Inductively defined subsets

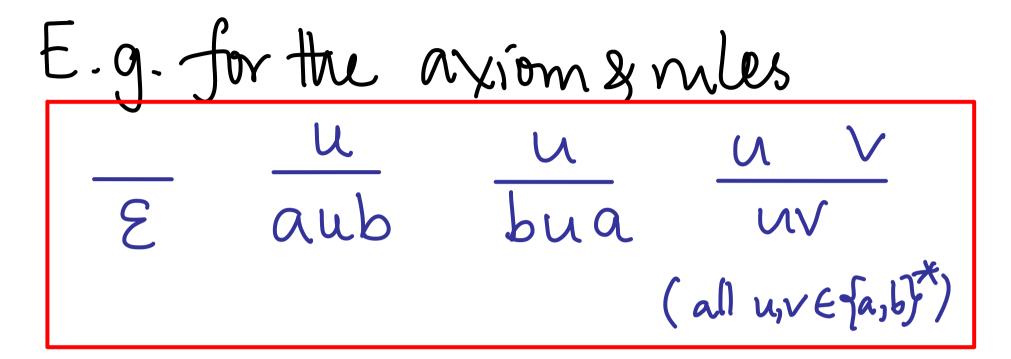
Given a set of axioms and rules over a set U, the subset of U inductively defined by the axioms and rules consists of all and only the elements $u \in U$ for which there is a derivation with conclusion u.

Sfinite (labelled) tree with u at root, axioms at leaves and each vertex the conclusion of a rule whose hypotheses are the children of the vertex

Rule Induction

Theorem. The subset $I \subseteq U$ inductively defined by a collection of axioms and rules is closed under them and is the least such subset: if $S \subseteq U$ is also closed under the axioms and rules, then $I \subseteq S$.

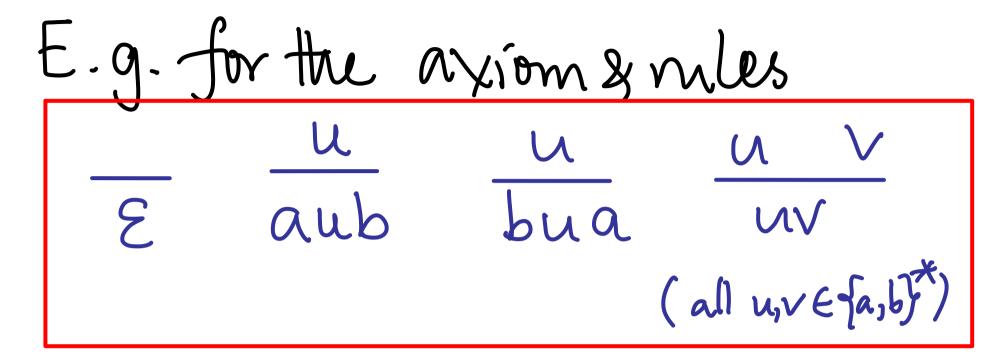
Given axioms and rules for inductively defining a subset of a set U, we say that a subset $S \subseteq U$ is **closed under the axioms and rules** if



$$#_{a}(u) = #_{b}(u)$$

$$T_{number of 'a's in}$$

$$The string u$$

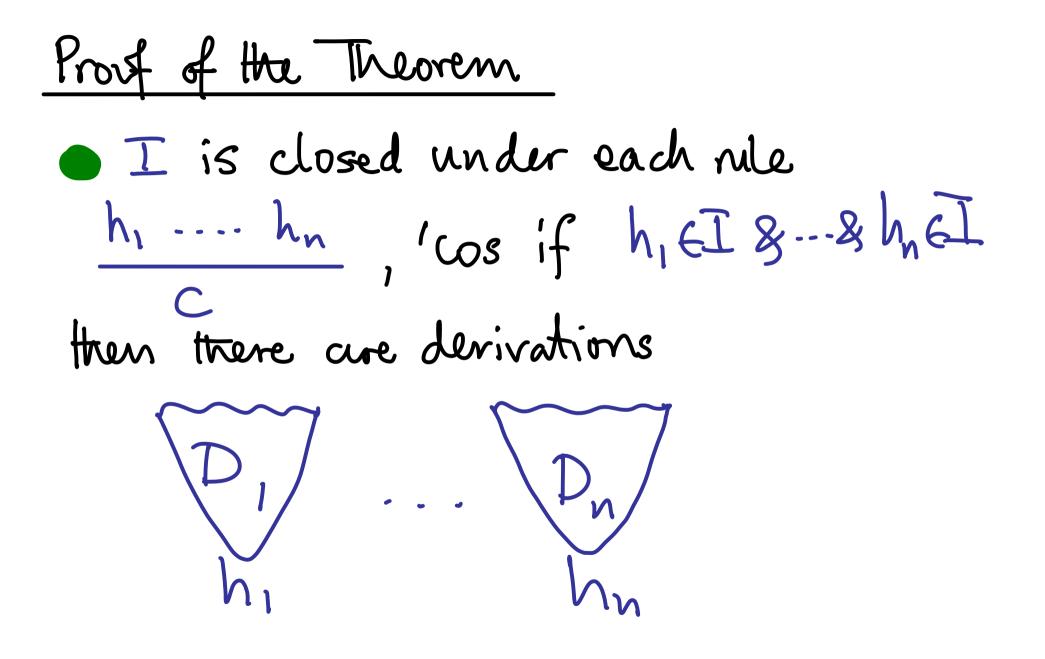


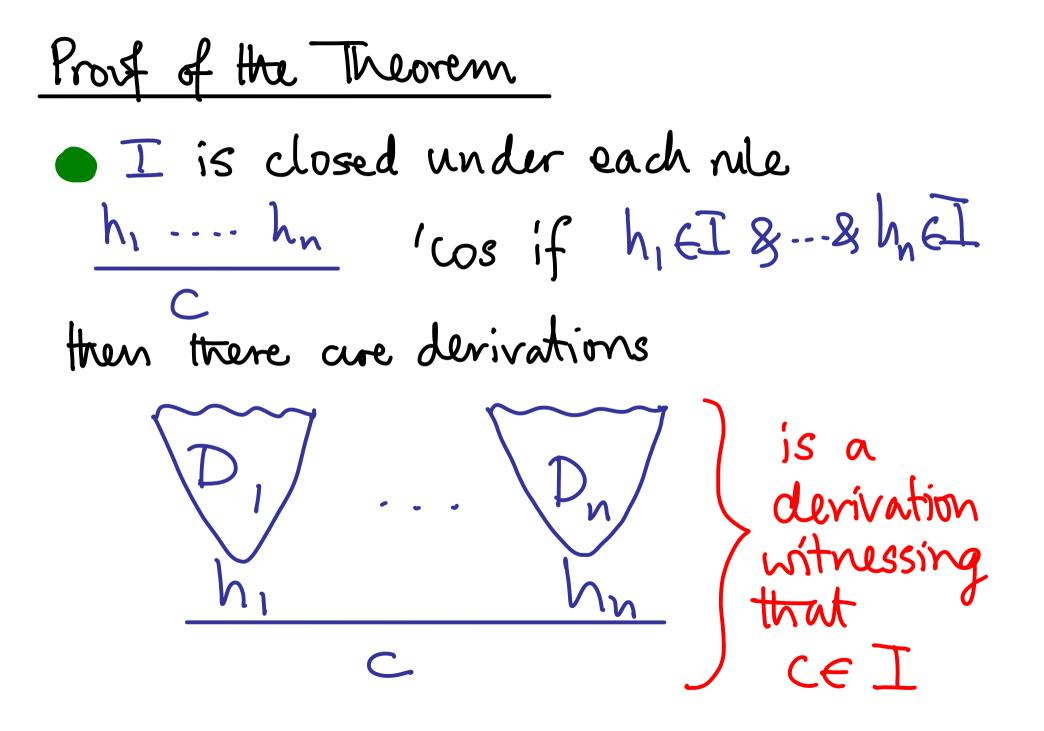
Ite subset $\{u \in \{a,b\}^* \mid \#_a(u) = \#_b(u)\}\$ is closed under the oxiom & rules. (so is $\{u \in \{a,b\}^* \mid Ungth of u is even \}\$)

$$\{ u \in \mathcal{U} \mid \forall S \subseteq \mathcal{U}. \\ (S closed under \mathcal{R}) \Rightarrow u \in S \}$$

is closed under \mathcal{R} (why?) and so is the smallest such (with respect to subset inclusion, \subseteq). **Theorem.** The subset $I \subseteq U$ inductively defined by a collection of axioms and rules is closed under them and is the least such subset: if $S \subseteq U$ is also closed under the axioms and rules, then $I \subseteq S$.

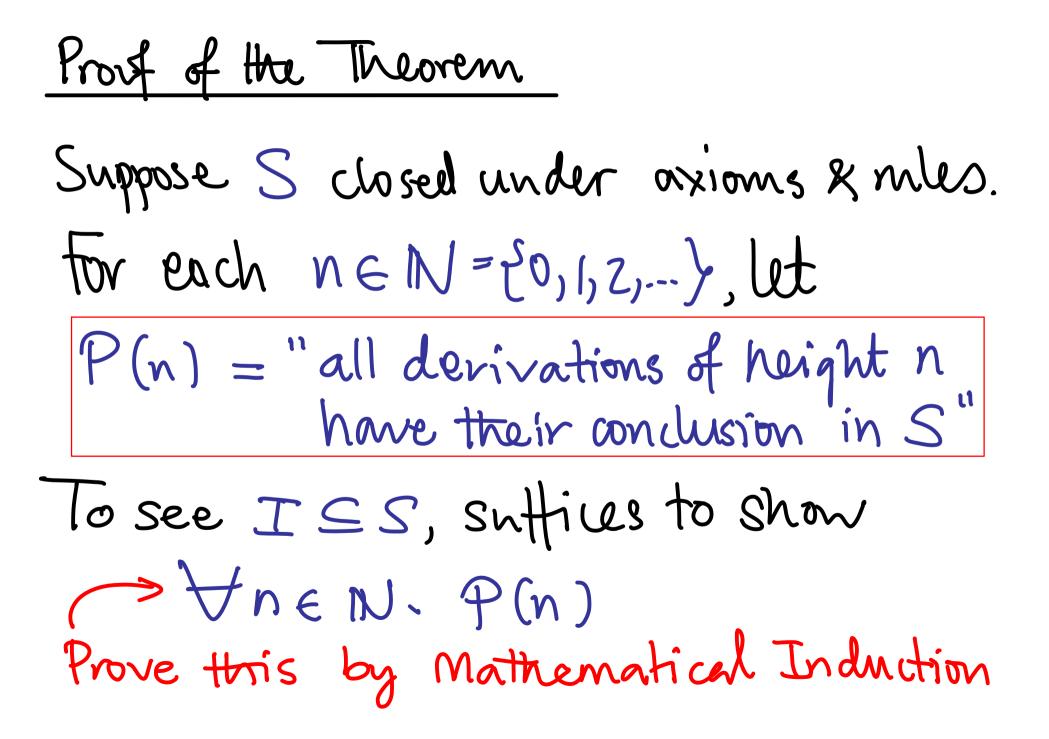
"the least subset closed under the axioms & mles" 's sometimes taken as the definition of "inductively defined subset"





Proof of the Theorem.
So I is closed under the axioms simples.
Finally, need to show for any
$$S \subseteq U$$

S closed under axioms & mles
implies $I \subseteq S$



Prost of the Theorem

P(n) = "all derivations of height n have their conclusion in S"

• Base case P(0) - trivial /

Prost of the Theorem

P(n) = "all derivations of height n have their conclusion in S"

• Base case P(0) - trivial• Induction step $P(n) \Rightarrow P(n+1)$

Prove of the Theorem

P(n) = "all derivations of height n have their conclusion in S"

• Induction step $P(n) \Rightarrow P(n+1)$ Suppose P(n) & D is a derivation of heigh n+1, with conclusion c say. So D looks like $\overline{D_1} - \overline{D_m}$ Dm/Cm His is one of the mes $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{$

Prove of the Theorem

P(n) = "all derivations of height n have their conclusion in S"

• Induction step $P(n) \Rightarrow P(n+1)$ Suppose P(n) & D is a derivation of heigh n+1, with conclusion c say, So D looks like D_1 . D_m heigh this is one of the mes (or anaxion, if n=0) $\int C_1$ Dm/height n

Prove of the Theorem

P(n) = "all derivations of height n have their conclusion in S"

• Induction step $P(n) \Rightarrow P(n+1)$ Suppose P(n) & D is a derivation of heigh n+1, with conclusion c say. So D looks like c_1 c_2 c_3 c_4 c_5 c_6 c_1 n

Prove of the Theorem

P(n) = "all derivations of height n have their conclusion in S"

• Induction step $P(n) \Rightarrow P(nt)$ Suppose P(n) & D is a derivation of heigh n+1, with conclusion c say. So D looks like this is one of the mes under which S is dosed, So

$$P(n) =$$
 "all derivations of height n
have their conclusion in S"

• Induction step $P(n) \Rightarrow P(nt_1)$ Suppose $P(n) \gtrsim D$ heigh n+1, with conclusion c ... we have proved $P(nt_1)$.

Rule Induction

Theorem. The subset $I \subseteq U$ inductively defined by a collection of axioms and rules is closed under them and is the least such subset: if $S \subseteq U$ is also closed under the axioms and rules, then $I \subseteq S$.

We use the theorem as method of proof: given a property P(u) of elements of U, to prove $\forall u \in I. P(u)$ it suffices to show

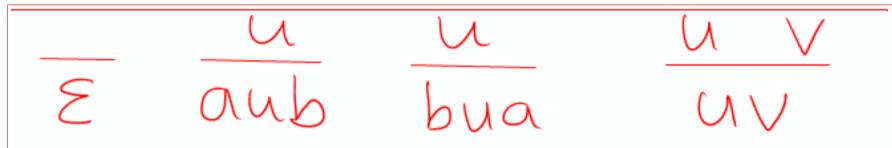
• base cases: P(a) holds for each axiom $-\frac{a}{a}$

► induction steps: $P(h_1) \& P(h_2) \& \cdots \& P(h_n) \Rightarrow P(c)$ holds for each rule $\frac{h_1 h_2 \cdots h_n}{c}$

(To see this, apply the theorem with $S = \{u \in U \mid P(u)\}$.)

Example using rule induction

Let I be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 15.



Associated Rule Induction:

 $P(\varepsilon)$ $&\forall u \in I. P(u) \Rightarrow P(aub)$ $&\forall u \in I. P(u) \Rightarrow P(bua)$ $&\forall u \in I. P(u) \Rightarrow P(v) \Rightarrow P(uv)$ $\Rightarrow \forall u \in I. P(u) &P(v)$

Example using rule induction

Let **I** be the subset of $\{a, b\}^*$ inductively defined by the axioms and rules on Slide 15.

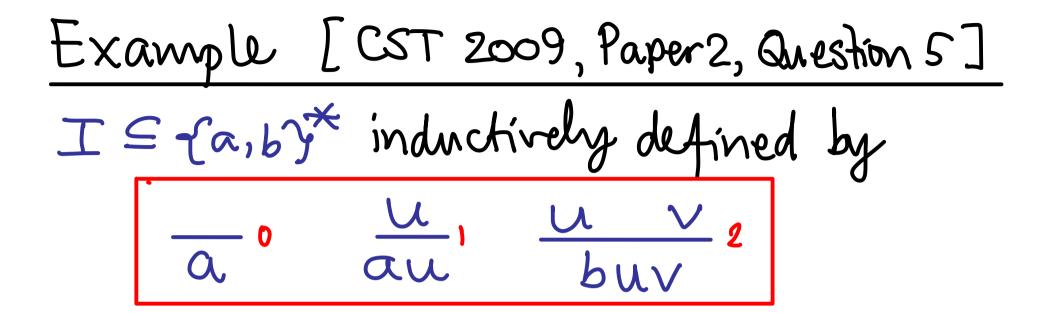
For $u \in \{a, b\}^*$, let P(u) be the property

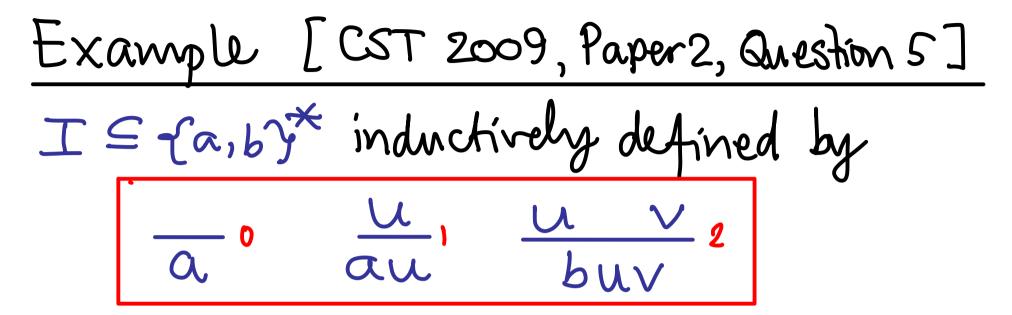
u contains the same number of a and b symbols

We can prove $\forall u \in I. P(u)$ by rule induction:

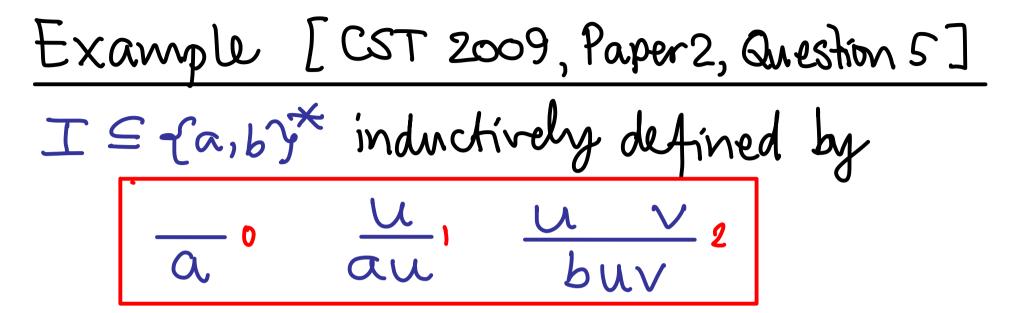
- **base case:** $P(\varepsilon)$ is true (the number of *a*s and *b*s is zero!)
- induction steps: if P(u) and P(v) hold, then clearly so do P(aub), P(bua) and P(uv).

(It's not so easy to show $\forall u \in \{a, b\}^*$. $P(u) \Rightarrow u \in I$ – rule induction for I is not much help for that.)

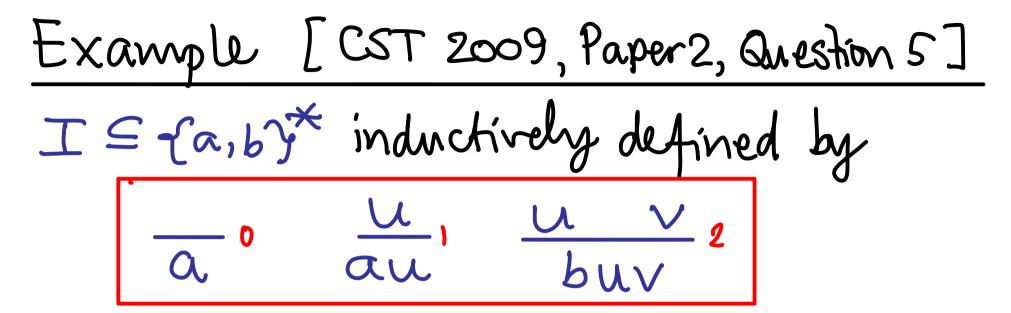




In this case Rule Induction says: if (0) P(a)& (1) $\forall u \in I$. $P(u) \Rightarrow P(au)$ & (2) $\forall u, v \in I$. $P(u) \Rightarrow P(v) \Rightarrow P(buv)$ then $\forall u \in I$. P(u)



Want to show $u \in \mathbb{I} \implies \#_a(u) > \#_b(u)$ $\uparrow number of 'a's$ in the string u



Want to show $u \in I \implies \#_a(u) > \#_b(u)$ Do so by Rule Induction, with property $P(u) = \#_a(u) > \#_b(u)$

Example [CST 2009, Paper 2, Question 5]

$$I = \frac{1}{a,b} + \frac{1}{b} + \frac{1}{b}$$

Example [CST 2009, Paper 2, Question 5]

$$I = \{a, b\}^{*} \text{ inductively defined by}$$

$$\boxed{a} \circ \frac{u}{au}, \frac{u}{buv} \circ 2$$

$$P[u] = \#(u) > \#_{b}(u)$$
(0) $P(a)$ holds $(1 > 0)$
(1) If $P(u)$, then $\#_{a}(au) = 1 + \#_{a}(u)$

$$> \#_{a}(u)$$

$$> \#_{b}(u)$$

Example [CST 2009, Paper 2, Question 5]

$$I = \frac{1}{a} \cdot \frac{1}{b} \cdot$$

Example [CST 2009, Paper 2, Question 5]

$$I = (a, b)^{*} \text{ inductively defined by}$$

$$\left[\frac{a}{a} \cdot \frac{u}{au}, \frac{u}{buv} \right]^{2}$$

$$P(u) = \#(u) > \#_{b}(u)$$
(2) Suppose $P(u) & P(v) \text{ hold. Then}$

$$\#(buv) = \#_{a}(u) + \#_{a}(v)$$

Example [CST 2009, Paper2, Question 5]

$$I \subseteq \{a, b\}^{*} \text{ inductively defined by}$$

$$\left[\boxed{a}^{\circ} \qquad \frac{u}{au}, \qquad \frac{u}{buv} \right]^{2}$$

$$P(u) = \#_{a}(u) > \#_{b}(u)$$
(2) Suppose $P(u) & P(v) \text{ hold. Then}$

$$\#_{a}(buv) = \#_{a}(u) + \#_{a}(v)$$

$$\geq (\#_{b}(u) + 1) + (\#_{b}(v) + 1)$$

Example [CST 2009, Paper 2, Question 5]

$$I \subseteq \{a, b\}^{*} \text{ inductively defined by}$$

$$\left[\boxed{a} \circ \frac{u}{au}, \frac{u}{buv} \right]^{2}$$

$$P[u] = \#(u) > \#_{b}(u)$$
(2) Suppose $P(u) \& P(v) \text{ hold. Then}$

$$\#(buv) = \#_{a}(u) + \#_{b}(v)$$

$$\geq \#_{b}(u) + \#_{b}(v) + 2$$

$$\geq \#_{b}(u) + \#_{b}(v) + 1$$

Example [CST 2009, Paper2, Question 5]

$$I \subseteq \{a, b\}^{*} \text{ inductively defined by}$$

$$\left[\boxed{a}^{\circ} \qquad \frac{u}{au}, \qquad \frac{u}{buv}^{\circ} 2 \\ P[u] = \#(u) > \#_{b}(u)$$
(2) Suppose P(u) & P(v) hold. Then

$$\#(buv) = \#_{a}(u) + \#_{b}(v)$$

$$\geq \#_{b}(u) + \#_{b}(v) + 1$$

$$= \#_{b}(buv)$$

Example [CST 2009, Paper 2, Question 5]

$$I \subseteq \{a, b\}^{*} \text{ inductively defined by}$$

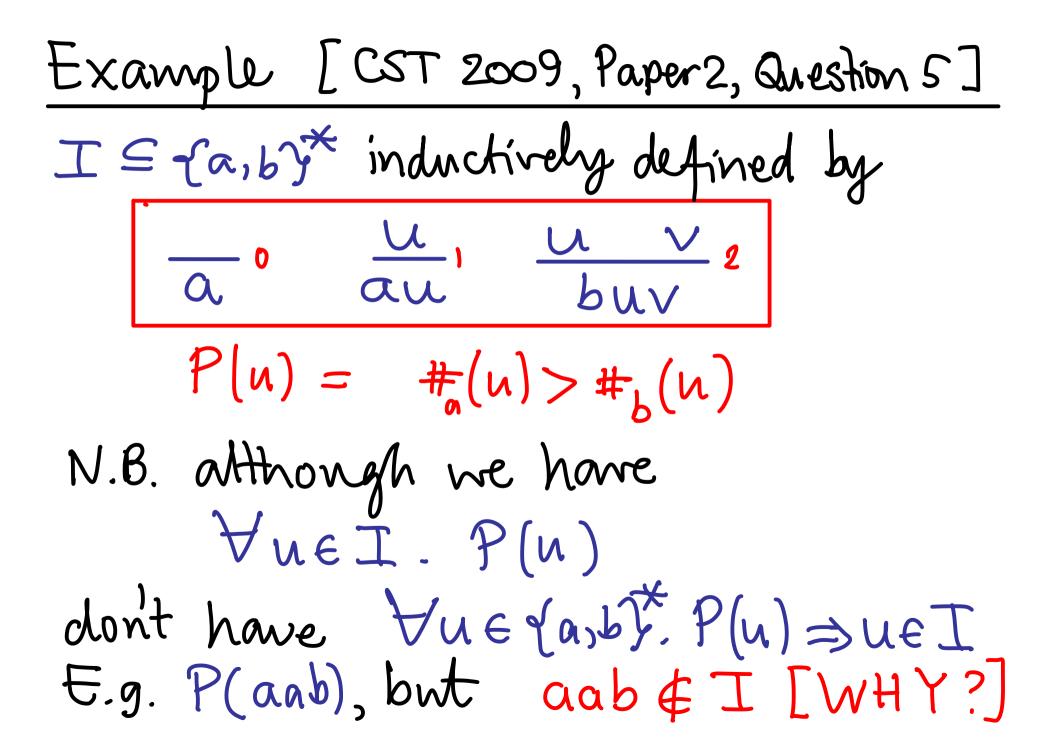
$$\left[\boxed{a} \circ \frac{u}{au}, \frac{u}{buv} \right]^{2}$$

$$P[u] = \#(u) > \#_{b}(u)$$
(2) Suppose $P(u) & P(v) \text{ hold. Then}$

$$\#(buv) = \#_{a}(u) + \#_{b}(v)$$

$$> \#_{b}(u) + \#_{b}(v) + 1$$

$$= \#_{b}(buv) \text{ so } P(buv) \text{ holds.}$$



Deciding membership of an inductively defined subset (an be hard!

Ł.g...

$$\frac{Gollatz}{Gonjecture}$$

$$f(n) = \begin{cases} 1 & \text{if } n=0,1 \\ f(n/2) & \text{if } n>1,n \text{ even} \\ f(3n+1) & \text{if } n>1,n \text{ odd} \end{cases}$$
Does this define a total function
$$f: N \rightarrow N ? \quad (nobody \text{ knows})$$

$$(\text{If it does, then } f \text{ is } necessarily \\ the constantly 1 function } n \rightarrow 1.)$$

