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In This Lecture

* |n this lecture we introduce the process of
spreading epidemics in networks.

— This has been studied widely in various disciplines
from different perspectives from theoretical
models to simulations of real events.

— But it also has important parallels and applications
in information/idea diffusion in social and
technological networks.
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Epidemics vs Cascade Spreading

* |n cascade spreac
based on pay-off
strategy or the ot

ing nodes make decisions
penefits of adopting one

ner.

* |n epidemic spreading
— Lack of decision making.

— Process of contagion is complex and unobservable
* In some cases it involves (or can be modeled as)

randomness.
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Branching Process

* Simple model.

* First wave: A person carrying a disease enters
the population and transmits to all he meets
with probability p. He meets k people: a
portion of which will be infected.

* Second wave: each of the k people goes and
meet k different people. So we have a second
wave of k*k=k? people.

* Subsequent waves: same process.
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High contagion probability:
The disease spreads
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Basic Reproductive Number

* Basic Reproductive Number R,=p*k
— |t determines if the disease will spread or die out.

* In the branching process model, if R,<1 the
disease will die out after a finite number of
waves. If R,>1, with probability >0, the disease
will persist by infecting at least one person in
each wave.
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Measures to Limit the Spreadingt

* When R, is close 1, slightly changing p or k can

result in epidemics dying out or happening.

— Quarantining people/nodes reduces k.

— Encouraging better sanitary practices reduces
germs spreading [reducing p].

* Limitations of this model:
— No realistic contact networks: no triangles!

— Nodes can infect only once.
— No nodes recover.

4P

UNIVERSITY OF
CAMBRIDGE




Formal Epidemics Models
The S| Model

e S:susceptible individuals.

* |: infected individuals, when infected they can
infect others continuously.

* n:total population.

e <k> average contacts per individual

e B=A<k> is the infection rate per individual (0<A<1)

* Susceptible contacts per unit of time BS/n.

e QOverall rate of infection IBS/n.
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S| Model
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SIR Model

Infected nodes recover at a rate y.
* A node stays infected for T time.
* Branching process is SIR with t=1.

ds ,
— = —[3si
dt
di 8
— =fsi—yi
dt
dr
dt N N
S + l +7 = 1 Susceptible Removed
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Example

* Numerical examples of solution:
e B=1, y=0.4, s(at start)=0.99, i(at start)=0.01,
r(at start)=0

recovered

Infected

Fraction of nodes
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SIS Model

ds . .
— =y — (31
=7 p
di L
dt-ﬁsz—yz
s+1=1
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If B>y growth curve like in Sl but
never reaching all population infected.
The fraction of infected->0 as 3
approachesy.

If B< y the infection will die out
exponentially.

*SIS has the same R, as SIR.




Epidemic Threshold

* When would the epidemic develop and when
would it die out?

* |t depends on the relationship of B and y:
— Basic Reproductive Number R,=B/y
— If the infection rate [per unit of time] is higher
than the removal rate the infection will survive
otherwise it will die out.
— In SI, y=0 so the epidemics always happen.
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Limitations of SIR

e Contagion probability is uniform and “on-off”

e Extensions

— Probability g of recovering in each step.

— Infected state divided into intermediate states (early,
middle and final infection times) with varying
probability during each.

— We have assumed homogenous mixing : assumes all
nodes encounter each others with same probability:
we could assume different probability per encounter.
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Relaxing Assumptions

* Homogeneous Mixing: a hode connects to the
same average number of other nodes as any
other.

* Most real networks are not Erdos-Renyi
random networks (for which the
homogeneous mixing assumption holds).

* Most networks have heterogeneous degree

distributions.

— Scale free networks!
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Would the Model Apply to

* Pastor-Satorras and Vespighani [2001] have
considered the life of computer viruses over
time on the Internet:
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How to Justify
This Survival Time?

* The virus survival time is considerably high
with respect to the results of epidemic models
of spreading/recovering:

— Something wrong with the epidemic threshold!

* Experiment: SIS over a generated Scale Free
network (exponent -3).
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No Epidemic Threshold for SF!E
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Network Immunisation

 Random network can be immunized with
some sort of uniform immunization process
[oblivious of the characteristics of nodes].

* Random immunisation does not work in SF
networks no matter how many nodes are
immunized [unless it is all of them].

* Targeted immunization in SF must be used

instead.

— Keeping into account degree!
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Immunization on SF Networks

¢ Red=SF Uniform Immunization

e Black= Random

Targeted Immunization
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Local Immunization

* Global knowledge on the network structure is
rarely available (more on this later)

* Local immunization strategy:
— Select g nodes at random
— Ask to each of them to pass over the vaccine to
one of their neighbors
— As a result, a node with degree k is immunized
with a probability kP(k) (hubs are immunized with
higher probability!)
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Modelling SARS Spreading

* SARS: severe acute respiratory syndrome

* SIR like model with more parameters and
homogenous mixing

* Travel data and census data

« WHO data about SARS spreading to evaluate
the model

* Qutbreak starts in Hong Kong
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Epidemics Flow
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The Parameters of the Model

e Parameters used:

Parameter Description Baseline value
To Initial offset from 21 February (days) 3*
g Rate of transmission 0.57*
L(t=0) Number of initial latent individuals 10%
2| February + T3-20 March 1.00
sit) Scaling factor for the rate of transmission 2| March — 9 April 0.37
10 April = 1| July 0.06
rs Relative infectiousness of patients at the hospital 0.2
gl Average latency period (days) 4.6
2| February + T;-25 March 4.84
w(t) Average period from onset of symptoms to admission (days) 25 March — | April 383
2 April = 1| July 3.67
1! Average period from admission to recovery (days) 235
My Average period from admission to death (days) 35.9
d Case fatality rate 0.2
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Adding Travel and Geography &

A model per city (“meta-population model”)
— Each compartmental model describes the
epidemics in a given city.
— Models per city are coupled using information

from air travel
* Possible simplification of the reality but effective
abstraction.

e Stochastic model
— Probabilities of an individual of moving from one
city to the next follows proportions of traffic
observed in the air travel data.
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Epidemic Pathways
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Predicted Outbreak Likelihood
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North Pacific
Ocean

Comparison with Data

7 “/ correct prediction of no outbreak #
|:| incorrect prediction
- no airports

CAMBRIDGE

| UNIVERSITY OF

B
4]
g

%



Epidemic Spreading Models
and Real Data

* A key problem is how to extract information

for modelling the spreading the disease from
real data.

* One possibility is to use information coming
from the cellular network:

— Transitions between base-stations for modelling
the mobility;

— Phone calls graph for modelling the underlying
social networks between callers and callees.
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Epidemic Spreading Models
and Real Data

* |n order to study possible strategies of
containment of epidemics, an important aspect is
how to model information campaigns for
example for mass vaccination.

* Vaccination can happen through the population
by exploiting the “strong” ties between them
(family ties or friendships, etc.)

* Presence of two concurrent processes:

— Epidemic spreading
— Information diffusion (spreading of “immunising

information”)
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Mobility
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Data for Development
Challenge

D4D “ * Data mining competition
using a data set containing

movement and call data of
5 million individuals in
lvory Coast in order to help
to address society
development questions in
novel way

* |Information extracted
from the Call Data Records
(CDRs) of the Orange
network in lvory Coast

Challeng\é

B B Massachusetts
I I Institute of
y Technology
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Call Data Records

* A Call Data Record (CDR) entry contains
information about a specific phone call

(usually called “metadata”), including:

— The phone number of the subscriber originating
the call;

— The phone number of the called party;

— The identification of the equipment writing the

record (base station).
* From this information it is possible to extract the
geographic location of the caller.
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Mobility Matrix

* Movement data extracted from the registration
patterns to the cellular infrastructure (i.e., CDRs)
are used to evaluate the influence of human
mobility on the spreading of the disease in a
given geographic area.

* From the data it is possible to extract the
probability of transitions between different
areas, in this case “sub-prefectures” (counties) of
lvory Coast.

* Using this information, we build a mobility matrix
representing movement in the country as a

Markov process.
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Mobility Matrix

Probability that an individual moves
from the sub-prefecture i to the
sub-prefecture j

UNIVERSITY OF
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Number of times a user u moves
from the sub-prefecture i to the
sub-prefecture j

O RMy

Number of times a user u moves
from the sub-prefecture i to the
sub-prefecture k



Call Graph

Number of phone calls initiated
from the sub-prefecture i and
directed to the sub-prefecture

/
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Probability of a call being
established between sub-

prefectures iand j Number of phone calls initiated

from the sub-prefecture i and
directed to the sub-prefecture k
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States

* Disease spreading process:
— S: Susceptible
— I: Infected
— R: Resistant/recovered

* |Information spreading process:
— U: unaware
— A: aware

o N(t)=S(t)+I(t)+R(t)=U(t)+A(t)
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Mobility Matrix
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Mobility Matrix

e 1= S 1l + A0 -0
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Real-time Predictive Modelling

* By using a model like this one, real-time
predictive modelling might be possible

* Policy-makers might extract the parameters of
the model, such as the mobility matrix, in real-
time.

* Transmission models ha been widely used for
assessing potential strategies for containing
diseases such as influenza.

* “Mobile big data” might help in developing

more accurate models.
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Real-time Predictive Modelling

* One of the key problems is understanding the
uncertainty associated to the model.
* [t is difficult to understand the contribution of

many factors such as:

— Climatic factors

— Transmission seasonality

— Long-term immunity of a population

* Scenario-based modelling is routinely used in
order to predict future evolution of epidemics.
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Summary

* Epidemics are very complex processes.

e Existing models have been increasingly capable of
capturing their essence.

 However there are still a number of open issues
related to the modelling of real disease spreading

or information dissemination.

* Mixing geographic factors with epidemics model
is very relevant and important.

* The availability of “big data” might help in
building more realistic and possibly real-time
epidemic models.
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