
Contextual equivalence

Two phrases of a programming language are contextually

equivalent if any occurrences of the first phrase in a

complete program can be replaced by the second phrase

without affecting the observable results of executing the

program.

68



Contextual equivalence of PCF terms

Given PCF terms M1,M2, PCF type τ , and a type

environment Γ, the relation Γ ⊢ M1
∼=ctx M2 : τ

is defined to hold iff

• Both the typings Γ ⊢ M1 : τ and Γ ⊢ M2 : τ hold.

• For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type γ, where γ = nat or γ = bool ,

and for all values V : γ,

C[M1] ⇓γ V ⇔ C[M2] ⇓γ V.

69



PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].

• Closed PCF terms M : τ 7→ elements [[M ]] ∈ [[τ ]].

Denotations of open terms will be continuous functions.

• Compositionality.

In particular: [[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]].

70



PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].

• Closed PCF terms M : τ 7→ elements [[M ]] ∈ [[τ ]].

Denotations of open terms will be continuous functions.

• Compositionality.

In particular: [[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]].

• Soundness.

For any type τ , M ⇓τ V ⇒ [[M ]] = [[V ]].

70



PCF denotational semantics — aims

• PCF types τ 7→ domains [[τ ]].

• Closed PCF terms M : τ 7→ elements [[M ]] ∈ [[τ ]].

Denotations of open terms will be continuous functions.

• Compositionality.

In particular: [[M ]] = [[M ′]] ⇒ [[C[M ]]] = [[C[M ′]]].

• Soundness.

For any type τ , M ⇓τ V ⇒ [[M ]] = [[V ]].

• Adequacy.

For τ = bool or nat , [[M ]] = [[V ]] ∈ [[τ ]] =⇒ M ⇓τ V .

70



Theorem. For all types τ and closed terms M1,M2 ∈ PCFτ ,

if [[M1]] and [[M2]] are equal elements of the domain [[τ ]], then

M1
∼=ctx M2 : τ .

71



Proof principle

To prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ ]]

72



Proof principle

To prove

M1
∼=ctx M2 : τ

it suffices to establish

[[M1]] = [[M2]] in [[τ ]]

? The proof principle is sound, but is it complete? That is,
is equality in the denotational model also a necessary
condition for contextual equivalence?

72



Topic 6

Denotational Semantics of PCF

73



Denotational semantics of PCF

To every typing judgement

Γ ⊢ M : τ

we associate a continuous function

[[Γ ⊢ M ]] : [[Γ]] → [[τ ]]

between domains.

74



Denotational semantics of PCF types

[[nat ]]
def
= N⊥ (flat domain)

[[bool ]]
def
= B⊥ (flat domain)

[[τ → τ ′]]
def
= [[τ ]]→ [[τ ′]] (function domain).

where N = {0, 1, 2, . . . } and B = {true, false}.

75



Denotational semantics of PCF type environments

[[Γ]]
def
=

∏

x∈dom(Γ) [[Γ(x)]] (Γ-environments)

76



Denotational semantics of PCF type environments

[[Γ]]
def
=

∏

x∈dom(Γ) [[Γ(x)]] (Γ-environments)

= the domain of partial functions ρ from variables

to domains such that dom(ρ) = dom(Γ) and

ρ(x) ∈ [[Γ(x)]] for all x ∈ dom(Γ)

76



Denotational semantics of PCF type environments

[[Γ]]
def
=

∏

x∈dom(Γ) [[Γ(x)]] (Γ-environments)

= the domain of partial functions ρ from variables

to domains such that dom(ρ) = dom(Γ) and

ρ(x) ∈ [[Γ(x)]] for all x ∈ dom(Γ)

Example:

1. For the empty type environment ∅,

[[∅]] = {⊥}

where ⊥ denotes the unique partial function with

dom(⊥) = ∅.

76



2. [[〈x 7→ τ〉]] =
(
{x } → [[τ ]]

)
∼= [[τ ]]

3.

[[〈x1 7→ τ1, . . . , xn 7→ τn〉]]

∼=
(
{x1 } → [[τ1]]

)
× . . .×

(
{xn } → [[τn]]

)

∼= [[τ1]]× . . .× [[τn]]

77



Denotational semantics of PCF terms, I

[[Γ ⊢ 0]](ρ)
def
= 0 ∈ [[nat ]]

[[Γ ⊢ true]](ρ)
def
= true ∈ [[bool ]]

[[Γ ⊢ false]](ρ)
def
= false ∈ [[bool ]]

78



Denotational semantics of PCF terms, I

[[Γ ⊢ 0]](ρ)
def
= 0 ∈ [[nat ]]

[[Γ ⊢ true]](ρ)
def
= true ∈ [[bool ]]

[[Γ ⊢ false]](ρ)
def
= false ∈ [[bool ]]

[[Γ ⊢ x]](ρ)
def
= ρ(x) ∈ [[Γ(x)]]

(
x ∈ dom(Γ)

)

78



Denotational semantics of PCF terms, II

[[Γ ⊢ succ(M)]](ρ)

def
=

{

[[Γ ⊢ M ]](ρ) + 1 if [[Γ ⊢ M ]](ρ) 6= ⊥

⊥ if [[Γ ⊢ M ]](ρ) = ⊥

79



Denotational semantics of PCF terms, II

[[Γ ⊢ succ(M)]](ρ)

def
=

{

[[Γ ⊢ M ]](ρ) + 1 if [[Γ ⊢ M ]](ρ) 6= ⊥

⊥ if [[Γ ⊢ M ]](ρ) = ⊥

[[Γ ⊢ pred(M)]](ρ)

def
=

{

[[Γ ⊢ M ]](ρ)− 1 if [[Γ ⊢ M ]](ρ) > 0

⊥ if [[Γ ⊢ M ]](ρ) = 0,⊥

[[Γ ⊢ zero(M)]](ρ)
def
=







true if [[Γ ⊢ M ]](ρ) = 0

false if [[Γ ⊢ M ]](ρ) > 0

⊥ if [[Γ ⊢ M ]](ρ) = ⊥

79



Denotational semantics of PCF terms, III

[[Γ ⊢ if M1 then M2 else M3]](ρ)

def
=







[[Γ ⊢ M2]](ρ) if [[Γ ⊢ M1]](ρ) = true

[[Γ ⊢ M3]](ρ) if [[Γ ⊢ M1]](ρ) = false

⊥ if [[Γ ⊢ M1]](ρ) = ⊥

[[Γ ⊢ M1M2]](ρ)
def
=

(
[[Γ ⊢ M1]](ρ)

)
([[Γ ⊢ M2]](ρ))

80



Denotational semantics of PCF terms, IV

[[Γ ⊢ fnx : τ .M ]](ρ)

def
= λd ∈ [[τ ]] . [[Γ[x 7→ τ ] ⊢ M ]](ρ[x 7→ d])

(
x /∈ dom(Γ)

)

NB: ρ[x 7→ d] ∈ [[Γ[x 7→ τ ]]] is the function mapping x to d ∈ [[τ ]]

and otherwise acting like ρ.

81



Denotational semantics of PCF terms, V

[[Γ ⊢ fix(M)]](ρ)
def
= fix ([[Γ ⊢ M ]](ρ))

Recall that fix is the function assigning least fixed points to continuous

functions.

82



Denotational semantics of PCF

Proposition. For all typing judgements Γ ⊢ M : τ , the

denotation

[[Γ ⊢ M ]] : [[Γ]] → [[τ ]]

is a well-defined continous function.

83



Denotations of closed terms

For a closed term M ∈ PCFτ , we get

[[∅ ⊢ M ]] : [[∅]]→ [[τ ]]

and, since [[∅]] = {⊥}, we have

[[M ]]
def
=

[[
∅ ⊢ M

]]
(⊥) ∈ [[τ ]] (M ∈ PCFτ )

84


