
Adequacy

For any closed PCF terms M and V of ground type

γ ∈ {nat , bool} with V a value

[[M ]] = [[V ]] ∈ [[γ]] =⇒ M ⇓γ V .
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Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a

straightforward induction on the structure of terms.

◮ Consider M to be M1M2, fix(M ′).
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Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a

straightforward induction on the structure of terms.

◮ Consider M to be M1M2, fix(M ′).

2. So we proceed to prove a stronger statement that applies to

terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

[[M ]] ⊳τ M for all types τ and all M ∈ PCFτ

where the formal approximation relations

⊳τ ⊆ [[τ ]]× PCFτ

are logically chosen to allow a proof by induction.
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Definition of d ⊳γ M (d ∈ [[γ]],M ∈ PCFγ)

for γ ∈ {nat , bool}

n ⊳nat M
def
⇔

(
n ∈ N ⇒ M ⇓nat succ

n(0)
)

b ⊳bool M
def
⇔ (b = true ⇒ M ⇓bool true)

& (b = false ⇒ M ⇓bool false)
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Proof of: [[M ]] ⊳γ M implies adequacy

Case γ = nat .

[[M ]] = [[V ]]

=⇒ [[M ]] = [[succn(0)]] for some n ∈ N

=⇒ n = [[M ]] ⊳γ M

=⇒ M ⇓ succn(0) by definition of ⊳nat

Case γ = bool is similar.
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Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

◮ Consider the case M = M1 M2.

❀ logical definition
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Definition of

f ⊳τ→τ ′ M
(
f ∈ ([[τ ]] → [[τ ′]]),M ∈ PCFτ→τ ′

)

f ⊳τ→τ ′ M

def
⇔ ∀x ∈ [[τ ]], N ∈ PCFτ

(x ⊳τ N ⇒ f(x) ⊳τ ′ M N)
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Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

◮ Consider the case M = fix(M ′).

❀ admissibility property
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Admissibility property

Lemma. For all types τ and M ∈ PCFτ , the set

{ d ∈ [[τ ]] | d ⊳τ M }

is an admissible subset of [[τ ]].
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Further properties

Lemma. For all types τ , elements d, d′ ∈ [[τ ]], and terms

M,N, V ∈ PCFτ ,

1. If d ⊑ d′ and d′ ⊳τ M then d ⊳τ M .

2. If d ⊳τ M and ∀V (M ⇓τ V =⇒ N ⇓τ V )
then d ⊳τ N .
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Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

◮ Consider the case M = fnx : τ .M ′.

❀ substitutivity property for open terms
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Fundamental property

Theorem. For all Γ = 〈x1 7→ τ1, . . . , xn 7→ τn〉 and all

Γ ⊢ M : τ , if d1 ⊳τ1 M1, . . . , dn ⊳τn Mn then

[[Γ ⊢ M ]][x1 7→ d1, . . . , xn 7→ dn] ⊳τ M [M1/x1, . . . ,Mn/xn] .

NB. The case Γ = ∅ reduces to

[[M ]] ⊳τ M

for all M ∈ PCFτ .
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Contextual preorder between PCF terms

Given PCF terms M1,M2, PCF type τ , and a type environment

Γ, the relation Γ ⊢ M1 ≤ctx M2 : τ is defined to hold iff

• Both the typings Γ ⊢ M1 : τ and Γ ⊢ M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type γ, where γ = nat or γ = bool ,

and for all values V ∈ PCFγ ,

C[M1] ⇓γ V =⇒ C[M2] ⇓γ V .
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Extensionality properties of ≤ctx

At a ground type γ ∈ {bool , nat},

M1 ≤ctx M2 : γ holds if and only if

∀V ∈ PCFγ (M1 ⇓γ V =⇒ M2 ⇓γ V ) .

At a function type τ → τ ′,
M1 ≤ctx M2 : τ → τ ′ holds if and only if

∀M ∈ PCFτ (M1M ≤ctx M2M : τ ′) .
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Topic 8

Full Abstraction
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Proof principle

For all types τ and closed terms M1,M2 ∈ PCFτ ,

[[M1]] = [[M2]] in [[τ ]] =⇒ M1
∼=ctx M2 : τ .

Hence, to prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ ]] .
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Full abstraction

A denotational model is said to be fully abstract whenever denota-

tional equality characterises contextual equivalence.

◮ The domain model of PCF is not fully abstract.

In other words, there are contextually equivalent PCF terms

with different denotations.
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Failure of full abstraction, idea

We will construct two closed terms

T1, T2 ∈ PCF(bool→(bool→bool))→bool

such that

T1
∼=ctx T2

and

[[T1]] 6= [[T2]]
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