The division theorem and algorithm

Theorem 42 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0$, $0 \le r < n$, and $m = q \cdot n + r$.

Definition 43 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and rem(m, n).

The Division Algorithm in ML:

```
fun divalg( m , n )
 = let
     fun diviter( q , r )
       = if r < n then (q, r)
         else diviter( q+1 , r-n )
   in
     diviter(0, m)
   end
fun quo(m, n) = #1(divalg(m, n))
```

fun rem(m, n) = #2(divalg(m, n))

Theorem 44 For every natural number m and positive natural number n, the evaluation of divalg(m, n) terminates, outputing a pair of natural numbers (q_0, r_0) such that $r_0 < n$ and $m = q_0 \cdot n + r_0$.

Proposition 45 Let m be a positive integer. For all natural numbers k and l,

 $k \equiv l \pmod{m} \iff \operatorname{rem}(k,m) = \operatorname{rem}(l,m)$.

Corollary 46 Let m be a positive integer.

1. For every natural number n,

 $n \equiv \operatorname{rem}(n,m) \pmod{m}$.

Corollary 46 Let m be a positive integer.

1. For every natural number n,

```
n \equiv \operatorname{rem}(n,m) \pmod{m} .
```

2. For every integer k there exists a unique integer $[k]_m$ such that $0 \leq [k]_m < m \text{ and } k \equiv [k]_m \pmod{m}$.

Modular arithmetic

For every positive integer m, the *integers modulo* m are:

\mathbb{Z}_m : 0, 1, ..., m-1.

with arithmetic operations of addition $+_{\mathfrak{m}}$ and multiplication $\cdot_{\mathfrak{m}}$ defined as follows

$$k +_{m} l = [k + l]_{m} = \operatorname{rem}(k + l, m) ,$$

$$k \cdot_{m} l = [k \cdot l]_{m} = \operatorname{rem}(k \cdot l, m)$$

for all $0 \leq k, l < m$.

Example 48 The addition and multiplication tables for \mathbb{Z}_4 are:

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse				
0	0	0	_				
1	3	1	1				
2	2	2	_				
3	1	3	3				

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

Example 49 The addition and multiplication tables for \mathbb{Z}_5 are:

$+_{5}$	0	1	2	3	4	•5	0	1	2	3	4
0						0	0	0	0	0	0
1	1	2	3	4	0	1	0	1	2	3	4
2						2	0	2	4	1	3
3							0				
4	4	0	1	2	3	4	0	4	3	2	1

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse				
0	0	0	_				
1	4	1	1				
2	3	2	3				
3	2	3	2				
4	1	4	4				

Surprisingly, every non-zero element has a multiplicative inverse.

Proposition 50 For all natural numbers m > 1, the modular-arithmetic structure

 $(\mathbb{Z}_m, 0, +_m, 1, \cdot_m)$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses