Social and Technological
Network Analysis

Lecture 4: Community Detection

and Overlapping Communities
Prof. Cecilia Mascolo
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Communities

* Weak ties (Lecture 2) seemed to bridge groups
of tightly coupled nodes (communities)
* How do we find these communities?
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In This Lecture

 We will describe a Community Detection
method based on betweenness centrality.

* We will describe the concept of Modularity
and Modularity Optimization.

 We will describe methods for overlapping
community detection.
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Why do we want to find
artitions/communities’?

* Clustering online customers with similar interests

or geographically near can improve performance
— Customers with similar interests could be clustered to
help recommendation systems

e Clusters in large graphs can be used to create
data structures for efficient storage of graph data
to handle queries or path searches

» Study the relationship/mediation among nodes
— Hierarchical organization study
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Example

Zachary’s Karate club: 34 members of a club
over 3 years. Edges: interaction outside the club

WWW: pages and hyperlinks
Identification of clusters can improve
page ranking
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Remove weak ties

* Local bridges connect weakly interacting parts

of the network.
 What if we have many bridges: which do we

remove first? Or there might be no bridges.

* Note: Without those bridges paths between
nodes would be longer.
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Edge Betweenness

* Edge Betweenness: the number of shortest
paths between pairs of nodes that run along
the edge.
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Algorithm of Girvan-Newmann
PNAS 2002

e Calculate the betweenness of all edges
e Cut the edge with highest betweenness
* Recalculate edge betweenness
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When do we stop?

* How do we know when to stop?

e When X communities have been detected?
e When the level of cohesion inside a
community has reached Y?

* There is no prescriptive way for every case
* There are also many other ways of detecting

communities.
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Modularity

* Perhaps a good measure of when to stop is
when for each community the “cohesion”
within the community is higher than what
would be at random...

* Q= (edges inside the community)- (expected
number of edges inside the community for a
random graph with same node degree
distribution as the given network)
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Modularity (2)

* Number of edges inside a community:

1
EEAa,b(S(Ca’Cb)
a,b

* Where:

* A,,is1if thereis an edge a->b,

* 6(c,, ¢,) is the Kronecker Delta (1 if c, is equal
to c,)
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Modularity on a

randomized graph calculation

2

ol Ko

N
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The expected number of
edges in the randomized
version of the graph
where nodes are
rewired:

k k,

a

2m

m is the number of edges
of the graph = % sum(ki)




Modularity (3)

1 | Qkk,
Q1=5;Aa,b6(ca,cb)——2 5

1 k k,
Q1=52<Aa,b 2 L)0(C,56)
Q=—E<Aab " kb)é(ca,cb>

a’

Fraction of edges over
all edges m
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Modularity (4)

* Modularity ranges from -1 to 1.
— It is positive if the number of edges inside the group

are more than the expected number.
— Variation from 0 indicate difference with random

case.

 Modularity can be used at each round of the
Girvan-Newmann algorithm to check if it is time

to stop. However the complexity of this is
O(m?n).
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Example of Dendrogram
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FIG. 2: Dendrogram of the communities found by our algo-
rithm in the “karate club” network of Zachary [5, 17]. The
shapes of the vertices represent the two groups into which the
club split as the result of an internal dispute.



Modularity Optimization
* Why not optimize modularity directly?

* Finding the configuration with maximum

modularity in a graph is an NP complete
problem.

* However there are good approximation
algorithms.
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Fast Modularity

e Start with a network of n communities of 1 node

* Merge the communities that lead to largest
Increase in Q

* Repeat previous step until one community
remains

* Cross cut the dendrogram where Q is maximum.

* This runs in O((m + n)n).

* A further optimization runs in O(m d log n) [d
depth of dendrograml].
* Most networks are sparse so m~n and d~log n
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Application to Amazon
Recommedations

* Network of products.
* Alink between product a and product b if b
was frequently purchased by buyers of a.

e 200000 nodes and 2M edges.
* Max when 1684 communities -
* Mean size of 243 products .

%ﬁ% UNIVERSITY OF FIG. 1: The modularity @ over the course of the algorithm

(the x axis shows the number of joins). Its maximum value is
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Amazon: Top Communities
(87% of nodes)

Rank Size | Description
1 114538 | General interest: politics; art/literature; general fiction; human nature; technical books; how things,
people, computers, societies work, etc.
2 92276 | The arts: videos, books, DVDs about the creative and performing arts
3 78661 | Hobbies and interests I: self-help; self-education; popular science fiction, popular fantasy; leisure; etc.
4 54582 | Hobbies and interests II: adventure books; video games/comics; some sports; some humor; some classic

fiction; some western religious material; etc.

5 9872 | classical music and related items

6 1904 | children’s videos, movies, music and books

7 1493 | church/religious music; African-descent cultural books; homoerotic imagery
8 1101 | pop horror; mystery/adventure fiction

9 1083 | jazz; orchestral music; easy listening

10 947 | engineering; practical fashion

TABLE I: The 10 largest communities in the Amazon.com network, which account for 87% of the vertices in the network.
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Amazon:
Community Size Distribution

* A power law

distribution of T e

community size | |
 (more on é

power lawsin

later lectures) “

community size
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Limitations of Modularity

* Modularity is not a perfect measures

* [t appears to depend on the number of links in
the network (L).

* Problems for modules with a number of
internal links of the order of V2L or smaller.

* [ntuition: modularity depends on links of a
community to the “outside”, ie the rest of the

network. S. Fortunato, S. Barthelemy. Resolution
@ UNIVERSITY OF limit in community detection. Proc. Natl.
<P CAMBRIDGE Acad. Sci., 2007.




Louvain Method

 The Louvain method is more efficient and more
accurate.

e Step 1: for each node i consider neighbours (j)
and evaluate gain in modularity of community if |
moves to j’'s community. Do this for all nodes.
Stop when no improvement can be achieved.

e Step 2: see each created community as a node
and connect them with edges (could be
weighted) and repeat step 1 on the network of
communities (which are now the nodes). Stop
when no modularity increase is obtained.
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Efficiency

* Extremely faster than other algorithms
 Complexity is linear on typical and sparse

data.

— Possible gains in modularity are easy to compute
and number of communities decreases drastically
after a few steps.
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Performance and Modularity results
for various networks and approaches

Karate  Amav Internet  Web nd.edu Phone Web uk-2005  Web WebBase 2001

Nodes/lnks 3477 Ok/24k  TOk/351k  325k/IM  26M/63M  39M/783M 118M/1B
CNM 38/0s .772/36s 692/790s 027/5034s -/- /- /-
PL 42/0s 757/33s .720/575s .895/6666s -/- /- /-
WT 42/0s  761/07s .667/62s  .808/248s  _56/464s /- ¥

Our algorithm .42/0s  .813/0s  .781/1s  035/3s  769/134s  .079/738s 984/152mn
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Louvain over a telecom network
in Belgium

The colours are different
languages spoken by
people. The intermediate
node is one with a lot of
language mixing.

Edges are calls. Each of
these communities are
more than 100 people.
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Overlapping Communities

* Community
membership
could overlap:
a hode could
be part of more
than 1
community.
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Nodes can belong to more
than 1 social circle!

Physicists

\ Department of
Mathemati c Biological Physics

Scientific
Community
Family
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Cligue Percolation Method:
the idea (Palla 2005

 Two nodes belong to the same community if
they can be connected through adjacent k-
cliques.

* Ak-clique is a fully connected graph of k
nodes.

e K-cliques are adjacent if they have k-1
overlapping nodes.

e K-cligue community: nodes which can be
reached through a sequence of adjacent k-

cliques.
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Clique Percolation Method:
The algorithm

* Find the maximal cliques
— A maximal clique is a clique that cannot be extended
by including one more adjacent vertex
— This is complex but real networks are relatively
sparse.

* Build cligue overlap matrix
— Each cligue is a node

— Connect two cliques if they overlap in at least k-1
nodes

* Communities:
— Connected components of the clique overlap matrix
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Example
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Overlapping

networks:

1) Parisi’s
coauthorship
networks

2) Networks of
“bright” in the
word association
network

- . YQGe — (]
3) Protein to protein _ ﬂ!’"
interaction '
network
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Application:
Phone Call Network
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Community Detection
and Weak Ties

* Twitter was analyzed trying to identify if the
static network of followers gives information
about the dynamics of retweeting and
mentioning.

e Dataset: follower network (undirected), 2M
users, and network of tweets, mention and
retweets for 1 month.

* Some community detection methods are used

to find clusters in the follower network.
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* Gray: followers

* Red: mentions

* Green: retweet

* 3 groups, one user
between groups.
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Some statistics
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Internal Links

Internal mentions are more
than follower links with
groups around 100.

The distribution of mentions
over links is quite wide

C: The dashed curves are the
total for the follower network
(black) and for the links with
mentions (red). Others (from
bottom to top): fractions of
links with: 1 non-reciprocated
mentions (diamonds), 3
mentions (circles), 6 mentions
(triangle up) and more than 6
reciprocated mentions
(triangle down).

mentions per link
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Links between groups
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Bridge Links
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Discussion on findings

* There seems to be a correlation with the role
of weak ties and the clustering done on the
followers network

 Weak ties seem to be carrier of information
(retweets) while internal group links seem to
be more about mentions and communication
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Summary

* We have discussed modularity based
community detection as well as overlapping
community detection.

* Many methods exist...

* We have shown cluster and weak ties analysis
on an online social network dataset.
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