$(A \Rightarrow B) \subseteq (A \Rightarrow B) \subseteq Rul(A,B)$ the set of functions from A-to B P(AXB)

Functions (or maps)

Definition 120 A partial function is said to be total, and referred to as a (total) function or map, whenever its domain of definition coincides with its source.

A partial function
$$f:A \rightarrow B$$
 is total
whenever for all a EA,

f(a) \(i.e. \frac{1}{3} \) beBs.t afb \(f(a) \)

Theorem 121 For all 6 \(\text{Rol}(A, B) \)

Theorem 121 For all $f \in Rel(A, B)$,

$$f \in (A \Rightarrow B) \iff \forall a \in A. \exists! b \in B. afb$$
.

Proposition 122 For all finite sets A and B,

PROOF IDEA:
$$A = \{a_1, \dots, a_m\}$$
 $B = \{b_1, \dots, b_m\}$

AxB bn

$$b_1 = \{a_1, \dots, a_m\}$$

$$a_1 = \{a_2, \dots, a_m\}$$

$$a_1 = \{a_1, \dots, a_m\}$$

$$B = \{b_1, \dots, b_m\}$$

$$a_1 = \{a_1, \dots, a_m\}$$

$$a_1 = \{a_1, \dots, a_m\}$$

Jm ML, 0: (B-17) * (X-17) -> X-18

Theorem 123 The identity partial function is a function, and the composition of functions yields a function.

NB

- 1. $f = g : A \rightarrow B \text{ iff } \forall \alpha \in A. f(\alpha) = g(\alpha).$
- 2. For all sets A, the identity function $id_A : A \rightarrow A$ is given by the rule

$$id_A(a) = a$$

and, for all functions $f: A \to B$ and $g: B \to C$, the composition function $g \circ f: A \to C$ is given by the rule

$$(g \circ f)(a) = g(f(a)) .$$

mver hible processes on transformations. Bijections

Definition 124 A function $f: A \to B$ is said to be bijective, or a bijection, whenever there exists a (necessarily unique) function $g: B \to A$ (referred to as the inverse of f) such that

- 1. g is a retraction (or left inverse) for f: $g \circ f = \mathrm{id}_A \quad ,$
- 2. g is a section (or right inverse) for f: $f \circ g = \mathrm{id}_B \quad .$

when her
$$\exists g:3-1$$

 $s.t.$

$$g(f(a)) = a$$

$$f(g(b)) = b$$

$$\forall a \in A, b \in B.$$

Rel ([m], [n]) rel (m×n)-makrus mat (R) rel (R) Birechions

Bize chons between finite sets 21e per mut strons Proposition 126 For all finite sets A and B,

$$\# \operatorname{Bij}(A,B) = \begin{cases} 0 & \text{, if } \# A \neq \# B \\ n! & \text{, if } \# A = \# B = n \end{cases}$$

$$\operatorname{PROOF IDEA:} \quad N - 1 \quad N - 2 \quad 1 \quad \text{alphable} \quad A \mapsto b$$

$$\operatorname{bin} \quad \operatorname{bin} \quad \operatorname{$$

Theorem 127 The identity function is a bijection, and the composition of bijections yields a bijection.

If finatizection from A to B, by My, There is a g from Sto A s.t. 30f=rd and fog=rd In Bet, such a g is unique! And we typetally call at the inverse of f and alusted f⁻¹. $gof:A\rightarrow C$ $f:A\rightarrow B, g:B\rightarrow C$ gren f^{-1} . $B \rightarrow A$, g^{-1} : $C \rightarrow B$ define $(g \circ f)^{-1}$: $C \rightarrow A$



Definition 128 Two sets A and B are said to be <u>isomorphic</u> (and to have the <u>same cardinatity</u>) whenever there is a bijection between them; in which case we write

$$A \cong B$$
 or $\#A = \#B$.

Examples:

- 1. $\{0, 1\} \cong \{\text{false}, \text{true}\}.$
- **2.** $\mathbb{N}\cong\mathbb{N}^+$, $\mathbb{N}\cong\mathbb{Z}$, $\mathbb{N}\cong\mathbb{N}\times\mathbb{N}$, $\mathbb{N}\cong\mathbb{Q}$.

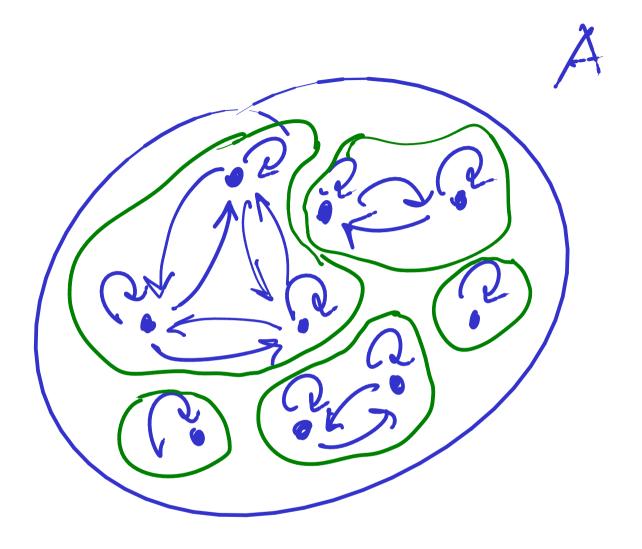
 $N = -\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = -\frac{1}{2} = -\frac{1}{2}$ la hijection.

NXM (m,n)

Equivalence relations and set partitions

► Equivalence relations.

ESAXA. s.t. Haca a Ea reflexivity Ha, a', a'' CA. a E a' n a' E a'') a E a''
translit. transi hvity Va, a'GA. a E e' => a' Ea symmetriz.



Set partitions. The A set A is a set of sibsets of A such That (1) brerg a GA is in one of the subsets $U\pi = A$ (2) Any two different subsets in The Month over lop. If S, T E TT SITOSOTOS. Theorem 131 For every set A,

 $\operatorname{EqRel}(A) \cong \operatorname{Part}(A)$.

Proof:

PROOF:

(1) Part(A)
$$\longrightarrow$$
 Eqrel(A)

 $T \longmapsto \rightarrow$ ETT S. A \times A

 $a \in T$ $a' \in T$ $a \in S$

(2) Eqrel(A) \longrightarrow But(A) $a' \in S$
 $E \longmapsto A/E = S[a] \in [a \in A]$