
Lecture 3: Index Representation and Tolerant

Retrieval
Information Retrieval

Computer Science Tripos Part II

Simone Teufel

Natural Language and Information Processing (NLIP) Group

Simone.Teufel@cl.cam.ac.uk

93

Simone.Teufel@cl.cam.ac.uk

Overview

1 Recap

2 Reuters RCV1 and Heap’s Law

3 Dictionaries

4 Wildcard queries

5 Spelling correction

6 Distributed Index construction
BSBI algorithm
SPIMI and MapReduce

IR System components

IR System
Query

Document

Collection

Set of relevant

documents

Document Normalisation

Indexer

U
I

Ranking/Matching ModuleQ
u
e
ry

 N
o
rm

.

Indexes

Last time: The indexer

94

Type/token distinction

Token an instance of a word or term occurring in a document

Type an equivalence class of tokens

In June, the dog likes to chase the cat in the barn.

12 word tokens

9 word types

95

Problems with equivalence classing

A term is an equivalence class of tokens.

How do we define equivalence classes?

Numbers (3/20/91 vs. 20/3/91)

Case folding

Stemming, Porter stemmer

Morphological analysis: inflectional vs. derivational

Equivalence classing problems in other languages

96

Positional indexes

Postings lists in a nonpositional index: each posting is just a
docID

Postings lists in a positional index: each posting is a docID
and a list of positions

Example query: “to1 be2 or3 not4 to5 be6”

With a positional index, we can answer

phrase queries
proximity queries

97

IR System components

IR System
Query

Document

Collection

Set of relevant

documents

Today: more indexing, some query normalisation

98

Upcoming

Reuters RCV1 collection

Tolerant retrieval: What to do if there is no exact match
between query term and document term

Data structures for dictionaries

Hashes
Trees
k-term index
Permuterm index

Spelling correction

Algorithms for large-scale indexing

BSBI; SPIMI
MapReduce

99

Overview

1 Recap

2 Reuters RCV1 and Heap’s Law

3 Dictionaries

4 Wildcard queries

5 Spelling correction

6 Distributed Index construction
BSBI algorithm
SPIMI and MapReduce

RCV1 collection

Shakespeare’s collected works are not large enough to
demonstrate scalable index construction algorithms.

Instead, we will use the Reuters RCV1 collection.

English newswire articles published in a 12 month period
(1995/6)

N documents 800,000
M terms (= word types) 400,000
T non-positional postings 100,000,000

100

Effect of preprocessing for Reuters

word types non-positional positional postings
(terms) postings (word tokens)

size of dictionary non-positional index positional index
size ∆cml size ∆ cml size ∆cml

unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 -2 -2 100,680,242 -8 -8 179,158,204 -9 -9
case folding 391,523 -17 -19 96,969,056 -3 -12 179,158,204 -0 -9
30 stopw’s 391,493 -0 -19 83,390,443 -14 -24 121,857,825 -31 -38
150 stopw’s 391,373 -0 -19 67,001,847 -30 -39 94,516,599 -47 -52
stemming 322,383 -17 -33 63,812,300 -4 -42 94,516,599 -0 -52

101

How big is the term vocabulary?

That is, how many distinct words are there?

Can we assume there is an upper bound?

Not really: At least 7020 ≈ 1037 different words of length 20.

The vocabulary will keep growing with collection size.

Heaps’ law: M = kT b

M is the size of the vocabulary, T is the number of tokens in
the collection.

Typical values for the parameters k and b are: 30 ≤ k ≤ 100
and b ≈ 0.5.

Heaps’ law is linear in log-log space.

It is the simplest possible relationship between collection size
and vocabulary size in log-log space.
Empirical law

102

Heaps’ law for Reuters

0 2 4 6 8

0
1

2
3

4
5

6

log10 T

lo
g1

0
M

Vocabulary size M as a

function of collection size

T (number of tokens) for

Reuters-RCV1. For these

data, the dashed line

log10 M =

0.49 ∗ log10 T + 1.64 is the

best least squares fit.

Thus, M = 101.64T 0.49

and k = 101.64 ≈ 44 and

b = 0.49.

103

Empirical fit for Reuters

Good, as we just saw in the graph.

Example: for the first 1,000,020 tokens Heaps’ law predicts
38,323 terms:

44× 1,000,0200.49 ≈ 38,323

The actual number is 38,365 terms, very close to the
prediction.

Empirical observation: fit is good in general.

104

Overview

1 Recap

2 Reuters RCV1 and Heap’s Law

3 Dictionaries

4 Wildcard queries

5 Spelling correction

6 Distributed Index construction
BSBI algorithm
SPIMI and MapReduce

Inverted Index

Brutus 1 2 4 45 31 11 174173

Caesar 1321 2 4 5 6 16 57

Calpurnia 54 1012 31

8

9

4

179

105

Dictionaries

The dictionary is the data structure for storing the term
vocabulary.

Term vocabulary: the data

Dictionary: the data structure for storing the term vocabulary

106

Dictionaries

For each term, we need to store a couple of items:

document frequency
pointer to postings list

How do we look up a query term qi in the dictionary at query time?

107

Data structures for looking up terms

Two main classes of data structures: hashes and trees

Some IR systems use hashes, some use trees.

Criteria for when to use hashes vs. trees:

Is there a fixed number of terms or will it keep growing?
What are the relative frequencies with which various keys will
be accessed?
How many terms are we likely to have?

108

Hashes

Each vocabulary term is hashed into an integer, its row
number in the array

At query time: hash query term, locate entry in fixed-width
array

Pros: Lookup in a hash is faster than lookup in a tree.
(Lookup time is constant.)

Cons

no way to find minor variants (resume vs. résumé)
no prefix search (all terms starting with automat)
need to rehash everything periodically if vocabulary keeps
growing

109

Trees

Trees solve the prefix problem (find all terms starting with
automat).

Simplest tree: binary tree

Search is slightly slower than in hashes: O(logM), where M is
the size of the vocabulary.

O(logM) only holds for balanced trees.

Rebalancing binary trees is expensive.

B-trees mitigate the rebalancing problem.

B-tree definition: every internal node has a number of children
in the interval [a, b] where a, b are appropriate positive
integers, e.g., [2, 4].

110

Binary tree

111

B-tree

112

Trie

An ordered tree data structure that is used to store an
associative array

The keys are strings

The key associated with a node is inferred from the position
of a node in the tree

Unlike in binary search trees, where keys are stored in nodes.

Values are associated only with with leaves and some inner
nodes that correspond to keys of interest (not all nodes).

All descendants of a node have a common prefix of the string
associated with that node → tries can be searched by prefixes

The trie is sometimes called radix tree or prefix tree

113

Trie

t

o e

d
na

n

n

i

A

A trie for keys ”A”, ”to”, ”tea”, ”ted”, ”ten”, ”in”, and ”inn”.

114

Trie with postings

t

o e

d
na

n

n

i

A

67444

206 117 2476

302

5774310993

1 2 3 5 6 7 8 ...

10423 14301 17998 ...

15 28 29 100 103 298 ...

1 3 4 7 8 9

249 11234 23001 ...

12 56 233 1009 ...

20451 109987 ...

115

Overview

1 Recap

2 Reuters RCV1 and Heap’s Law

3 Dictionaries

4 Wildcard queries

5 Spelling correction

6 Distributed Index construction
BSBI algorithm
SPIMI and MapReduce

Wildcard queries

hel*

Find all docs containing any term beginning with “hel”

Easy with trie: follow letters h-e-l and then lookup every term
you find there

*hel

Find all docs containing any term ending with “hel”

Maintain an additional trie for terms backwards

Then retrieve all terms t in subtree rooted at l-e-h

In both cases:

This procedure gives us a set of terms that are matches for
wildcard query

Then retrieve documents that contain any of these terms

116

How to handle * in the middle of a term

hel*o

We could look up “hel*” and “*o” in the tries as before and
intersect the two term sets.

Expensive

Alternative: permuterm index

Basic idea: Rotate every wildcard query, so that the * occurs
at the end.

Store each of these rotations in the dictionary (trie)

117

Permuterm index

For term hello: add

hello$, ello$h, llohe, lohel, o$hell, $hello

to the trie where $ is a special symbol

for hel*o, look up o$hel*

Problem: Permuterm more than quadrupels the size of the
dictionary compared to normal trie (empirical number).

118

k-gram indexes

More space-efficient than permuterm index

Enumerate all character k-grams (sequence of k characters)
occurring in a term

Bi-grams from April is the cruelest month

ap pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on
nt th h$

Maintain an inverted index from k-grams to the term that
contain the k-gram

119

k-gram indexes

Note that we have two different kinds of inverted indexes:

The term-document inverted index for finding documents
based on a query consisting of terms

The k-gram index for finding terms based on a query
consisting of k-grams

120

Processing wildcard terms in a bigram index

Query hel* can now be run as:

$h AND he AND el

... but this will show up many false positives like heel.

Postfilter, then look up surviving terms in term–document
inverted index.

k-gram vs. permuterm index

k-gram index is more space-efficient
permuterm index does not require postfiltering.

121

Overview

1 Recap

2 Reuters RCV1 and Heap’s Law

3 Dictionaries

4 Wildcard queries

5 Spelling correction

6 Distributed Index construction
BSBI algorithm
SPIMI and MapReduce

Spelling correction

an asterorid that fell form the sky

In an IR system, spelling correction is only ever run on queries.

The general philosophy in IR is: don’t change the documents
(exception: OCR’ed documents)

Two different methods for spelling correction:
Isolated word spelling correction

Check each word on its own for misspelling

Will only attempt to catch first typo above

Context-sensitive spelling correction

Look at surrounding words

Should correct both typos above

122

Isolated word spelling correction

There is a list of “correct” words – for instance a standard
dictionary (Webster’s, OED. . .)

Then we need a way of computing the distance between a
misspelled word and a correct word

for instance Edit/Levenshtein distance
k-gram overlap

Return the “correct” word that has the smallest distance to
the misspelled word.

informaton → information

123

Edit distance

Edit distance between two strings s1 and s2 is the minimum
number of basic operations that transform s1 into s2.

Levenshtein distance: Admissible operations are insert,
delete and replace

Levenshtein distance

dog – do 1 (delete)
cat – cart 1 (insert)
cat – cut 1 (replace)
cat – act 2 (delete+insert)

124

Levenshtein distance: Distance matrix

s n o w

0 1 2 3 4

o 1 1 2 3 4

s 2 1 3 3 3

l 3 3 2 3 4

o 4 3 3 2 3

125

Edit Distance: Four cells

s n o w

0 1 1 2 2 3 3 4 4

o
1

1

1 2

2 1

2 3

2 2

2 4

3 2

4 5

3 3

s
2

2

1 2

3 1

2 3

2 2

3 3

3 3

3 4

4 3

l
3

3

3 2

4 2

2 3

3 2

3 4

3 3

4 4

4 4

o
4

4

4 3

5 3

3 3

4 3

2 4

4 2

4 5

3 3

126

Each cell of Levenshtein matrix

Cost of getting here from
my upper left neighbour (by
copy or replace)

Cost of getting here from my
upper neighbour (by delete)

Cost of getting here from my
left neighbour (by insert)

Minimum cost out of these

127

Dynamic Programming

Cormen et al:

Optimal substructure: The optimal solution contains within it
subsolutions, i.e, optimal solutions to subproblems

Overlapping subsolutions: The subsolutions overlap and would
be computed over and over again by a brute-force algorithm.

For edit distance:

Subproblem: edit distance of two prefixes

Overlap: most distances of prefixes are needed 3 times (when
moving right, diagonally, down in the matrix)

128

Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1

1

1 2

2 1

2 3

2 2

2 4

3 2

4 5

3 3

s
2

2

1 2

3 1

2 3

2 2

3 3

3 3

3 4

4 3

l
3

3

3 2

4 2

2 3

3 2

3 4

3 3

4 4

4 4

o
4

4

4 3

5 3

3 3

4 3

2 4

4 2

4 5

3 3

Edit distance oslo–snow is 3! How do I read out the editing operations that

transform oslo into snow?

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o 129

Using edit distance for spelling correction

Given a query, enumerate all character sequences within a
preset edit distance

Intersect this list with our list of “correct” words

Suggest terms in the intersection to user.

130

k-gram indexes for spelling correction

Enumerate all k-grams in the query term

Misspelled word bordroom

bo – or – rd – dr – ro – oo – om

Use k-gram index to retrieve “correct” words that match
query term k-grams
Threshold by number of matching k-grams
Eg. only vocabularly terms that differ by at most 3 k-grams

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

131

Context-sensitive Spelling correction

One idea: hit-based spelling correction

flew form munich

Retrieve correct terms close to each query term

flew → flea
form → from
munich → munch

Holding all other terms fixed, try all possible phrase queries
for each replacement candidate

flea form munich – 62 results
flew from munich –78900 results
flew form munch – 66 results

Not efficient. Better source of information: large corpus of queries,
not documents

132

General issues in spelling correction

User interface

automatic vs. suggested correction
“Did you mean” only works for one suggestion; what about
multiple possible corrections?
Tradeoff: Simple UI vs. powerful UI

Cost

Potentially very expensive
Avoid running on every query
Maybe just those that match few documents

133

Overview

1 Recap

2 Reuters RCV1 and Heap’s Law

3 Dictionaries

4 Wildcard queries

5 Spelling correction

6 Distributed Index construction
BSBI algorithm
SPIMI and MapReduce

Hardware basics

Access to data is much faster in memory than on disk.
(roughly a factor of 10)

Disk seeks are “idle” time: No data is transferred from disk
while the disk head is being positioned.

To optimize transfer time from disk to memory: one large
chunk is faster than many small chunks.

Disk I/O is block-based: Reading and writing of entire blocks
(as opposed to smaller chunks). Block sizes: 8KB to 256 KB

Servers used in IR systems typically have many GBs of main
memory and TBs of disk space.

Fault tolerance is expensive: It’s cheaper to use many regular
machines than one fault tolerant machine.

134

Goal: construct the inverted index

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸

dictionary postings

135

Index construction: Sort postings in memory

term docID

I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID

ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

136

Sort-based index construction

As we build index, we parse docs one at a time.

The final postings for any term are incomplete until the end.

But for large collections, we cannot keep all postings in
memory and do the sort in-memory at the end

We cannot sort very large sets of records on disk either (too
many disk seeks)

Thus: We need to store intermediate results on disk.

We need an external sorting algorithm.

137

“External” sorting algorithm (using few disk seeks)

We must sort T = 100,000,000 non-positional postings.

Each posting has size 12 bytes (4+4+4: termID, docID, term
frequency).

Define a block to consist of 10,000,000 such postings

We can easily fit that many postings into memory.
We will have 10 such blocks for RCV1.

Basic idea of BSBI algorithm:
For each block:

accumulate postings

sort in memory

write to disk

Then merge the blocks into one long sorted order.

138

Merging two blocks

Block 1

brutus d3
caesar d4
noble d3
with d4

Block 2

brutus d2
caesar d1
julius d1
killed d2

postings

to be merged brutus d2
brutus d3
caesar d1
caesar d4
julius d1
killed d2
noble d3
with d4

merged
postings

disk

139

Problem with BSBI algorithm

Our assumption was: we can keep the dictionary in memory.

We need the dictionary (which grows dynamically) in order to
implement a term-to-termID mapping.

140

Single-pass in-memory indexing

Abbreviation: SPIMI

Key idea 1: Generate separate dictionaries for each block – no
need to maintain term-termID mapping across blocks.

Key idea 2: Don’t sort. Accumulate postings in postings lists
as they occur.

With these two ideas we can generate a complete inverted
index for each block.

These separate indexes can then be merged into one big index.

141

Distributed indexing– fault-tolerant indexing

Maintain a master machine directing the indexing job –
considered “safe”

Break up indexing into sets of parallel tasks

Break the input document collection into splits (corresponding
to blocks in BSBI/SPIMI)

Master machine assigns each task to an idle machine from a
pool.

There are two sets of parallel tasks, and two types of
machines are deployed to solve them:

Parser: reads a document at a time and emits
(term,docID)-pairs. Writes these pairs into j term-partition;
e.g., a-f, g-p, q-z (here: j = 3).
Inverter: collects all (term,docID) pairs (= postings) for one
term-partition (e.g., for a-f), sorts them and writes to postings
lists

142

MapReduce

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

143

Index construction in MapReduce

Schema of map and reduce functions

map: input → list(k , v)
reduce: (k ,list(v)) → output

Instantiation of the schema for index construction

map: web collection → list(termID, docID)
reduce: (〈termID1, list(docID)〉, 〈termID2, list(docID)〉, . . .) → (postings list1, postings list2, . . .)

Example for index construction

map: d2 : C died. d1 : C came, C c’ed. → (〈C, d2〉, 〈died,d2〉, 〈C,d1〉, 〈came,d1〉, 〈C,d1〉, 〈c’ed,d1〉)
reduce: (〈C,(d2,d1,d1)〉,〈died,(d2)〉,〈came,(d1)〉,〈c’ed,(d1)〉) → (〈C,(d1:2,d2:1)〉,〈died,(d2:1)〉,〈came,(d1:1)〉,〈c’ed,(d1:1)〉)

144

Takeaway

What to do if there is no exact match between query term
and document term

Datastructures for tolerant retrieval:

Dictionary as hash, B-tree or trie
k-gram index and permuterm for wildcards
k-gram index and edit-distance for spelling correction

Distributed, large-scale indexing

BSBI and SPIMI
MapReduce: distributed index construction

145

Reading

Wikipedia article ”trie”

MRS chapter 3.1, 3.2, 3.3

MRS Chapters 4.2-4.4

146

	Recap
	Reuters RCV1 and Heap's Law
	Dictionaries
	Wildcard queries
	Spelling correction
	Distributed Index construction
	BSBI algorithm
	SPIMI and MapReduce

