Lecture 3: Index Representation and Tolerant
Retrieval

Information Retrieval
Computer Science Tripos Part Il

Simone Teufel

Natural Language a d Information Processing (NLIP) Group

Simone.Teufel@cl.cam.ac.uk

Simone.Teufel@cl.cam.ac.uk

@ Recap

IR System components

Document
Collection

|

‘ Document Normalisation ‘

‘ Indexer [\
IR System /LQ

Indexes
\Ranking/Matching Module S~ J

Query

(]
Query Norm,|

Set of relevant
documents

Last time: The indexer

Type/token distinction

@ Token an instance of a word or term occurring in a document

@ Type an equivalence class of tokens

In June, the dog likes to chase the cat in the barn.J

@ 12 word tokens

@ 9 word types

Problems with equivalence classing

A term is an equivalence class of tokens.
How do we define equivalence classes?
Numbers (3/20/91 vs. 20/3/91)

Case folding

Stemming, Porter stemmer

Morphological analysis: inflectional vs. derivational

Equivalence classing problems in other languages

Positional indexes

@ Postings lists in a nonpositional index: each posting is just a
docID

@ Postings lists in a positional index: each posting is a doclD
and a list of positions

@ Example query: “to; bey ors noty tos beg”

@ With a positional index, we can answer

@ phrase queries
e proximity queries

IR System components

Document
Collection

|

IR System

Query |——

ul

Query Norm

Ranking/Matching Module

Set of relevant
documents

Today: more indexing, some query normalisation

Reuters RCV1 collection

Tolerant retrieval: What to do if there is no exact match
between query term and document term

Data structures for dictionaries

@ Hashes

@ Trees

o k-term index

o Permuterm index

Spelling correction

Algorithms for large-scale indexing

@ BSBI; SPIMI
o MapReduce

© Reuters RCV1 and Heap's Law

RCV1 collection

@ Shakespeare's collected works are not large enough to
demonstrate scalable index construction algorithms.

@ Instead, we will use the Reuters RCV1 collection.

@ English newswire articles published in a 12 month period

(1995/6)

N | documents 800,000
M | terms (= word types) | 400,000
T | non-positional postings | 100,000,000

100

Effect of preprocessing for Reuters

word types non-positional positional postings
(terms) postings (word tokens)
size of dictionary non-positional index | positional index
size Acml size A cml size Acml
unfiltered | 484,494 109,971,179 197,879,290

no numbers| 473,723 -2 -2| 100,680,242 -8 -8| 179,158,204 -9 -9
case folding| 391,523-17 -19| 96,969,056 -3 -12| 179,158,204 -0 -9
30 stopw's | 391,493 -0-19| 83,390,443-14 -24| 121,857,825 -31-38
150 stopw's| 391,373 -0-19| 67,001,847-30 -39| 94,516,599 -47 -52
stemming | 322,383-17 -33| 63,812,300 -4 -42| 94,516,599 -0-52

101

How big is the term vocabulary?

That is, how many distinct words are there?

Can we assume there is an upper bound?

Not really: At least 70?0 ~ 103" different words of length 20.
The vocabulary will keep growing with collection size.

Heaps' law: M = kT"

M is the size of the vocabulary, T is the number of tokens in
the collection.

@ Typical values for the parameters k and b are: 30 < k < 100
and b~ 0.5.
@ Heaps' law is linear in log-log space.

@ It is the simplest possible relationship between collection size
and vocabulary size in log-log space.
@ Empirical law

102

Heaps' law for Reuters

10g10 M

logl0 T

Vocabulary size M as a
function of collection size
T (number of tokens) for
Reuters-RCV1. For these
data, the dashed line
log;o M =

0.49 x logyy T + 1.64 is the
best least squares fit.
Thus, M = 101:6470.49
and k = 10'%* ~ 44 and
b =0.49.

103

Empirical fit for Reuters

@ Good, as we just saw in the graph.

@ Example: for the first 1,000,020 tokens Heaps' law predicts
38,323 terms:

44 % 1,000,020%4° ~ 38,323

@ The actual number is 38,365 terms, very close to the
prediction.

@ Empirical observation: fit is good in general.

104

© Dictionaries

Inverted Index

- [1)-[2){4){11)[31)-{a5] {173] {174
Coesar [0 ——~[1]-[2]-[a] (5] -[g] -[16]-[57] {132] -[179
- [2){31){54]-101]

105

Dictionaries

@ The dictionary is the data structure for storing the term
vocabulary.

@ Term vocabulary: the data

@ Dictionary: the data structure for storing the term vocabulary

106

Dictionaries

@ For each term, we need to store a couple of items:

@ document frequency
@ pointer to postings list

How do we look up a query term q; in the dictionary at query time?

107

Data structures for looking up terms

@ Two main classes of data structures: hashes and trees

@ Some IR systems use hashes, some use trees.
@ Criteria for when to use hashes vs. trees:

o Is there a fixed number of terms or will it keep growing?

o What are the relative frequencies with which various keys will
be accessed?

o How many terms are we likely to have?

108

@ Each vocabulary term is hashed into an integer, its row
number in the array

@ At query time: hash query term, locate entry in fixed-width
array

@ Pros: Lookup in a hash is faster than lookup in a tree.
(Lookup time is constant.)

@ Cons

@ no way to find minor variants (resume vs. résumé)

o no prefix search (all terms starting with automat)

o need to rehash everything periodically if vocabulary keeps
growing

109

Trees

Trees solve the prefix problem (find all terms starting with
automat).

@ Simplest tree: binary tree

@ Search is slightly slower than in hashes: O(logM), where M is

the size of the vocabulary.

O(logM) only holds for balanced trees.
Rebalancing binary trees is expensive.
B-trees mitigate the rebalancing problem.

B-tree definition: every internal node has a number of children
in the interval [a, b] where a, b are appropriate positive
integers, e.g., [2, 4].

110

Binary tree

m Nz

iy«

FEIICH N

112

@ An ordered tree data structure that is used to store an
associative array

@ The keys are strings

@ The key associated with a node is inferred from the position
of a node in the tree

@ Unlike in binary search trees, where keys are stored in nodes.

@ Values are associated only with with leaves and some inner
nodes that correspond to keys of interest (not all nodes).

@ All descendants of a node have a common prefix of the string
associated with that node — tries can be searched by prefixes

@ The trie is sometimes called radix tree or prefix tree

113

A trie for keys " A", "in", and "inn

114

Trie with postings

R8|R9]100 103298] ...

n
N @@@@

n
@ -249 -11234 -3001
n
302
2476

1009]...

115

@ Wildcard queries

Wildcard queries

hel* |

Find all docs containing any term beginning with “hel”

Easy with trie: follow letters h-e-l and then lookup every term
you find there

*hel |
@ Find all docs containing any term ending with “hel”
@ Maintain an additional trie for terms backwards

@ Then retrieve all terms t in subtree rooted at l-e-h

In both cases:

@ This procedure gives us a set of terms that are matches for
wildcard query

@ Then retrieve documents that contain any of these terms

116

How to handle * in the middle of a term

hel*o |

@ We could look up “hel*" and “*o" in the tries as before and
intersect the two term sets.

o Expensive
@ Alternative: permuterm index

@ Basic idea: Rotate every wildcard query, so that the * occurs
at the end.

@ Store each of these rotations in the dictionary (trie)

117

Permuterm index

For term hello: add

hello$, ello$h, llohe, lohel, o$hell, $hello J

to the trie where $ is a special symbol

lloshe

for hel*o, look up o$heI*J

Problem: Permuterm more than quadrupels the size of the
dictionary compared to normal trie (empirical number).

118

@ More space-efficient than permuterm index

@ Enumerate all character k-grams (sequence of k characters)
occurring in a term

Bi-grams from

ap prriil 1$ $iis s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on
nt th h$

@ Maintain an inverted index from k-grams to the term that
contain the k-gram

etr —— beetroot metric petrify retrieval

119

Note that we have two different kinds of inverted indexes:

@ The term-document inverted index for finding documents
based on a query consisting of terms

@ The k-gram index for finding terms based on a query
consisting of k-grams

120

Processing wildcard terms in a bigram index

@ Query hel* can now be run as:

$h AND he AND el |

@ ... but this will show up many false positives like heel.

@ Postfilter, then look up surviving terms in term—document
inverted index.

@ k-gram vs. permuterm index

o k-gram index is more space-efficient
@ permuterm index does not require postfiltering.

121

© Spelling correction

Spelling correction

an asterorid that fell form the skyJ

@ In an IR system, spelling correction is only ever run on queries.

@ The general philosophy in IR is: don't change the documents
(exception: OCR’ed documents)
@ Two different methods for spelling correction:
o Isolated word spelling correction

@ Check each word on its own for misspelling
@ Will only attempt to catch first typo above

o Context-sensitive spelling correction

@ Look at surrounding words
@ Should correct both typos above

122

Isolated word spelling correction

@ There is a list of “correct” words — for instance a standard
dictionary (Webster's, OED. ..)
@ Then we need a way of computing the distance between a
misspelled word and a correct word
o for instance Edit/Levenshtein distance
o k-gram overlap
@ Return the “correct” word that has the smallest distance to
the misspelled word.

informaton — information |

123

o Edit distance between two strings s; and s is the minimum
number of basic operations that transform s; into s,.

@ Levenshtein distance: Admissible operations are insert,
delete and replace

Levenshtein distance
dog - do 1 (delete)

cat - cart 1 (insert)
cat — cut 1 (replace)
cat - act 2 (deletetinsert)

124

X
g
)
T
S
Q
O
c
T
4+
gt
)
)
O
c
T
4+
2
O
=
Q
+
=
n
(=
(]
>
(]
-

[s]njofw]

3

2134

2134

3133

1
1
1

0
1

2

3131234

413132

o

125

8z
O
O
b
3
[}
e

Edit Distance:

126

Each cell of Levenshtein matrix

Cost of getting here from | Cost of getting here from my
my upper left neighbour (by | upper neighbour (by delete)
copy or replace)
Cost of getting here from my | Minimum cost out of these
left neighbour (by insert)

127

Dynamic Programming

Cormen et al:

@ Optimal substructure: The optimal solution contains within it
subsolutions, i.e, optimal solutions to subproblems

@ Overlapping subsolutions: The subsolutions overlap and would
be computed over and over again by a brute-force algorithm.

For edit distance:
@ Subproblem: edit distance of two prefixes

@ Overlap: most distances of prefixes are needed 3 times (when
moving right, diagonally, down in the matrix)

128

Example: Edit Distance OSLO — SNOW

BB WWINN | -=~=O
Ol B B || QO k=] N b || et
| W[N N[= D[] =t N[b=t
I[N NN NN N
W W[N] W[N|W[|NW[N
BN W W[W W[wW[N||wW
N BB WW N W
W BB P W WP
W O ||| W W o s

Edit distance 0sLO—-SNOW is 3! How do | read out the editing operations that

transform OSLO into SNOW?

cost operation || input | output
1 delete o *
0 (copy) s s

1 reilace | n

Using edit distance for spelling correction

@ Given a query, enumerate all character sequences within a
preset edit distance

@ Intersect this list with our list of “correct” words

@ Suggest terms in the intersection to user.

130

k-gram indexes for spelling correction

@ Enumerate all k-grams in the query term

Misspelled word

bo—or—-rd —dr—-ro—- 00— om

@ Use k-gram index to retrieve “correct” words that match
query term k-grams

@ Threshold by number of matching k-grams

@ Eg. only vocabularly terms that differ by at most 3 k-grams

BO I—-	aboard	—-	about HoardrooH border				
OR I—-	border	—-	lord	—>	morbid	—-	sordid
RD	—>	aboard	—>	ardent	—+oardroon'{—'	border	

131

Context-sensitive Spelling correction

One idea: hit-based spelling correction

flew form munich |

@ Retrieve correct terms close to each query term

flew — flea
form — from
munich — munch

@ Holding all other terms fixed, try all possible phrase queries
for each replacement candidate

flea form munich — 62 results
flew from munich —=78900 results
flew form munch — 66 results

Not efficient. Better source of information: large corpus of queries,
not documents

132

General issues in spelling correction

@ User interface
@ automatic vs. suggested correction
@ "“Did you mean” only works for one suggestion; what about
multiple possible corrections?
o Tradeoff: Simple Ul vs. powerful Ul
@ Cost
o Potentially very expensive
@ Avoid running on every query
o Maybe just those that match few documents

133

@ Distributed Index construction
o BSBI algorithm
@ SPIMI and MapReduce

Hardware basics

@ Access to data is much faster in memory than on disk.
(roughly a factor of 10)

@ Disk seeks are “idle” time: No data is transferred from disk
while the disk head is being positioned.

@ To optimize transfer time from disk to memory: one large
chunk is faster than many small chunks.

@ Disk 1/0 is block-based: Reading and writing of entire blocks
(as opposed to smaller chunks). Block sizes: 8KB to 256 KB

@ Servers used in IR systems typically have many GBs of main
memory and TBs of disk space.

@ Fault tolerance is expensive: It's cheaper to use many regular
machines than one fault tolerant machine.

134

Goal: construct the inverted index

Bt | (1] 2] 4] T [30[4 [173]17]
Caman | [T] 2] 4] 5[6] 57[2]
[Caipurnia] — [2]31] 54 [101]

——
dictionary postings

135

uction: Sort postings in mem

term doclD term doclD
| 1 ambitious 2
did 1 be 2
enact 1 brutus 1
Jjulius 1 brutus 2
caesar 1 capitol 1
| 1 caesar 1
was 1 caesar 2
killed 1 caesar 2
i’ 1 did 1
the 1 enact 1
capitol 1 hath 1
brutus 1 | 1
killed 1 | 1
me 1 s i 1
so 2 it 2
let 2 julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 so 2
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 was 1
was 2 was 2
ambitious 2 with 2

136

Sort-based index construction

@ As we build index, we parse docs one at a time.
@ The final postings for any term are incomplete until the end.

@ But for large collections, we cannot keep all postings in
memory and do the sort in-memory at the end

@ We cannot sort very large sets of records on disk either (too
many disk seeks)

@ Thus: We need to store intermediate results on disk.

@ We need an external sorting algorithm.

137

“External” sorting algorithm (using few disk seeks)

@ We must sort T = 100,000,000 non-positional postings.
@ Each posting has size 12 bytes (4+4+4: termlD, docID, term
frequency).
@ Define a block to consist of 10,000,000 such postings
o We can easily fit that many postings into memory.
@ We will have 10 such blocks for RCV1.
@ Basic idea of BSBI algorithm:
o For each block:

@ accumulate postings
@ sort in memory
@ write to disk

@ Then merge the blocks into one long sorted order.

138

Merging two blocks

postings

to be merged brutus d2

Block 1 Block 2 brutus d3

brutus d3 brutus d2 caesar d1
o . caesar d4 merged

caesar d4 caesar dl1 — lius d1 .

noble d3 julius d1 JkL:“':d D postings

with d4 killed d2 noble d3

with d4

/

disk

139

Problem with BSBI algorithm

@ Our assumption was: we can keep the dictionary in memory.

@ We need the dictionary (which grows dynamically) in order to
implement a term-to-term|D mapping.

140

Single-pass in-memory indexing

@ Abbreviation: SPIMI

@ Key idea 1: Generate separate dictionaries for each block — no
need to maintain term-termlD mapping across blocks.

@ Key idea 2: Don't sort. Accumulate postings in postings lists
as they occur.

@ With these two ideas we can generate a complete inverted
index for each block.

@ These separate indexes can then be merged into one big index.

141

Distributed indexing— fault-tolerant indexing

@ Maintain a master machine directing the indexing job —
considered “safe”

@ Break up indexing into sets of parallel tasks

@ Break the input document collection into splits (corresponding
to blocks in BSBI/SPIMI)

@ Master machine assigns each task to an idle machine from a
pool.
@ There are two sets of parallel tasks, and two types of
machines are deployed to solve them:
o Parser: reads a document at a time and emits
(term,docID)-pairs. Writes these pairs into j term-partition;
e.g., a-f, g-p, g-z (here: j = 3).
@ Inverter: collects all (term,doclID) pairs (= postings) for one
term-partition (e.g., for a-f), sorts them and writes to postings
lists

142

MapReduce

splits assion assion
P ,,g“”ﬁ 'M““xmmg postings

[e}eNe]

segment

phase files phase

map reduce

143

Index construction in MapReduce

Schema of map and reduce functions
map: input — list(k, v)
reduce: (k,list(v)) — output

Instantiation of the schema for index construction
map: web collection — list(termID, docID)
reduce: ((termlDy, list(docID)), (termIDo, list(docID)), ...) — (postings_listy, postings_list, ...)

Example for index construction
map: dp : C DIED. d; : C cAME, C C’ED. — ((C, db), (DIED,db), (C,dv), (CAME,d1), (C,d1), (C’ED,d1))
reduce: ((C,(da,d1,d1)),(DIED,(db)),(CAME,(d1)),(C’ED,(d1))) — ((C,(d1:2,d2:1)),(DIED,(d2:1)),(CAME,(d1:1)),(C’ED,(d1:1)))

144

@ What to do if there is no exact match between query term
and document term
@ Datastructures for tolerant retrieval:
¢ Dictionary as hash, B-tree or trie
¢ k-gram index and permuterm for wildcards
¢ k-gram index and edit-distance for spelling correction
@ Distributed, large-scale indexing

@ BSBI and SPIMI
@ MapReduce: distributed index construction

145

o Wikipedia article "trie"
@ MRS chapter 3.1, 3.2, 3.3
o MRS Chapters 4.2-4.4

146

	Recap
	Reuters RCV1 and Heap's Law
	Dictionaries
	Wildcard queries
	Spelling correction
	Distributed Index construction
	BSBI algorithm
	SPIMI and MapReduce

