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In This Lecture

* We revisit power-law networks and define the
concept of robustness

 We show the effect of random and targeted
attacks on power law networks versus random
networks

 We discuss applications to various networks
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Internet AS topology

* Autonomous
System (AS): a
collection of
networks under
the same
administration

e 2009: 25,000
ASs in the
Internet
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Topology Information

* By reading the routing tables of some
gateways connected ASs, Internet topology
information could be gathered

e October 08:
— Over 30,000 ASs (including repeated entries)

— Over 100,000 edges
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Degree distribution of ASs:
A scale free network!

1000 F e
g 1m-
iy
e
>
eb)
5
> 10}
-
L—
2 222l M 2 2 32321l M s 2 2 22321l " s 2 2 22321l -
10 100 1000 10*

Vertices, ranked by their degree

ELE] UNIVERSITY OF

l“

» CAMBRIDGE



Properties

* The top AS is connected to almost 10% of all ASs

* This connectedness drops rapidly

* Very high clustering coefficient for top 1000
hubs: an almost complete graph

* Most paths no longer than 3-4 hops

 Most ASs separated by shortest paths of
maximum length of 6

Rank: | 1 2 3 4 5 6 7 8 9 10
Degree: | 3309 (2371 |2232|2162 181615121273 1180|1029 1012
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The Internet Now [Sigcomm10]

 They monitored inter-domain traffic for 2 years
— 3095 Routers

— 110 ISPs
e 18 Global
* 38 Regional
* 42 Consumer

— 12 Terabits per second
— 200 Exabytes total
— ~25% all inter-domain traffic.

* |Inspect packets and classify them.
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Internet 2009

Global Internet

————————————

Regional / Tier2
Providers

Customer IP
Networks

"Hyper Giants”

Large Content, Consumer, Hosting CDN

= Flatter and much more densely interconnected Internet
= Disintermediation between content and “eyeball” networks
= New commercial models between content, consumer and transit

Settlement Free

Pay for BW

Pay for access BW



Internet traffic:
responsibility to few
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= |n 2007, thousands of ASNs contributed 50% of content
= |n 2009, 150 ASNs contribute 50% of all Internet traffic
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Robustness

* |f a fraction of nodes or edges are removed:
— How large are connected components?
— What is the average distance between nodes in
the components?

 This is related to Percolation

— each edge/node is removed with probability (1-p)
* Corresponds to random failure

— Targeted attacks: remove nodes with high degree,
or edges with high betweenness.

 The formation or dissolution of a giant

component defines the percolation threshold
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How Robust are These?
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Edge (or Bond) Percolation

* 50 nodes, 116 edges, average degree 4.64
* after 25% edge removal
* 76 edges, average degree 3.04 — still well above

percolation threshold
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Percolation threshold in
Random Graphs

Percolation threshold: how many edges have
to be removed before the giant component
disappears?

As the average degree increases to 1, a giant
component suddenly appears

Edge removal is the opposite process — at
some point the average degree drops below 1

size of giant component

average degree and the network becomes disconnected
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Barabasi-Yeong-Albert’s
study (2000

* Given 2 networks (one exponential one scale
free) with same number of nodes and links

* Remove a small number of nodes and study
changes in average shortest path to see if
information communication has been
disrupted and how much.
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Let’s look at the blue lines

 Random graph:
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Let’s look at the red lines

Random graph:
same behaviour if
nodes with most
links are chosen
first

SF: with 5% nodes
removed the
diameter is doubled
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Fed K

Effect of attacks and failure
on WWW and Internet
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Effect on Giant Component
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Effect on Giant Component

Internet and WWW:
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Scale-free networks are resilient §
with respect to random attack

 Example: Gnutella network, 20% of nodes
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Targeted attacks are affective
against scale-free networks

 Example: same Gnutella network, 22 most connected nodes
removed (2.8% of the nodes)
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Another study of power-laws

* Graph shows fraction of GC size over fraction
of nodes randomly removed.

* Robustness of the Internet (y is the exponent
of PL).

—y =2.5Virtually no threshold ~i-*- =% =2 == -
GC is always present N
: B R,
— For y=3.5 there is a L =2
threshold around .0.4 s T T,
04T ' =, K =400
02 | y=35" %, 8,
‘., K =25% "
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Skewness of power-law networks]
and effects and targeted attack

0.6

% of nodes removed, 0.4
from highest to lowest
degree

v= 2.7 only 1% nodes
removed leads to no GC
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Percolation: let’s get formal

* Percolation process:
« Occupation probability ¢ = number of
nodes in the network [ie not removed]
* |t can be proven that the critical threshold
depends on the degree:

<k>
Q. =

<k’>—-<k>

e This tells us the minimum fraction of nodes

which must exist for a GC to exist.
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Threshold for Random Graphs

* For Random networks @_...,=1/c where c is
the mean degree
* |f cislarge the network can withstand the
loss of many vertices
* c=4 then % of vertices are enough to have a
GC [3/4 of the vertices need to be
destroyed to destroy the GC]
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Threshold for Scale Free Networks

* For the Internet and Scale Free networks with

2<0<3

* Finite mean <k> however <k?> diverges (in
theory)

* Then @_ ... is zero: no matter how many
vertices we remove there will always be a GC

* |n practice <k?> is never infinite for a finite
network, although it can be very large,

resulting in very small @_.;.; » 5O Still highly
robust networks
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Non random removal

* The threshold models we have presented hold
for random node removal but not for targeted
attacks [ie removal of high degree nodes first]

* The equation for non random removal cannot
be solved analytically
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Robustness Study and ,,
Improvements

A method to improve network resilience

* Percolation threshold g ignores situation
when the network is very damaged but not
collapsing.

* Robustness: 5(Q)= nodes in the

connected
component after

1 C removing Q=
R B NES(Q) nodes S

* Rranges values from star and fully connected
graph.
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Improve Robustness

e Add links until network is fully connected: not
practical.
e Swap edges of 2 random nodes so that R’>R
* Repeat until no substantial improvement (a
value delta);

e Some additional constraints could be
introduced (limit the geographical length of

new edges for economic reasons).
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Robustness Improvement
over edge changes

1 Robustness improved

1 by 55-45% with ~5%
link change.

- Percolation threshold

remains unchanged.
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Best Network for Robustness

* How do we design a robust network with a

fixed degree distribution?
e Scale free N=100 edges=300, exponent=2.5

e Onion-like structure!
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Robustness of Technological and &
Social Network

* Targeted attacks on high degree nodes are
lethal to a technological and a biological as
well as transport network.

e However as seen in Lecture 2, for social

systems it is the bridges and weak ties which
make a difference...
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