Distributed systems
Lecture 2: Network File System and Object-Oriented Middleware

Dr. Robert N. M. Watson



Last time

* Distributed systems are everywhere
— Challenges including concurrency, delays & failures
— The importance of transparency

* Simplest distributed systems are client/server
— Client sends request as message
— Server gets message, performs operation, and replies
— Some care required handling retry semantics, timeouts

* One popular client/server model is RPC
— invoking methods on server over the network

— Middleware generates stub code which can marshal /
unmarshal arguments and replies — e.g. SUnRPC/XDR

— Transparency for the programmer, not just the user



Case Study: NFS

NFS = Networked File System (developed Sun)
— aimed to provide distributed filing by remote access

* Key design decisions: Transparency for users
— Distributed file system vs. remote disks BRI T alelaop o101
— Client-server model also NFS programmers:
— High degree of transparency hence SunRPC

— Tolerant of node crashes or network failure
First public version, NFS v2 (1989), did this by:

— Unix file system semantics (or almost)
— Integration into kernel (including mount)
— Simple stateless client/server architecture

A set of RPC “programs”: mountd, nfsd, lockd, statd, ...



NFS: Client/Server Architecture

Client side Server Side

User Program

_______________ i I — e

Syscall Level Syscall Level
VFS Layer VFS Layer
Local FS NFS Client NFS Server Local FS

@ RPC Request T
RPC Response

* Client uses opaque file handles to refer to files
e Server translates these to local inode numbers

e SunRPC with XDR running over UDP (originally)




NFS: Mountin

/ /
/N AN
/tmp /mnt /home /bin

x/ \V

* NFS RPCs are methods on files; file handle is an RPC argument
* Dedicated mount RPC protocol which:

— Performs authentication (if any);

— Negotiates any optional session parameters; and

— Returns root filehandle




Scopin

fhandle t + ufid_t

fsid
User Program
int 6 -------------------- len pad
struct file * Syscall Level gen
%k
struct vnode VFS Layer
struct vnode * fhandle_t
struct nfsnode * NFS Client > NFS Server
VFS Layer
Local FS

* Something interesting is going on with names
— Each layer is aware only certain scopes
— Layers translate namespaces when transitioning
— Contents of names between layers are often opaque

* Pure vs impure names (Needham)

ino

fhandle t
struct vnode *

fhandle_t
struct vnode *
struct inode *

NFS

File
system



NFS is Stateless

Key NFS design decision to ease fault recovery
— Obviously, file systems aren’t stateless, so...

Stateless means:
— Doesn’t keep any record of current clients
— Doesn’t keep any record of current open files

Hence server can crash + reboot, and clients
shouldn’t have to do anything (except wait ;-)

Clients can crash, and server doesn’t need to do
anything (no cleanup etc)



Implications of Stateless-ness

* No “open” or “close” operations
— use lookup(<pathname>)
* No implicit arguments

— e.g. cannot support read(fd, buf, 2048)
— Instead use read(fh, buf, offset, 2048)

* Note this also makes operations idempotent
— This use of SunRPC gives at-least-once semantics
— Tolerate message duplication in network, RPC retries

* Challenges in providing Unix FS semantics...



Semantic Tricks gand I\/Iesses}

* rename() is fundamentally non-idempotent
— Servers-side “cache” recent RPC replies for replay

* unlink() tricky — what if you discard a file that a client has
“open”?
— Local semantics require files to persist even after last unlink()
— NFS client translates unlink() to rename(): silly rename
— Only works on same client (not server delete, or another client)
— NFS file handles contain an inode generation number - ESTALE

e Stateless file locking seems impossible
— Add two other daemons: rpc.lockd and rpc.statd

— Server reboot => rpc.lockd contacts clients
— Client reboot => server’s rpc.statd tries contact



Performance Problems

 Neither side knows if other is alive or dead

— All writes must be synchronously committed on
server before it returns success

* Very limited client caching...

— Risk of inconsistent updates if multiple clients
have file open for writing at the same time

e These two facts alone meant that NFS v2 had
truly dreadful performance



NFS Evolution

* NFSv3(1995): mostly minor enhancements
— Scalability

* Remove limits on path- and file-name lengths
* Allow 64-bit offsets for large files
* Allow large (>8KB) transfer size negotiation

— Explicit asynchrony
* Server can do asynchronous writes (write-back)
e Client sends explicit commit after some #writes

* Timestamps piggybacked on most server replies allowing clients to
manage read cache validity: close-to-open consistency

— Optimized operations (readdirplus, symlink)
e But had major impact on performance

11



NFSv3 readdirplus

drwxr-xr-x 55 al565 al565
drwxr-xr-x 115 am21l am21
drwxr-xr-x 214 atm26 atm26

NFSv2 behaviour for “Is —I”

— readdir() triggers NFS_READDIR
to request names and handles

— stat() on each file triggers one
NFS_GETATTR RPC

NFS3 READDIRPLUS returns a
names, handles, and attributes

— Eliminates a vast number of
round-trip times

Principle: mask network latency by
batching synchronous operations

NFSv2 Client

12288 Feb 8 15:47 al565/
49152 Feb 10 18:19 am21l/
36864 Feb 1 17:09 atm26/

NFSv3 Client

READDIR —
= -
- 2
GETATTR ~ | ©
P n
— N
GETATTR — | 32
L= L
— =2

GETATTR —

e

—
— — | 2
READDIRPLUS = | &
= <
(90
>
(%)
L
Z

114Xy

L
11UXT

12



NFS Evolution (2)

 NFSv4 (2003): major rethink

— Single stateful protocol (including mount, lock)
— TCP (or at least reliable transport) only

— Explicit open and close operations

— Share reservations

— Delegation

— Arbitrary compound operations

— Many lessons learned from AFS (later in term)

* Now starting to see deployment...

13



Improving over SUnRPC

e SUnRPC (now “ONC RPC”) very successful but
— Clunky (manual program, procedure numbers, etc)
— Limited type information (even with XDR)
— Hard to scale beyond simple client/server

* One improvement was OSF DCE (early 90’s)
— Another project that learned from AFS
— DCE = “Distributed Computing Environment”

— Larger middleware system including a distributed file
system, a directory service, and DCE RPC

— Deals with a collection of machines — a cell — rather
than just with individual clients and servers



DCE RPC versus SunRPC

* Quite similar in many ways

— Interfaces written in Interface Definition Notation
(IDN), and compiled to skeletons and stubs

— NDR wire format: little-endian by default (woot!)
— Can operate over various transport protocols

* Better security, and location transparency

— Services identified by 128-bit “Universally” Unique
identifiers (UUIDs), generated by uuidgen

— Server registers UUID with cell-wide directory service

— Client contacts directory service to locate server...
which supports service move, or replication



Object-Oriented Middleware

* Neither SunRPC / DCE RPC good at handling
types, exceptions, or polymorphism

e Object-Oriented Middleware (OOM) arose in
the early 90s to address this

— Assume programmer is writing in OO-style

— Provide illusion of ‘remote object’ which can be
manipulated just like a regular (local) object

— Makes it easier to program (e.g. can pass a
dictionary object as a parameter)



CORBA (1989)

* First OOM system was CORBA

— Common Object Request Broker Architecture
— specified by the OMG: Object Management Group

e OMA (Object Management Architecture) is the
general model of how objects interoperate

— Objects provide services.
— Clients makes a request to an object for a service.

— Client doesn’t need to know where the object is, or anything
about how the object is implemented!

— Object interface must be known (public)

17



Object Request Broker (ORB)

e The ORB is the core of the architecture

— Connects clients to object implementations

— Conceptually spans multiple machines (in practice,
ORB software runs on each machine)

Object
Implementation

Generated
Skeleton Code

Generated

Stub Code

ORB

18



Invoking Objects

* Clients obtain an object reference
— Typically via the naming service or trading service
— (Object references can also be saved for use later)

* Interfaces defined by CORBA IDL

* Clients can call remote methods in 2 ways:

1. Static Invocation: using stubs built at compile time
(just like with RPC)

2. Dynamic Invocation: actual method call is created
on the fly. It is possible for a client to discover new
objects at run time and access the object methods

19



CORBA IDL

* Definition of language-independent remote interfaces
— Language mappings to C++, Java, Smalltalk, ...
— Translation by IDL compiler

* Type system

— basic types: long (32 bit), long long (64 bit), short, float,
char, boolean, octet, any, ...

— constructed types: struct, union, sequence, array, enum
— objects (common super type Object)
* Parameter passing
— in, out, inout (= send remote, modify, update)
— basic & constructed types passed by value
— objects passed by reference

20



CORBA Pros and Cons

* CORBA has some unique advantages
— Industry standard (OMG)
— Language & OS agnostic: mix and match

— Richer than simple RPC (e.g. interface repository,
implementation repository, DIl support, ...)

— Many additional services (trading & naming, events &
notifications, security, transactions, ...)

* However:
— Really really complicated / ugly / buzzwordy
— Poor interoperability, at least at first
— Generally to be avoided unless you need it!



Microsoft DCOM (1996)

e An alternative to CORBA:

— MS had invested in COM (object-oriented local IPC
scheme) so didn’t fancy moving to OMA

e Service Control Manager (SCM) on each machine
responsible for object creation, invocation, ...
— essentially a lightweight ‘ORB’

 Added remote operation using MSRPC:
— based on DCE RPC, but extended to support objects
— augmented IDL called MIDL: DCE IDL + objects

— requests include interface pointer IDs (IPIDs) to
identify object & interface to be invoked



DCOM vs. CORBA

* Both are language neutral, and object-oriented
e DCOM supports objects with multiple interfaces
— but not, like CORBA, multiple inheritance of interfaces

* DCOM handles distributed garbage collection:
— remote objects are reference counted (via explicit calls)
— ping protocol handles abnormal client termination

« DCOM is widely used (e.g. SMB/CIFS, RDP, ...)

e But DCOM is MS proprietary (not standard)...
— and no support for exceptions (return code based)..
— and lacks many of CORBAs services (e.g. trading)

* Deprecated today in favor of .NET

23



Next time

* Java remote method invocation (RMI)
* XML-RPC, SOAP, etc, etc, etc.
* Clocks and clock skew

24



