L11: Algebraic Path Problems with applications to Internet Routing Lectures 12, 13, 14

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2014

The plan

- Lecture 12: "functions on arcs"
- Lecture 13: Global vs. Local Optimality
- Lecture 14: A simple model of a "fixed" BGP
- Lecture 15: Proof of convergence of iteration for (some) non-distributed algebras ...
- Lecture 16: ... the proof continues

Path Weight with functions on arcs?

For graph G = (V, E), and arc path $p = (u_0, u_1)(u_1, u_2) \cdots (u_{k-1}, u_k)$.

Functions on arcs: two natural ways to do this...

Weight function $w : E \to (S \to S)$. Let $f_j = w(u_{j-1}, u_j)$.

$$w_a^L(p) = f_1(f_2(\cdots f_k(a)\cdots)) = (f_1 \circ f_2 \circ \cdots \circ f_k)(a)$$

$$w_a^R(p) = f_k(f_{k-1}(\cdots f_1(a)\cdots)) = (f_k \circ f_{k-1} \circ \cdots \circ f_1)(a)$$

How can we "make this work" for path problems?

A (1) > A (2) > A (2)

Algebra of Monoid Endomorphisms (AME) (See Gondran and Minoux 2008)

Let $(S, \oplus, \overline{0})$ be a commutative monoid.

 $(S, \oplus, F \subseteq S \to S, \overline{0})$ is an algebra of monoid endomorphisms (AME) if

•
$$\forall f \in F, f(\overline{0}) = \overline{0}$$

•
$$\forall f \in F, \ \forall b, c \in S, \ f(b \oplus c) = f(b) \oplus f(c)$$

I will declare these as optional

• $\forall f, g \in F, f \circ g \in F$ (closed)

•
$$\exists i \in F, \ \forall s \in S, \ i(s) = s$$

•
$$\exists \omega \in F, \forall n \in N, \omega(n) = \overline{0}$$

Note: as with semirings, we may have to drop some of these axioms in order to model Internet routing ...

So why do we want AMEs?

Each (closed with ω and *i*) AME can be viewed as a semiring of functions. Suppose $(S, \oplus, F, \overline{0})$ is an algebra of monoid endomorphisms. We can turn it into a semiring

$$\mathbb{F} = (F, \ \hat{\oplus}, \ \circ, \ \omega, \ i)$$

where $(f \oplus g)(a) = f(a) \oplus g(a)$ and $(f \circ g)(a) = f(g(a))$.

But functions are hard to work with

- All algorithms need to check equality over elements of a semiring
- f = g means $\forall a \in S, f(a) = g(a)$

S can be very large, or infinite

How do we represent a set of functions $F \subseteq S \rightarrow S$?

Assume we a set L and a function

$$\rhd \in L
ightarrow (S
ightarrow S).$$

We normally write $l \triangleright s$ rather than $\triangleright(l)(s)$. We think of $l \in L$ as the index for a function $f_l(s) = l \triangleright s$. In this way (L, \triangleright) can be used to represent the set of functions

$$F = \{f_l = \lambda s. (l \triangleright s) \mid l \in L\}.$$

Indexed Algebra of Monoid Endomorphisms (IAME)

Let $(S, \oplus, \overline{0})$ be a commutative and idempotent monoid.

A (left) IAME $(S, L, \oplus, \rhd, \overline{0})$ • $\rhd \in L \rightarrow (S \rightarrow S)$ • $\forall l \in L, l \rhd \overline{0} = \overline{0}$ • $\exists l \in L, \forall s \in S, l \rhd s = s$ • $\exists l \in L, \forall s \in S, l \rhd s = \overline{0}$ • $\forall l \in L, \forall n, m \in S, l \rhd (n \oplus m) = (l \rhd n) \oplus (l \rhd m)$

When we need closure? Not very often! If needed, it would be

$$\forall l_1, l_2 \in L, \exists l_3 \in L, \forall s \in S, l_3 \triangleright s = l_1 \triangleright (l_2 \triangleright s)$$

IAME of Matrices

Given a left IAME ($S, L, \oplus, \triangleright, \overline{0}$) define the left IAME of matrices

 $(\mathbb{M}_n(S), \mathbb{M}_n(L), \oplus, \triangleright, \mathbf{J}).$

For all *i*, *j* we have $\mathbf{J}(i, j) = \overline{0}$. For $\mathbf{A} \in \mathbb{M}_n(L)$ and $\mathbf{B}, \mathbf{C} \in \mathbb{M}_n(S)$ define

 $(\mathbf{B} \oplus \mathbf{C})(i, j) = \mathbf{B}(i, j) \oplus \mathbf{C}(i, j)$

$$(\mathbf{A} \rhd \mathbf{B})(i, j) = \bigoplus_{1 \le q \le n} \mathbf{A}(i, q) \rhd \mathbf{B}(q, j)$$

- 3

A D N A D N A D N A D N

Solving (some) equations. Left version here ... We will be interested in solving for L equations of the form

 $\mathsf{L}=(\mathsf{A} \rhd \mathsf{L}) \oplus \mathsf{B}$

Let

$$\mathbf{A} \rhd^0 \mathbf{B} = \mathbf{B} \\ \mathbf{A} \rhd^{k+1} \mathbf{B} = \mathbf{A} \rhd (\mathbf{A} \rhd^k \mathbf{B})$$

and

$$\mathbf{A} \vartriangleright^{(k)} \mathbf{B} = \mathbf{A} \vartriangleright^0 \mathbf{B} \oplus \mathbf{A} \vartriangleright^1 \mathbf{B} \oplus \mathbf{A} \vartriangleright^2 \mathbf{B} \oplus \cdots \oplus \mathbf{A} \vartriangleright^k \mathbf{B}$$

 $\mathbf{A} \vartriangleright^* \mathbf{B} = \mathbf{A} \vartriangleright^0 \mathbf{B} \oplus \mathbf{A} \vartriangleright^1 \mathbf{B} \oplus \mathbf{A} \vartriangleright^2 \mathbf{B} \oplus \cdots \oplus \mathbf{A} \vartriangleright^k \mathbf{B} \oplus \cdots$

Definition (q stability)

If there exists a *q* such that for all **B**, $\mathbf{A} \triangleright^q \mathbf{B} = \mathbf{A} \triangleright^{q+1} \mathbf{B}$, then **A** is *q*-stable. Therefore, $\mathbf{A} \triangleright^* \mathbf{B} = \mathbf{A} \triangleright^q \mathbf{B}$.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

Key results (again)

Theorm 11.1

If **A** is *q*-stable, then $\mathbf{L} = \mathbf{A} \triangleright^* (\mathbf{B})$ solves the equation

 $\mathbf{L} = (\mathbf{A} \triangleright \mathbf{L}) \oplus \mathbf{B}.$

Theorem 11.2

If **A** is *q*-stable, then $\mathbf{L} = \mathbf{A} \triangleright^* (\mathbf{B})$ solves the equation

 $\mathbf{L} = (\mathbf{A} \triangleright \mathbf{L}) \oplus \mathbf{B}.$

tgg22 (cl.cam.ac.uk)

Something familiar : Lexicographic product of AMEs

$$(S, L_S, \oplus_S, \rhd_S) \vec{\times} (T, L_T, \oplus_T, \rhd_T) = (S \times T, L_S \times L_T, \oplus_S \vec{\times} \oplus_T, \rhd_S \times \rhd_T)$$

Theorem 11.3

 $D(S \times T) \iff D(S) \wedge D(T) \wedge (C(S) \vee K(T))$

Where

Property	Definition
D	$\forall a, b, f, f(a \oplus b) = f(a) \oplus f(b)$
С	$\forall a, b, f, f(a) = f(b) \implies a = b$
К	$\forall a, b, f, f(a) = f(b)$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Something new: Functional Union of AMEs

$$(\textit{S},\textit{ }\textit{L}_{1}, \,\oplus, \, \vartriangleright_{1}) +_{m} (\textit{S},\textit{ }\textit{L}_{2}, \,\oplus, \, \vartriangleright_{2}) = (\textit{S},\textit{ }\textit{L}_{1} \uplus \textit{L}_{2}, \,\oplus, \, \vartriangleright_{1} \uplus \vartriangleright_{2})$$

Fact

$$\begin{array}{l} \mathsf{D}((S, \ L_1, \ \oplus, \ \rhd_1) +_{\mathsf{m}} (S, \ L_2, \ \oplus, \ \rhd_2)) \\ \Leftrightarrow \\ \mathsf{D}((S, \ L_1, \ \oplus, \ \rhd_1)) \land \mathsf{D}((S, \ L_2, \ \oplus, \ \rhd_2)) \end{array}$$

Where

$$(\operatorname{inl}(I)) (\triangleright_1 \uplus \triangleright_2) s = I \triangleright_1 s (\operatorname{inr}(I)) (\triangleright_1 \uplus \triangleright_2) s = I \triangleright_2 s$$

2

イロト イヨト イヨト イヨト

Left and Right

Facts

The following are always true.

```
\begin{array}{l} \mathsf{D}((S, \{R\}, \oplus, \mathsf{right})) \\ \mathsf{D}((S, S, \oplus, \mathsf{left})) \\ \mathsf{C}((S, \{R\}, \oplus, \mathsf{right})) \\ \mathsf{K}((S, S, \oplus, \mathsf{left})) \end{array} (assuming \oplus \mathsf{is} \mathsf{idempotent}) \end{array}
```

-

イロト 不得 トイヨト イヨト

Scoped Product (Think iBGP/eBGP)

$$S\Theta T = (S \times \text{left}(T)) +_{\text{m}} (\text{right}(S) \times T)$$

Theorem 11.2

$$D(S\Theta T) \iff D(S) \wedge D(T).$$

$$\begin{array}{l} \mathsf{D}(S \ominus T) \\ \mathsf{D}((S \stackrel{\times}{\times} \mathsf{left}(T)) +_{\mathsf{m}} (\mathsf{right}(S) \stackrel{\times}{\times} T)) \\ \Longleftrightarrow \mathsf{D}(S \stackrel{\times}{\times} \mathsf{left}(T)) \wedge \mathsf{D}(\mathsf{right}(S) \stackrel{\times}{\times} T) \\ \Leftrightarrow \mathsf{D}(S) \wedge \mathsf{D}(\mathsf{left}(T)) \wedge (\mathsf{C}(S) \vee \mathsf{K}(\mathsf{left}(T))) \\ \wedge \mathsf{D}(\mathsf{right}(S)) \wedge \mathsf{D}(T) \wedge (\mathsf{C}(\mathsf{right}(S)) \vee \mathsf{K}(T)) \\ \Leftrightarrow \mathsf{D}(S) \wedge \mathsf{D}(T) \end{array}$$

Lexicographic Products in Metarouting. Alexander Gurney, Timothy G. Griffin. International Conference on Network Protocols (ICNP), 2007, 2

tgg22 (cl.cam.ac.uk)

Scoped Product

$$\begin{array}{rcl} S &=& (S, \, L_S, \, \oplus_S, \, \rhd_S) \\ T &=& (T, \, L_T, \, \oplus_T, \, \rhd_T) \\ S \stackrel{\scriptstyle{\times}}{\times} \operatorname{left}(T) &=& (S \times T, \, L_S \times T, \, \oplus_S \stackrel{\scriptstyle{\times}}{\times} \oplus_T, \, \bowtie_S \times \operatorname{left}) \\ \operatorname{right}(S) \stackrel{\scriptstyle{\times}}{\times} T &=& (S \times T, \, \{R\} \times L_T, \, \oplus_S \stackrel{\scriptstyle{\times}}{\times} \oplus_T, \, \operatorname{right} \times \rhd_T) \\ S \Theta T &=& (S \stackrel{\scriptstyle{\times}}{\times} \operatorname{left}(T)) +_{\operatorname{m}} (\operatorname{right}(S) \stackrel{\scriptstyle{\times}}{\times} T) \\ &=& (S \times T, \, (L_S \times T) \oplus (\{R\} \times L_T), \, \oplus_S \stackrel{\scriptstyle{\times}}{\times} \oplus_T, \, \rhd) \end{array}$$

Between regions ($\lambda \in L_S$)

$$\operatorname{inl}(\lambda, t_2) \rhd (\mathbf{s}, t_1) = (\lambda \rhd_{\mathbf{S}} \mathbf{s}, t_2)$$

Within regions ($\lambda \in L_T$)

$$\operatorname{inr}(\boldsymbol{R}, \lambda) \triangleright (\boldsymbol{s}, t) = (\boldsymbol{s}, \lambda \triangleright_T t)$$

tgg22 (cl.cam.ac.uk)

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Recall (Lecture 1)

Punch Line

A2A attempts to shift complexity from an algorithm to the metric, which is captured in an algebraic structure — the algebraic properties of that structure will determine what kind of solution is obtained (global or local optima).

Recall puzzle from Lecture 1

	name	S	\oplus ,	\otimes	$\overline{0}$	1	
-	min_plus	\mathbb{N}	min	+		0	
	max_min	\mathbb{N}	max	min	0		
	name	Э	LD	LC	LK		
	min_pl max_m	us in	Yes Yes	Yes No	No No	-	

name	definition	LD
Widest Shortest-paths	$\min_{plus} \vec{\times} \max_{plus}$	Yes
Shorest Widest-paths	$\max_{\min \times \min_{i}}$ min_plus	No

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2014 17 / 38

2

Shorest widest paths

node *j* prefers (10, 100) over (7, 1).
node *i* prefers (5, 2) over (5, 101).

 $(5, 1) \otimes ((10, 100) \oplus (7, 1)) = (5, 1) \otimes (10, 100) = (5, 101)$ $((5, 1) \otimes (10, 101)) \oplus ((5, 1) \otimes (7, 1)) = (5, 101) \oplus (5, 2) = (5, 2)$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Something similar from inter-domain routing in the global Internet

- *j* prefers long path though one of its customers
- *i* prefers the shorter path

Solving (some) equations

If \mathbf{A}^* exists , then $\mathbf{L} = \mathbf{A}^*$ solves the equation

 $\mathbf{L}=\mathbf{A}\mathbf{L}\oplus\mathbf{I}$

and $\mathbf{R} = \mathbf{A}^*$ solves the equation

 $\mathbf{R} = \mathbf{R}\mathbf{A} \oplus \mathbf{I}.$

Towards a "non classical" theory of algebraic path problems ...

If we weaken the axioms of the semiring (drop distributivity, for example), could it be that we can find examples where **A***, **L**, and **R** exist, but are all distinct?

Health warning : matrix multiplication over structures lacking distributivity is not associative!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Left-Local Optimality

Say that L is a left locally-optimal solution when

 $\mathsf{L} = (\mathsf{A} \otimes \mathsf{L}) \oplus \mathsf{I}.$

That is, for $i \neq j$ we have

$$\mathsf{L}(i, j) = \bigoplus_{q \in V} \mathsf{A}(i, q) \otimes \mathsf{L}(q, j)$$

- L(i, j) is the best possible value given the values L(q, j), for all out-neighbors q of source i.
- Rows L(*i*, _) represents **out-trees** <u>from</u> *i* (think Bellman-Ford).
- Columns L(_, *i*) represents in-trees to *i*.
- Works well with hop-by-hop forwarding from *i*.

A D N A B N A B N A B N

Right-Local Optimality

Say that **R** is a right locally-optimal solution when

 $\mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}.$

That is, for $i \neq j$ we have

$$\mathbf{R}(i, j) = \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j)$$

- **R**(*i*, *j*) is the best possible value given the values **R**(*q*, *j*), for all in-neighbors *q* of destination *j*.
- Rows L(*i*, _) represents **out-trees** <u>from</u> *i* (think Dijkstra).
- Columns L(_, *i*) represents in-trees to *i*.

With and Without Distributivity

With distributivity

For (bounded) semirings, the three optimality problems are essentially the same — locally optimal solutions are globally optimal solutions.

$$\mathbf{A}^* = \mathbf{L} = \mathbf{R}$$

Without distributivity

It may be that A*, L, and R exists but are all distinct.

Back and Forth

$$\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I} \qquad \Longleftrightarrow \qquad \mathbf{L}^T = (\mathbf{L}^T \otimes^T \mathbf{A}^T) \oplus \mathbf{I}$$

where \otimes^T is matrix multiplication defined with $a \otimes^T b = b \otimes a$

< 日 > < 同 > < 回 > < 回 > < □ > <

Example

(bandwidth, distance) with lexicographic order (bandwidth first).

A (10) A (10) A (10)

Left-locally optimal paths to node 2

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin © 2014 25 / 38

2

Right-locally optimal paths to node 2

T.G.Griffin © 2014 26 / 38

(Distributed) Bellman-Ford can compute left-local solutions¹

$$\begin{array}{rcl} \mathbf{A}^{[0]} &=& \mathbf{I} \\ \mathbf{A}^{[k+1]} &=& (\mathbf{A}\otimes\mathbf{A}^k)\oplus\mathbf{I}, \end{array}$$

- Bellman-ford algorithm must be modified to ensure only loop-free paths are inspected.
- $(S, \oplus, \overline{0})$ is a commutative, idempotent, and selective monoid,
- $(S, \otimes, \overline{1})$ is a monoid,
- $\overline{0}$ is the annihilator for \otimes ,
- $\overline{1}$ is the annihilator for \oplus ,
- Left strictly inflationarity, L.S.INF : $\forall a, b : a \neq \overline{0} \implies a < a \otimes b$
- Here $a \leq b \equiv a = a \oplus b$.

Convergence to a unique left-local solution is guaranteed. Currently no polynomial bound is known on the number of iterations required. ¹See dissertation of Alexander Gurney. tog22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@2014 27/38

Sobrinho's encoding of the Gao/Rexford rules for BGP

Additive component uses min with

- 0 is the type of a <u>downstream</u> route,
- 1 is the type of a peer route, and
- 2 is the type of an <u>upstream</u> route.
- ∞ is the type of no route.

Note that this is not associative! In addition, this models just the "local preference" component of BGP. Not this must be combined with a lexicographic product. Can we improve on this?

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin © 2014 28 / 38

Important properties for algebraic structures of the form $(S, \oplus, F, \overline{0}, \overline{1})$

property	definition
D	$\forall a, b \in S, f \in F : f(a \oplus b) = f(a) \oplus f(b)$
INFL	$\forall a \in S, f \in F : a \leq f(a)$
S.INFL	$\forall a \in S, \ F \in F \ : \ a \neq \overline{0} \implies a < f(a)$
K	$orall a,b\in \mathcal{S},\;f\in \mathcal{F}\;:\;f(a)=f(b)\implies a=b$
$K_{\overline{0}}$	$orall a,b\in \mathcal{S},\;f\in \mathcal{F}\;:\;f(a)=f(b)\implies(a=b\lor f(a)=\overline{0})$
С	$orall ar{a},oldsymbol{b}\in \mathcal{S},\;f\in \mathcal{F}\;:\;f(oldsymbol{a})=f(oldsymbol{b})$
$C_{\overline{0}}$	$\forall a, b \in \mathcal{S}, \ f \in \mathcal{F} \ : \ f(a) \neq f(b) \implies (f(a) = \overline{0} \lor f(b) = \overline{0})$

Stratified Shortest-Paths Metrics

Metrics

- (s, d) or ∞
- $s \neq \infty$ is a <u>stratum level</u> in $\{0, 1, 2, \dots, m-1\}$,
- *d* is a "shortest-paths" distance,
- Routing metrics are compared lexicographically

$$(s_1, d_1) < (s_2, d_2) \iff (s_1 < s_2) \lor (s_1 = s_2 \land d_1 < d_2)$$

3

4 **A** N A **B** N A **B** N

Stratified Shortest-Paths Policies

Policy has form (f, d) $(f, d)(s, d') = \langle f(s), d + d' \rangle$ $(f, d)(\infty) = \infty$ where $\langle s, t \rangle = \begin{cases} \infty & (\text{if } s = \infty) \\ (s, t) & (\text{otherwise}) \end{cases}$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2014 31 / 38

-

Constraint on Policies

(f, d)

- Either *f* is inflationary and 0 < d,
- or *f* is strictly inflationary and $0 \le d$.

Why?

 $(S.INFL(S) \lor (INFL(S) \land S.INFL(T))) \implies S.INFL(S \times_{\overline{0}} T).$

4 **A** N A **B** N A **B** N

All Inflationary Policy Functions for Three Strata

	0	1	2	D	K_∞	C_{∞}		0	1	2	D	K_∞	C_∞
а	0	1	2	*	*		m	2	1	2			
b	0	1	∞	*	*		n	2	1	∞		*	
С	0	2	2	*			0	2	2	2	*		*
d	0	2	∞	*	*		р	2	2	∞	*		*
е	0	∞	2		*		q	2	∞	2			*
f	0	∞	∞	*	*	*	r	2	∞	∞	*	*	*
										'			
g	1	1	2	*			S	∞	1	2		*	
h	1	1	∞	*		*	t	∞	1	∞		*	*
i	1	2	2	*			u	∞	2	2			*
j	1	2	∞	*	*		v	∞	2	∞		*	*
k	1	∞	2		*		w	∞	∞	2		*	*
Ι	1	∞	∞	*	*	*	x	∞	∞	∞	*	*	*

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

∃ ► < ∃ ►</p>

Almost shortest paths

	0	1	2	D	K_∞	interpretation
а	0	1	2	*	*	+0
j	1	2	∞	*	*	+1
r	2	∞	∞	*	*	+2
Х	∞	∞	∞	*	*	+3
b	0	1	∞	*	*	filter 2
е	0	∞	2		*	filter 1
f	0	∞	∞	*	*	filter 1, 2
S	∞	1	2		*	filter 0
t	∞	1	∞		*	filter 0, 2
w	∞	∞	2		*	filter 0, 1

æ

イロト イヨト イヨト イヨト

Shortest paths with filters, over INF₃

Note that the path 5, 4, 2, 1 with weight (1, 3) would be the globally best path from node 5 to node 1. But in this case, poor node 5 is left with no path! The locally optimal solution has $\mathbf{R}(5, 1) = \infty$.

T.G.Griffin@2014 35 / 38

Both D and $K_{\overline{0}}$

This makes combined algebra distributive!

	0	1	2	
а	0	1	2	
b	0	1	∞	
d	0	2	∞	
f	0	∞	∞	
j	1	2	∞	
Т	1	∞	∞	
r	2	∞	∞	
х	∞	∞	∞	

Why?

$$(\mathsf{D}(S) \land \mathsf{D}(T) \land \mathsf{K}_{\overline{0}}(S)) \implies \mathsf{D}(S \times_{\overline{0}} T)$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2014 36 / 38

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

BGP : standard view

- 0 is the type of a downstream route,
- 1 is the type of a peer route, and
- 2 is the type of an <u>upstream</u> route.

- A - TH

"Autonomous" policies

	0	1	2	D	K_∞
f	0	∞	∞	*	*
h	1	1	∞	*	
I	1	∞	∞	*	*
0	2	2	2	*	
р	2	2	∞	*	
q	2	∞	2		
r	2	∞	∞	*	*
t	∞	1	∞		*
u	∞	2	2		
V	∞	2	∞		*
w	∞	∞	2		*
X	∞	∞	∞	*	*

tgg22 (cl.cam.ac.uk)

T.G.Griffin@2014 38 / 38

æ

イロト イヨト イヨト イヨト