coverage and accuracy.

Baseline: always choose most probable role for each target word (40.9%)

Evaluation

Distribution	Coverage	Accuracy	Performance
$\overline{P(r t)}$	100	40.9	40.9
P(r pt,t)	92.5	60.1	55.6
P(r pt, gov, t)	92.0	66.6	61.3
P(r pt, pos, voice)	98.8	57.1	56.4
P(r pt, pos, voice, t)	90.8	70.1	63.7
P(r h)	80.3	73.6	59.1
P(r h,t)	56.0	86.6	48.5
P(r h,pt,t)	50.1	87.4	43.8

Results

- Final system performance 80.4, using head word, phrase type, target word, path and voice.
- But there are 3 features modelling grammatical function which is best (pos, path, gov)?
- Voice is beneficial only if at least one of these 3 is used.
- If we don't have voice, position is best (79.9%).
- Position + voice instead of either path or governing category is equivalent;
- Head words are very accurate indicators of a constituent's semantic role; P(r|h,t) can only be evaluated on 56.0% of the date, but was 86.7% correct.

Generalising Lexical Statistics

Head words are good predictors of semantic role, but data is sparse. This can be overcome using:

- Clustering: find words that are similar to head words that do not occur in the training data; increases performance to 85%;
- WordNet: if a word is not in the training data, use its hypernym in WordNet; percolate co-occurrence counts up the WordNet hierarchy (problem: multiple hierarchies and multiple word senses); increases accuracy to 84.3%;
- Bootstrapping: label unannotated data with the automatic system, use the resulting data as training data; increases accuracy to 83.2%.

Summary

- Semantic role labeling means identifying the constituents (frame elements) that participate in a prototypical situation (frame) and labeling them with their roles.
- This provides a shallow semantic analysis that can benefit various NLP tasks;
- FrameNet is a corpus/dictionary marked up with semantic roles;
- A simple probabilistic model combining lexical and syntactic features performs well on the task.
- The model interpolates distributions or performs backoff;
- Similar features can be used for identifying frame elements;
- In both models, lexical statistics are sparse, which can be addressed with clustering, WordNet, or bootstrapping.

Reading

- Sun and Korhonen (2009). EMNLP
- Gildea and Jurafsky (2002). Automatic Labeling of Semantic Roles. Computational Linguistics.
- Fillmore and Atkins (1992). Towards a frame-based lexicon: The semantics of RISK and its neighbors. In Lehrer, A and E. Kittay (Eds.) Frames, Fields, and Contrast: New Essays in Semantics and Lexical Organization. Hillsdale: Lawrence Erlbaum Associates, 75-102.

Background Reading

- Jurafsky and Martin, chapters 19.4, 20.4.2 (selectional restrictions) and 20.9 (frames)
- Allan, Frames, Fields and Semantic components chapter 8 of book "Natural Language Semantics".
- Cruse, 2.2 (arguments) 14.4.4 (thematic roles)