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In	  This	  Lecture	  

•  In	  this	  lecture	  we	  will	  show	  some	  more	  
examples	  of	  applica>ons	  of	  epidemics	  and	  
informa>on	  cascades	  in	  real	  networks.	  



Characterizing	  Social	  	  
Cascades	  in	  Flickr	  

•  Flickr	  social	  network	  (25%):	  WCC.	  
•  Growing	  dataset	  over	  100	  days.	  
•  2M	  users.	  
•  Favourite	  photo	  info	  used.	  
•  34,734,221	  favorite	  markings	  over	  11,267,320	  
dis>nct	  photos.	  



Ques>ons	  Answered	  

•  Does	  content	  in	  Flickr	  spread	  along	  links	  in	  the	  
social	  network?	  

•  What	  are	  the	  proper>es	  of	  content	  
dissemina>on	  in	  Flickr	  (e.g.,	  how	  long	  aZer	  
being	  exposed	  to	  a	  piece	  of	  content	  do	  users	  
tend	  to	  propagate	  it)?	  

•  Can	  exis>ng	  epidemiological	  models	  
characterize	  the	  informa>on	  dissemina>on	  
observed	  in	  Flickr?	  
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Mechanisms	  of	  	  
Informa>on	  Propaga>on	  

•  Featuring	  (front	  page,	  hotlists)	  
•  External	  links	  
•  Search	  results	  
•  Links	  between	  content	  
•  Online	  social	  links	  



How	  to	  iden>fy	  informa>on	  flow	  
through	  social	  links?	  

•  Did	  a	  par>cular	  bookmark	  spread	  through	  
social	  links?	  

•  No:	  if	  a	  user	  bookmarks	  a	  photo	  and	  if	  none	  of	  
his	  friends	  have	  previously	  bookmarked	  the	  
photo	  

•  Yes:	  if	  a	  user	  bookmarks	  a	  photo	  a%er	  
	  one	  of	  his	  friends	  bookmarked	  the	  photo	  



Steady	  Increase	  
§  75%	  of	  bookmarks	  through	  social	  links	  
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Found	  through	  
social	  links	  

Through	  other	  
mechanisms	  

Fire Canoe #2 by Peter Bowers 



Who	  is	  driving	  the	  increase	  	  
in	  fan	  numbers?	  

the	  “social	  cascade”	  group	  
accounts	  for	  over	  half	  of	  
new	  fans	  

the	  dominance	  of	  the	  
“social	  cascade”	  group	  over	  
the	  “other”	  group	  switches	  
during	  the	  two	  popularity	  
surges	  exhibited	  by	  photo	  B	  
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(a) Growth of fans, photo A
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(b) Growth of fans, photo B
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(c) Breakdown of new fans, photo A
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(d) Breakdown of new fans, photo B

Figure 1: Evolution of the number of fans of photos A and B. The bottom plots show the fraction of new
fans that are part of a social cascade. Both photos show strong evidence of social cascades.

In short, this means that B was A’s contact before A found
the photo, and B had already found the photo. If all of
these conditions hold, then we consider the photo to have
propagated across the B→A social link. Note that there may
exist multiple such users from whom A could have found the
photo – in this case, we consider all of the links as having
been used. In other words, we assume A was exposed to the
photo by all of these users.

3.3 Popularity Growth of Two Sample Photos
To ground our discussion of social cascades, we pick two
popular photos (shown in Figure 2), and examine the growth
in their number of fans over time.

(a) Photo A (b) Photo B

Figure 2: Sample photos from Flickr

We show the number of fans over time for these photos
in Figures 1(a) and 1(b), respectively. The horizontal axis
represents time since upload of the photo, representing the
photo’s age on Flickr. Photo A shows steady linear growth,
reaching 1400 fans over the course of 430 days. In contrast,
photo B obtains approximately the same number of fans in
a much shorter period of time, 180 days. Photo B shows
two surges in popularity, one at day 1 when approximately

500 users become fans, and another at day 30. Growth is
relatively slow in the intervening periods.

The difference in the pattern of fan growth between pho-
tos A and B may reflect different methods of information
dissemination. Picture A’s slow and steady fan growth may
illustrate the social cascade pattern, in which users find their
favorite photos from their contacts. Picture B’s sudden
surges in fan growth may illustrate the impact of featur-
ing or external links, where photos are exposed to a large
set of random users and increase their likelihood of being
bookmarked.

We look for evidence of social cascades in the growth of
popularity in these two photos. For each new fan, we deter-
mine whether one of that fan’s contacts was already a fan
(in accordance with our definition in Section 3.2). If such a
previous fan exists, we place the new fan in the “social cas-
cade” group. Otherwise we place the new fan in the “other”
group.

Figures 1(c) and 1(d) show the fraction of new fans that
participate in social cascades over time. We make several
observations. First, the “social cascade” group accounts for
over half of new fans for both photos. This suggests that the
social network plays a significant role in content dissemina-
tion. Second, we observe that the dominance of the “social
cascade” group over the “other” group switches during the
two popularity surges exhibited by photo B. This suggests
that during these surges in popularity, other mechanisms
such as linking from external sites or featuring are driving
the rapid increase in fans.

Motivated by these preliminary findings from the case
studies, we delve further into the dynamic patterns of in-
formation dissemination through social links in Flickr in the
next section.
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Figure 4: Latent time in social cascade events

user marks the photo as a favorite and the time at which the
next user in the cascade marks the photo as a favorite. Since
infection may persist indefinitely, the time to the first step
of the cascade serves as an indicator of how fast content can
spread through the Flickr network. The solid line in Fig-
ure 4 shows the cumulative distribution of time to the first
step of the cascade in Flickr. We observe that 50% of first
cascade steps happen in less than three days. This indicates
new content can spread quickly from one user to another in
the Flickr network. However, 20% of the first cascade steps
happen take longer than a month. This could be because
the picture was introduced in an isolated part of the network
or because it initially faced strong competition from other
pictures.

Now we focus on the infectees. For each social cascade
infection, we computed the duration of exposure to a photo
before the infection happens. To do so, we identify the earli-
est time when any contacts of the infectee marked the photo
as a favorite; by subtracting this time from the time at which
the infectee marked the photo as a favorite, we can deter-
mine the amount of time the infectee was “exposed” to the
photo before marking it as a favorite himself. The dotted
line in Figure 4 shows the cumulative distribution of the ex-
posure time for infectees. We observe that 50% of cascade
events occur within 50 days, an order of magnitude larger
than the time before the first step of the cascade. Some
cascades happen only after several years of exposure to the
content, which is possibly due to infrequent user activity. It
is also possible that some users have many contacts but only
regularly check updates from a few of them.
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Figure 5: Network effects in a social cascade

Next, we investigate how the number of exposures affects

the adoption rate. Specifically, we examine how many times
users are exposed to a photo before they adopt it as a fa-
vorite. Figure 5 shows the cumulative distribution (in log
scale) of the number of infected contacts at the time a user
marks a photo as a favorite. We observe that 35% of social
cascade events are influenced by a single infector; 20% of
the events by two infectors; and the remaining 45% involve
three or more potential infectors. For 10% of the events, the
infectee had more than 10 contacts who had already marked
the same photo as a favorite. Based on these findings, we
plan to identify how the number of exposures to candidate
favorite photos affects the rate of adoption.

4.3 The rate of cascade
In epidemiological models, the basic reproduction number
R0 is defined as the expected number of secondary infections
resulting from a single infected individual in an entirely sus-
ceptible population. If R0 > 1 then, on average, the one
infected individual will infect more than one other individu-
als, and the epidemic will grow. Conversely, if R0 < 1 then a
small number of initial seeds will invariably fizzle out before
many additional people are infected. Finally, R0 = 1 is a
special “critical” case where the outbreak changes its charac-
ter from collapse to growth. Epidemiologists call this point
the epidemic threshold and in public health the goal is to re-
duce R0 below 1 in order to stop epidemics. HIV has an R0

between 2 and 5; and measles has an R0 between 12 and 18.
Although the concept of R0 is tied to populations that are
entirely susceptible, it continues to hold as an approxima-
tion as long as the number of susceptible individuals is much
larger than the number of infected or immune individuals.

The theory of epidemiological models shows that the basic
reproductive number on a network is given by:

R0 = ρ0

˙
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/
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k
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where ρ0 = βγ
˙

k
¸

[8]. Here, β is the transmission rate, γ
is the duration of infection, k is the node degree, and

˙

·
¸

represents the mean value. However, in a model for photo
circulation in Flickr, we assume that the natural duration
of infection is equal to the lifetime of the user, which is very
large in comparison to the timescale of the cascade. In this
case, we can assume that a picture will definitely be shared
between two connected nodes. If we then define σ0 to be the
probability that a person will adopt the picture when it is
shared, we get ρ0 = σ0

˙

k
¸

.
An empirical estimate of the transmission probability of a

picture σ0 can be calculated by identifying an infected node
and then counting the proportion of its connected nodes (i.e.,
social contacts in the reverse direction) that subsequently
become infected. Knowing the transmission probability, we
can then estimate the reproductive number R̂0 directly from
Equation (1). The Flickr social contact network used in this
study had a mean node degree,

˙
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= 14.7, and high hetero-

geneity in the node degree distribution,
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/
˙
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= 48.0.
Similarly, an empirical value for the basic reproduction num-
ber R0 can be assessed by counting the number of nodes
directly infected by the initializing node. These will be un-
derestimates because in the real network there is only a finite
time for transmission before the picture is replaced by one
of the many others in circulation.

Figure 6 compares the basic reproduction number R0 ob-
tained directly from the trace and the estimated value R̂0

50%	  of	  first	  cascade	  
steps	  happens	  in	  
the	  first	  3	  days.	  
20%	  take	  longer	  
than	  a	  month.	  
50%	  of	  cascade	  
steps	  take	  50	  days	  
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Figure 4: Latent time in social cascade events

user marks the photo as a favorite and the time at which the
next user in the cascade marks the photo as a favorite. Since
infection may persist indefinitely, the time to the first step
of the cascade serves as an indicator of how fast content can
spread through the Flickr network. The solid line in Fig-
ure 4 shows the cumulative distribution of time to the first
step of the cascade in Flickr. We observe that 50% of first
cascade steps happen in less than three days. This indicates
new content can spread quickly from one user to another in
the Flickr network. However, 20% of the first cascade steps
happen take longer than a month. This could be because
the picture was introduced in an isolated part of the network
or because it initially faced strong competition from other
pictures.

Now we focus on the infectees. For each social cascade
infection, we computed the duration of exposure to a photo
before the infection happens. To do so, we identify the earli-
est time when any contacts of the infectee marked the photo
as a favorite; by subtracting this time from the time at which
the infectee marked the photo as a favorite, we can deter-
mine the amount of time the infectee was “exposed” to the
photo before marking it as a favorite himself. The dotted
line in Figure 4 shows the cumulative distribution of the ex-
posure time for infectees. We observe that 50% of cascade
events occur within 50 days, an order of magnitude larger
than the time before the first step of the cascade. Some
cascades happen only after several years of exposure to the
content, which is possibly due to infrequent user activity. It
is also possible that some users have many contacts but only
regularly check updates from a few of them.
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Figure 5: Network effects in a social cascade

Next, we investigate how the number of exposures affects

the adoption rate. Specifically, we examine how many times
users are exposed to a photo before they adopt it as a fa-
vorite. Figure 5 shows the cumulative distribution (in log
scale) of the number of infected contacts at the time a user
marks a photo as a favorite. We observe that 35% of social
cascade events are influenced by a single infector; 20% of
the events by two infectors; and the remaining 45% involve
three or more potential infectors. For 10% of the events, the
infectee had more than 10 contacts who had already marked
the same photo as a favorite. Based on these findings, we
plan to identify how the number of exposures to candidate
favorite photos affects the rate of adoption.

4.3 The rate of cascade
In epidemiological models, the basic reproduction number
R0 is defined as the expected number of secondary infections
resulting from a single infected individual in an entirely sus-
ceptible population. If R0 > 1 then, on average, the one
infected individual will infect more than one other individu-
als, and the epidemic will grow. Conversely, if R0 < 1 then a
small number of initial seeds will invariably fizzle out before
many additional people are infected. Finally, R0 = 1 is a
special “critical” case where the outbreak changes its charac-
ter from collapse to growth. Epidemiologists call this point
the epidemic threshold and in public health the goal is to re-
duce R0 below 1 in order to stop epidemics. HIV has an R0

between 2 and 5; and measles has an R0 between 12 and 18.
Although the concept of R0 is tied to populations that are
entirely susceptible, it continues to hold as an approxima-
tion as long as the number of susceptible individuals is much
larger than the number of infected or immune individuals.

The theory of epidemiological models shows that the basic
reproductive number on a network is given by:

R0 = ρ0
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[8]. Here, β is the transmission rate, γ
is the duration of infection, k is the node degree, and
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represents the mean value. However, in a model for photo
circulation in Flickr, we assume that the natural duration
of infection is equal to the lifetime of the user, which is very
large in comparison to the timescale of the cascade. In this
case, we can assume that a picture will definitely be shared
between two connected nodes. If we then define σ0 to be the
probability that a person will adopt the picture when it is
shared, we get ρ0 = σ0

˙

k
¸

.
An empirical estimate of the transmission probability of a

picture σ0 can be calculated by identifying an infected node
and then counting the proportion of its connected nodes (i.e.,
social contacts in the reverse direction) that subsequently
become infected. Knowing the transmission probability, we
can then estimate the reproductive number R̂0 directly from
Equation (1). The Flickr social contact network used in this
study had a mean node degree,
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Similarly, an empirical value for the basic reproduction num-
ber R0 can be assessed by counting the number of nodes
directly infected by the initializing node. These will be un-
derestimates because in the real network there is only a finite
time for transmission before the picture is replaced by one
of the many others in circulation.

Figure 6 compares the basic reproduction number R0 ob-
tained directly from the trace and the estimated value R̂0

35%	  of	  social	  cascade	  
events	  are	  influenced	  by	  a	  
single	  infector;	  20%	  of	  the	  
events	  by	  two	  infectors;	  
and	  the	  remaining	  45%	  
involve	  three	  or	  more	  
poten>al	  infectors.	  For	  10%	  
of	  the	  events,	  the	  infectee	  
had	  more	  than	  10	  contacts	  
who	  had	  already	  marked	  
the	  same	  photo	  as	  a	  
favorite.	  

Number	  of	  infected	  contacts	  
when	  user	  marks	  the	  picture	  
as	  favourite.	  
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•  Let’s	  recall	  the	  defini>on	  
of	  R0	  in	  epidemic	  models	  

•  If	  R0>1	  spreads	  
•  If	  R0<1	  dies	  out	  
•  R0=1	  epidemic	  threshold	  	  

•  ro0	  empirical	  calcula>on:	  	  
–  For	  each	  fan,	  count	  how	  

many	  friends	  further	  
bookmark	  the	  same	  
photo.	  Average	  the	  
count.	  
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user marks the photo as a favorite and the time at which the
next user in the cascade marks the photo as a favorite. Since
infection may persist indefinitely, the time to the first step
of the cascade serves as an indicator of how fast content can
spread through the Flickr network. The solid line in Fig-
ure 4 shows the cumulative distribution of time to the first
step of the cascade in Flickr. We observe that 50% of first
cascade steps happen in less than three days. This indicates
new content can spread quickly from one user to another in
the Flickr network. However, 20% of the first cascade steps
happen take longer than a month. This could be because
the picture was introduced in an isolated part of the network
or because it initially faced strong competition from other
pictures.

Now we focus on the infectees. For each social cascade
infection, we computed the duration of exposure to a photo
before the infection happens. To do so, we identify the earli-
est time when any contacts of the infectee marked the photo
as a favorite; by subtracting this time from the time at which
the infectee marked the photo as a favorite, we can deter-
mine the amount of time the infectee was “exposed” to the
photo before marking it as a favorite himself. The dotted
line in Figure 4 shows the cumulative distribution of the ex-
posure time for infectees. We observe that 50% of cascade
events occur within 50 days, an order of magnitude larger
than the time before the first step of the cascade. Some
cascades happen only after several years of exposure to the
content, which is possibly due to infrequent user activity. It
is also possible that some users have many contacts but only
regularly check updates from a few of them.
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Figure 5: Network effects in a social cascade

Next, we investigate how the number of exposures affects

the adoption rate. Specifically, we examine how many times
users are exposed to a photo before they adopt it as a fa-
vorite. Figure 5 shows the cumulative distribution (in log
scale) of the number of infected contacts at the time a user
marks a photo as a favorite. We observe that 35% of social
cascade events are influenced by a single infector; 20% of
the events by two infectors; and the remaining 45% involve
three or more potential infectors. For 10% of the events, the
infectee had more than 10 contacts who had already marked
the same photo as a favorite. Based on these findings, we
plan to identify how the number of exposures to candidate
favorite photos affects the rate of adoption.

4.3 The rate of cascade
In epidemiological models, the basic reproduction number
R0 is defined as the expected number of secondary infections
resulting from a single infected individual in an entirely sus-
ceptible population. If R0 > 1 then, on average, the one
infected individual will infect more than one other individu-
als, and the epidemic will grow. Conversely, if R0 < 1 then a
small number of initial seeds will invariably fizzle out before
many additional people are infected. Finally, R0 = 1 is a
special “critical” case where the outbreak changes its charac-
ter from collapse to growth. Epidemiologists call this point
the epidemic threshold and in public health the goal is to re-
duce R0 below 1 in order to stop epidemics. HIV has an R0

between 2 and 5; and measles has an R0 between 12 and 18.
Although the concept of R0 is tied to populations that are
entirely susceptible, it continues to hold as an approxima-
tion as long as the number of susceptible individuals is much
larger than the number of infected or immune individuals.

The theory of epidemiological models shows that the basic
reproductive number on a network is given by:

R0 = ρ0
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where ρ0 = βγ
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[8]. Here, β is the transmission rate, γ
is the duration of infection, k is the node degree, and
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represents the mean value. However, in a model for photo
circulation in Flickr, we assume that the natural duration
of infection is equal to the lifetime of the user, which is very
large in comparison to the timescale of the cascade. In this
case, we can assume that a picture will definitely be shared
between two connected nodes. If we then define σ0 to be the
probability that a person will adopt the picture when it is
shared, we get ρ0 = σ0

˙

k
¸

.
An empirical estimate of the transmission probability of a

picture σ0 can be calculated by identifying an infected node
and then counting the proportion of its connected nodes (i.e.,
social contacts in the reverse direction) that subsequently
become infected. Knowing the transmission probability, we
can then estimate the reproductive number R̂0 directly from
Equation (1). The Flickr social contact network used in this
study had a mean node degree,
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Similarly, an empirical value for the basic reproduction num-
ber R0 can be assessed by counting the number of nodes
directly infected by the initializing node. These will be un-
derestimates because in the real network there is only a finite
time for transmission before the picture is replaced by one
of the many others in circulation.

Figure 6 compares the basic reproduction number R0 ob-
tained directly from the trace and the estimated value R̂0
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user marks the photo as a favorite and the time at which the
next user in the cascade marks the photo as a favorite. Since
infection may persist indefinitely, the time to the first step
of the cascade serves as an indicator of how fast content can
spread through the Flickr network. The solid line in Fig-
ure 4 shows the cumulative distribution of time to the first
step of the cascade in Flickr. We observe that 50% of first
cascade steps happen in less than three days. This indicates
new content can spread quickly from one user to another in
the Flickr network. However, 20% of the first cascade steps
happen take longer than a month. This could be because
the picture was introduced in an isolated part of the network
or because it initially faced strong competition from other
pictures.

Now we focus on the infectees. For each social cascade
infection, we computed the duration of exposure to a photo
before the infection happens. To do so, we identify the earli-
est time when any contacts of the infectee marked the photo
as a favorite; by subtracting this time from the time at which
the infectee marked the photo as a favorite, we can deter-
mine the amount of time the infectee was “exposed” to the
photo before marking it as a favorite himself. The dotted
line in Figure 4 shows the cumulative distribution of the ex-
posure time for infectees. We observe that 50% of cascade
events occur within 50 days, an order of magnitude larger
than the time before the first step of the cascade. Some
cascades happen only after several years of exposure to the
content, which is possibly due to infrequent user activity. It
is also possible that some users have many contacts but only
regularly check updates from a few of them.

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

The number of potential infectors

C
D

F

max=236

Figure 5: Network effects in a social cascade

Next, we investigate how the number of exposures affects

the adoption rate. Specifically, we examine how many times
users are exposed to a photo before they adopt it as a fa-
vorite. Figure 5 shows the cumulative distribution (in log
scale) of the number of infected contacts at the time a user
marks a photo as a favorite. We observe that 35% of social
cascade events are influenced by a single infector; 20% of
the events by two infectors; and the remaining 45% involve
three or more potential infectors. For 10% of the events, the
infectee had more than 10 contacts who had already marked
the same photo as a favorite. Based on these findings, we
plan to identify how the number of exposures to candidate
favorite photos affects the rate of adoption.

4.3 The rate of cascade
In epidemiological models, the basic reproduction number
R0 is defined as the expected number of secondary infections
resulting from a single infected individual in an entirely sus-
ceptible population. If R0 > 1 then, on average, the one
infected individual will infect more than one other individu-
als, and the epidemic will grow. Conversely, if R0 < 1 then a
small number of initial seeds will invariably fizzle out before
many additional people are infected. Finally, R0 = 1 is a
special “critical” case where the outbreak changes its charac-
ter from collapse to growth. Epidemiologists call this point
the epidemic threshold and in public health the goal is to re-
duce R0 below 1 in order to stop epidemics. HIV has an R0

between 2 and 5; and measles has an R0 between 12 and 18.
Although the concept of R0 is tied to populations that are
entirely susceptible, it continues to hold as an approxima-
tion as long as the number of susceptible individuals is much
larger than the number of infected or immune individuals.

The theory of epidemiological models shows that the basic
reproductive number on a network is given by:

R0 = ρ0

˙

k2
¸

/
˙

k
¸2

(1)

where ρ0 = βγ
˙

k
¸

[8]. Here, β is the transmission rate, γ
is the duration of infection, k is the node degree, and

˙

·
¸

represents the mean value. However, in a model for photo
circulation in Flickr, we assume that the natural duration
of infection is equal to the lifetime of the user, which is very
large in comparison to the timescale of the cascade. In this
case, we can assume that a picture will definitely be shared
between two connected nodes. If we then define σ0 to be the
probability that a person will adopt the picture when it is
shared, we get ρ0 = σ0

˙

k
¸

.
An empirical estimate of the transmission probability of a

picture σ0 can be calculated by identifying an infected node
and then counting the proportion of its connected nodes (i.e.,
social contacts in the reverse direction) that subsequently
become infected. Knowing the transmission probability, we
can then estimate the reproductive number R̂0 directly from
Equation (1). The Flickr social contact network used in this
study had a mean node degree,

˙

k
¸

= 14.7, and high hetero-

geneity in the node degree distribution,
˙

k2
¸

/
˙

k
¸2

= 48.0.
Similarly, an empirical value for the basic reproduction num-
ber R0 can be assessed by counting the number of nodes
directly infected by the initializing node. These will be un-
derestimates because in the real network there is only a finite
time for transmission before the picture is replaced by one
of the many others in circulation.

Figure 6 compares the basic reproduction number R0 ob-
tained directly from the trace and the estimated value R̂0
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user marks the photo as a favorite and the time at which the
next user in the cascade marks the photo as a favorite. Since
infection may persist indefinitely, the time to the first step
of the cascade serves as an indicator of how fast content can
spread through the Flickr network. The solid line in Fig-
ure 4 shows the cumulative distribution of time to the first
step of the cascade in Flickr. We observe that 50% of first
cascade steps happen in less than three days. This indicates
new content can spread quickly from one user to another in
the Flickr network. However, 20% of the first cascade steps
happen take longer than a month. This could be because
the picture was introduced in an isolated part of the network
or because it initially faced strong competition from other
pictures.

Now we focus on the infectees. For each social cascade
infection, we computed the duration of exposure to a photo
before the infection happens. To do so, we identify the earli-
est time when any contacts of the infectee marked the photo
as a favorite; by subtracting this time from the time at which
the infectee marked the photo as a favorite, we can deter-
mine the amount of time the infectee was “exposed” to the
photo before marking it as a favorite himself. The dotted
line in Figure 4 shows the cumulative distribution of the ex-
posure time for infectees. We observe that 50% of cascade
events occur within 50 days, an order of magnitude larger
than the time before the first step of the cascade. Some
cascades happen only after several years of exposure to the
content, which is possibly due to infrequent user activity. It
is also possible that some users have many contacts but only
regularly check updates from a few of them.
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Next, we investigate how the number of exposures affects

the adoption rate. Specifically, we examine how many times
users are exposed to a photo before they adopt it as a fa-
vorite. Figure 5 shows the cumulative distribution (in log
scale) of the number of infected contacts at the time a user
marks a photo as a favorite. We observe that 35% of social
cascade events are influenced by a single infector; 20% of
the events by two infectors; and the remaining 45% involve
three or more potential infectors. For 10% of the events, the
infectee had more than 10 contacts who had already marked
the same photo as a favorite. Based on these findings, we
plan to identify how the number of exposures to candidate
favorite photos affects the rate of adoption.

4.3 The rate of cascade
In epidemiological models, the basic reproduction number
R0 is defined as the expected number of secondary infections
resulting from a single infected individual in an entirely sus-
ceptible population. If R0 > 1 then, on average, the one
infected individual will infect more than one other individu-
als, and the epidemic will grow. Conversely, if R0 < 1 then a
small number of initial seeds will invariably fizzle out before
many additional people are infected. Finally, R0 = 1 is a
special “critical” case where the outbreak changes its charac-
ter from collapse to growth. Epidemiologists call this point
the epidemic threshold and in public health the goal is to re-
duce R0 below 1 in order to stop epidemics. HIV has an R0

between 2 and 5; and measles has an R0 between 12 and 18.
Although the concept of R0 is tied to populations that are
entirely susceptible, it continues to hold as an approxima-
tion as long as the number of susceptible individuals is much
larger than the number of infected or immune individuals.

The theory of epidemiological models shows that the basic
reproductive number on a network is given by:
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[8]. Here, β is the transmission rate, γ
is the duration of infection, k is the node degree, and
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represents the mean value. However, in a model for photo
circulation in Flickr, we assume that the natural duration
of infection is equal to the lifetime of the user, which is very
large in comparison to the timescale of the cascade. In this
case, we can assume that a picture will definitely be shared
between two connected nodes. If we then define σ0 to be the
probability that a person will adopt the picture when it is
shared, we get ρ0 = σ0

˙

k
¸

.
An empirical estimate of the transmission probability of a

picture σ0 can be calculated by identifying an infected node
and then counting the proportion of its connected nodes (i.e.,
social contacts in the reverse direction) that subsequently
become infected. Knowing the transmission probability, we
can then estimate the reproductive number R̂0 directly from
Equation (1). The Flickr social contact network used in this
study had a mean node degree,

˙

k
¸

= 14.7, and high hetero-

geneity in the node degree distribution,
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Similarly, an empirical value for the basic reproduction num-
ber R0 can be assessed by counting the number of nodes
directly infected by the initializing node. These will be un-
derestimates because in the real network there is only a finite
time for transmission before the picture is replaced by one
of the many others in circulation.

Figure 6 compares the basic reproduction number R0 ob-
tained directly from the trace and the estimated value R̂0



Es>ma>ons	  

1.  Formula	  based	  es>ma>on	  of	  R0:	  
– Es>ma>ng	  p:	  Given	  an	  infected	  node	  count	  the	  
neighbours	  subsequently	  infected	  and	  average.	  

– This	  allows	  to	  derive	  a	  general	  R^0	  from	  the	  
equa>on	  

2.  Empirical	  es>ma>on	  of	  R0:	  
–  	  Given	  start	  node	  of	  cascade,	  count	  the	  number	  of	  
directly	  infected	  nodes	  



R0	  correla>on	  across	  all	  photos	  
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Predic>ng	  spreading	  

•  The	  correla>on	  means	  that	  by	  using	  the	  social	  
network	  proper>es	  and	  some	  simple	  
observa>on	  over	  a	  short	  >me	  series	  of	  user	  
ac>vity	  we	  can	  predict	  the	  popularity	  of	  
photos.	  



Discussion	  

•  Social	  Cascades	  occur	  in	  Flickr	  
•  	  The	  basic	  reproduc>on	  number	  of	  popular	  
photos	  is	  between	  1	  and	  190.	  This	  is	  much	  higher	  
than	  very	  infec>ous	  diseases	  like	  measles,	  
indica>ng	  that	  social	  networks	  are	  efficient	  
transmission	  mediums	  and	  online	  content	  can	  be	  
very	  infec>ous.	  

•  Given	  the	  expected	  spread	  and	  the	  node	  degree	  
they	  can	  predict	  the	  expected	  spread	  on	  various	  
networks	  (knowing	  <k>).	  



Another	  study	  on	  cascades	  

•  Tracing	  informa>on	  flow	  on	  a	  global	  scale	  
using	  Internet	  chain-‐leler	  data.	  

•  Iraq	  Pe>>on	  Example:	  
Sample Iraq Petition

Date: Mon, 17 Mar 2003 16:39:51 -0600
From: XXXX <XXXX@mac.com>
To: usa@un.int, president@whitehouse.gov
Subject: UN Petition

UN Petition for Peace

Non-essential personnel are now evacuating from the US embassies in
the middle east. Was is about to start. It takes is 20% of us to cry out
for "NO WAR" to induce further diplomacy, but they say our numbers are more
like 2%. US Congress has authorized the President of the US to go to war
against Iraq. Please consider this an urgent request. UN Petition for
Peace, Stand for Peace. Islam is not the Enemy. War is NOT the Answer.
Speak against a THIRD WORLD WAR. The UN is gathering signatures in an
effort to avoid a tragic world event.

Please COPY (rather than Forward) this e-mail in a new message, sign
at the end of the list, and send it to all the people whom you know. If
you receive this list with more than 500 names signed, please send a copy
of the message to:

usa@un.int
and president@whitehouse.gov

Even if you decide not to sign, please consider forwarding the petition on
instead of eliminating it

http://petitions.cs.carleton.edu 1

Sample Iraq Petition

Date: Mon, 17 Mar 2003 16:39:51 -0600
From: XXXX <XXXX@mac.com>
To: usa@un.int, president@whitehouse.gov
Subject: UN Petition

UN Petition for Peace

Non-essential personnel are now evacuating from the US embassies in
the middle east. Was is about to start. It takes is 20% of us to cry out
for "NO WAR" to induce further diplomacy, but they say our numbers are more
like 2%. US Congress has authorized the President of the US to go to war
against Iraq. Please consider this an urgent request. UN Petition for
Peace, Stand for Peace. Islam is not the Enemy. War is NOT the Answer.
Speak against a THIRD WORLD WAR. The UN is gathering signatures in an
effort to avoid a tragic world event.

Please COPY (rather than Forward) this e-mail in a new message, sign
at the end of the list, and send it to all the people whom you know. If
you receive this list with more than 500 names signed, please send a copy
of the message to:

usa@un.int
and president@whitehouse.gov

Even if you decide not to sign, please consider forwarding the petition on
instead of eliminating it

1) Alice Thomas

2) Bob Smith

3) Charlie Miller

4) Dianna Johnson

5) Eve Brown

6) Frank Davis

7) Gina Williams

[...]
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Data	  Cleaning	  and	  Gathering	  

•  Query	  search	  engine	  to	  find	  
copies	  of	  pe>>ons.	  
–  	  (∼650	  dis>nct	  copies	  found.)	  
–  (∼20K	  dis>nct	  names.)	  

•  compute	  propaga>on	  tree	  
from	  these	  copies	  
–  (x	  →	  y	  if	  there	  is	  a	  copy	  where	  x	  
immediately	  precedes	  y.)	  

Data gathering

query search engines to find copies of petitions.

(∼650 distinct copies found.)

(∼20K distinct names.)

compute propagation tree from these copies.

(x → y if there is a copy where x immediately precedes y.)

ALICE THOMAS

BOB SMITH

CHARLIE MILLER

DIANNA JOHNSON

EVE BROWN HENRY WILSON

FRANK DAVIS IAN ANDERSON

GINA WILLIAMS

A unique dataset:

genuine large-scale trace of information

propagation through social network

each copy ‘lights up’ a path to the source

(and 650 copies → 20K people!)
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Building	  a	  propaga>on	  tree	  Building a propagation tree
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Is	  this	  really	  a	  tree?	  

•  No.	  some	  responded	  twice	  (have	  2	  parents)	  
•  Typographical	  changes	  are	  frequent	  

•  List	  rearrangements	  are	  common	  

Propagation Trees

Is the propagation pattern really a tree?

No. Some respond twice (i.e., have two parents). (Rare.)

Doesn’t appear so. Typographical changes are frequent:

John Smith Santa Monica Calif John Smith Santa Monica USA John Smith Santa Monica Calif USA

Doesn’t appear so. List rearrangements fairly common!
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Propaga>on	  tree	  Building a propagation tree
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Solu>on 	  	  

•  Use	  the	  graph	  

•  run	  max-‐weight	  spanning	  arborescence	  
algorithm	  to	  produce	  a	  tree	  from	  G.
	  [Edmonds	  1967]	  

•  prune	  tree	  to	  eliminate	  any	  nodes	  that	  have	  
no	  poster	  nodes	  beneath	  them.	  

Data gathering redux

query search engines to find copies of petitions.

compute propagation tree graph G from these copies.

(Treat names within small edit-distance threshold as identical.)

(∼650 ‘poster nodes.’)

define weights on G:

weight(x → y) := # copies s.t. x immediately precedes y.

run max-weight spanning arborescence algorithm

to produce a tree from G. [Edmonds 1967]

prune tree to eliminate any nodes that have

no poster nodes beneath them.
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Graph	  to	  Tree	  Propagation tree redux
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Expecta>ons	  Expectations for the tree

Expectations:

The petition is flooding the social network.

Small world ⇒ the tree’s depth will be small.

High branching: people have many friends (10’s or 100’s).

So the propagation tree should be shallow and wide.

(unless it dies out quickly.)

http://petitions.cs.carleton.edu 18

•  The	  pe>>on	  is	  flooding	  the	  social	  network.	  	  
•  Small	  world	  ⇒	  the	  tree’s	  depth	  will	  be	  small.	  High	  
branching:	  people	  have	  many	  friends	  (10’s	  or	  100’s).	  

•  So	  the	  propaga>on	  tree	  should	  be	  shallow	  and	  wide.	  
•  (unless	  it	  dies	  out	  quickly.)	  



The	  tree	  looks	  like	  this	  Anti–Iraq War petition

http://petitions.cs.carleton.edu 20

Oddities in propagation tree

Expectations: shallow, wide tree with high branching factor.

(unless it dies out quickly.)

This tree is weird!

process doesn’t die out quickly.

asdfasdf 20K nodes in posted copies.

tree is very deep.

asdfasdf median node depth ≈ 288.

tree is very narrow.

asdfasdf over 94% of nodes have only one child.

http://petitions.cs.carleton.edu 24



Modelling	  

•  Let	  us	  try	  to	  find	  a	  model	  that	  reproduces	  this:	  

•  Deep	  tree	  
•  Small	  width	  
•  Large	  single	  child	  frac>on	  

•  Iraq	  tree	  (18k	  nodes)	  
•  depth	  288,	  width	  82,	  single-‐child	  frac>on	  94%	  



Tried	  simula>on	  on	  LiveJournal	  
•  simulate	  on	  real	  social	  network	  (LiveJournal,	  
4.4M	  nodes).	  Randomly	  choose	  an	  ini>ator	  node	  
(=	  root).	  

•  each	  recipient	  discards	  with	  prob	  δ,	  forwards	  
with	  prob	  1	  −	  δ.	  δ	  :=	  0.65 	  [Dodds	  Muhamad	  
Wals	  2003]	  

•  a	  non-‐discarding	  recipient	  posts	  his	  copy	  with	  
prob	  π	  (a	  posted	  copy	  ‘lights	  up’	  the	  root-‐to-‐
poster	  path.)	  

•  tree	  propagates	  from	  root	  un>l	  either	  (i)	  the	  
process	  dies	  out	  (‘fizzles’)	  or	  (ii)	  observable	  
por>on	  of	  tree	  reaches	  size	  of	  Iraq	  tree.	  



Epidemic	  Model	  

•  randomly	  choose	  an	  ini>ator	  node	  (=	  root)	  
•  for	  each	  x	  who	  first	  receives	  a	  list	  at	  >me	  t:	  x	  
discards	  with	  probability	  δ	  =	  0.65;	  otherwise:	  	  
–  	  x	  appends	  x	  to	  	  
– x	  forwards	  to	  all	  neighbours	  (who	  act	  at	  >me	  t	  +	  1)	  
– x	  posts	  with	  probability	  π.	  
–  Iraq	  tree	  (18K	  nodes):	  depth	  288,	  width	  82,	  single-‐
child	  94%	  	  

– Epidemic	  tree:	  depth	  5,	  width	  9625,	  single-‐child	  
19%	  



Why?	  
The trouble with epidemics

Social networks have lots of “cliquey” communities.

⇒ high degrees in epidemic tree (not true in Iraq).

A

B C F

D E

A

B C D E

F

A

B

C

D F

E

One reason to think that cliques can be “serialized”:

BCDE don’t react synchronously at time t = 1.

A mails BCDE at t = 0

Each receives message at first email check after t = 0.

B responds first ⇒ C gets new copy from B.
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Asynchronous	  Model	  

•  randomly	  choose	  an	  ini>ator	  node	  (=	  root)	  
•  for	  each	  x	  who	  first	  receives	  a	  list	  at	  >me	  t:	  x	  
chooses	  a	  delay	  τ,	  where	  Pr[τ]	  =???.	  At	  >me	  t	  
+	  τ:	  
–  	  x	  discards	  with	  probability	  δ	  =	  0.65;	  otherwise:	  	  
–  	  x	  appends	  x	  to	  longest	  list	  x	  received	  (in	  [t,	  t	  +	  τ	  ])	  
– x	  forwards	  to	  all	  x’s	  neighbours.	  
– x	  posts	  with	  probability	  π.	  



Delay	  Distribu>on	  Delay distributions

You receive a message at time t; you respond at time t + τ .

What does τ look like?

Letters from Darwin and Einstein: [Oliveira Barabasi 2005]

We use Pr[τ ] ∝ τ−3/2.

(though the precise exponent actually doesn’t matter much.)
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Epidemic	  Model	  

•  randomly	  choose	  an	  ini>ator	  node	  (=	  root)	  
•  for	  each	  x	  who	  first	  receives	  a	  list	  at	  >me	  t:	  x	  
chooses	  a	  delay	  τ,	  where	  Pr[τ]	  ∝	  τ−3/2.	  At	  
Ime	  t	  +	  τ:	  
– x	  discards	  with	  probability	  δ	  =	  0.65;	  otherwise:	  
– x	  appends	  x	  to	  longest	  list	  x	  received	  (in	  [t,	  t	  +	  τ	  ]),	  
– x	  forwards	  to	  all	  x’s	  neighbours	  x,	  	  
– x	  posts	  with	  probability	  π.	  



Epidemic	  Model	  

The Asychronous Model

randomly choose an initiator node (= root)

for each x who first receives a list at time t:

x chooses a delay τ , where Pr[τ ] ∝ τ−3/2. At time t + τ :

— x discards with probability δ = 0.65; otherwise:

— x appends x to longest list x received (in [t, t + τ ])

x forwards to all x’s neighbors

x posts with probability π.
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One	  More	  Ingredient	  One more ingredient

(18K nodes) depth width single-child %

Iraq 288 82 94%

Epidemic 5 9625 19%

Asynchronous 42 505 55%

Asynchronicity has serialized cliques, but we need more.

(e.g., social networks are “cliquey” but not just cliques.)

When x receives a list, it can either

— forward that list to all of x’s friends, OR

— reply-to-all to all of x’s corecipients on the message.
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The	  Asynchronous	  Model	  

•  randomly	  choose	  an	  ini>ator	  node	  (=	  root)	  
•  for	  each	  x	  who	  first	  receives	  a	  list	  at	  >me	  t:	  x	  
chooses	  a	  delay	  τ,	  where	  Pr[τ]	  ∝	  τ−3/2.	  At	  
>me	  t	  +	  τ:	  
–  	  x	  discards	  with	  probability	  δ	  =	  0.65;	  otherwise:	  	  
–  	  x	  appends	  x	  to	  longest	  list	  x	  received	  (in	  [t,	  t	  +	  τ	  ])	  
– x	  forwards	  to	  all	  x’s	  neighbors.	  	  
– x	  posts	  with	  probability	  π.	  



The	  Full	  Model	  

•  randomly	  choose	  an	  ini>ator	  node	  (=	  root)	  
•  for	  each	  x	  who	  first	  receives	  a	  list	  at	  >me	  t:	  x	  
chooses	  a	  delay	  τ,	  where	  Pr[τ]	  ∝	  τ−3/2.	  At	  >me	  t	  
+	  τ:	  
–  	  x	  discards	  with	  probability	  δ	  =	  0.65;	  otherwise:	  
–  	  x	  appends	  x	  to	  longest	  list	  x	  received	  (in	  [t,	  t	  +	  τ	  ])	  
– with	  prob	  β,	  x	  replies	  to	  all	  of	  x’s	  corecipients;	  with	  
prob	  1	  −	  β,	  x	  forwards	  to	  all	  of	  x’s	  neighbors.	  

–  x	  posts	  with	  probability	  π.	  
The	  asynchronous	  model	  =	  full	  model	  with	  β=0	  



Studying	  Single	  Child	  Propor>on	  
Single-child fraction

Iraq: 94%
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Tree	  Depth	  
Tree depth

Iraq: 288
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Tree	  Width	  Tree width

Iraq: 82
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It	  matches!	  

Simulations: β = 0.950, π = 0.22
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Discussion	  

•  A	  model	  with	  asynchronicity	  and	  group-‐reply	  
was	  a	  good	  ini>al	  approxima>on	  

•  More	  data	  needed	  to	  understand	  what’s	  
happening	  



Summary	  

•  We	  have	  shown	  examples	  of	  applica>on	  of	  
cascades	  and	  epidemic	  models	  to	  real	  data	  

•  Real	  data	  is	  challenging	  and	  oZen	  processes	  
do	  not	  match	  exact	  models	  and	  need	  
tweaking.	  
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