Concurrent systems
Case study: FreeBSD kernel concurrency

Dr Robert N. M. Watson

FreeBSD kernel

* Open-source OS kernel
— Large: millions of LoC

— Complex: thousands of
subsystems, drivers, ...

— Very concurrent: dozens or
hundreds of CPU cores/
threads

— Widely used: NetApp, EMC,
Dell, Apple, Juniper, Netflix,
Sony, Cisco, Yahoo!, ...

* Why a case study? . /‘
- Employs C&DS prinCipIeS MARSHALLKlRKMcKUSICK

O GEORGE V. NEVILLE-NEIL

— Concurrency performance and &S T e
composability at scale ‘ ’

THE
DESIGN AND
IMPLEMENTATION
| OF THE

FreeBSD

OPERATING SYSTEM |

2

a0

E

H

z7

)—>irr|

9

o

4

o2
> /

— /
72 /

=

!

3LSAS ONILVAIHO
dsgeoY4

In the library: Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M. Watson. The Design and Implementation
of the FreeBSD Operating System (2nd Edition), Pearson Education, Boston, MA, USA, September 2014.

21/10/2014

BSD + FreeBSD: a brief history

e 1980s Berkeley Standard Distribution (BSD)
— ‘BSD’-style open-source license (MIT, ISC, CMU, ...)

— UNIX Fast File System (UFS/FFS), sockets API, DNS,
used TCP/IP stack, FTP, sendmail, BIND, cron, vi, ...

* Open-source FreeBSD operating system
1993: FreeBSD 1.0 without support for multiprocessing

1998: FreeBSD 3.0 with giant-lock multiprocessing

2003: FreeBSD 5.0 with fine-grained locking
2005: FreeBSD 6.0 with mature fine-grained locking

2012: FreeBSD 9.0 with TCP scalability beyond 32 cores

FreeBSD: before multiprocessing (1)

e Concurrency model inherited from UNIX

* Userspace
— Preemptive multitasking between processes
— Later, preemptive multithreading within processes

* Kernel
— ‘Just’ a C program running ‘bare metal’
— Internally multithreaded
— User threads ‘in kernel’ (e.g., in system calls)
— Kernel services (e.g., async. work for VM, etc.)

21/10/2014

21/10/2014

FreeBSD: before multiprocessing (2)

* Cooperative multitasking within kernel
— Except for interrupt handlers, non-preemptive kernel
— Mutual exclusion as long as you don’t sleep()
— Implied global lock means local locks rarely required

* Wait channels: implied condition variable for every address

sleep(&x, ..); // Wait for event on &x
wakeup (&X) ; // Signal an event on &x
— Must leave global state consistent when calling sleep()
— Must reload any cached local state after sleep() returns
* Primitive to build more complex synchronization tools
— E.g., lockmgr() reader-writer lock can be held over /O (sleep)
* Critical sections control interrupt-handler execution

Pre-multiprocessor scheduling

CPUO== sshd | sshd (k) | apache | apache (k) | idle | netisr | sshd (k) sshd | apache (k) | apache = =

Lots of unexploited
parallelism!

Hardware parallelism, synchronization

e Late 1990s: multi-CPU begins to move down market
— In 2004: 2-processor a big deal
— In 2014: 64-core is increasingly common

e Coherent, symmetric, shared memory systems

— Instructions for atomic memory access
* Compare-and-swap, test-and-set, load linked/store conditional

 Signaling via Inter-Processor Interrupts (IPls)
— CPUs can trigger an interrupt handler on each another
* Vendor extensions for performance, programmability

— MIPS inter-thread message passing
— Intel TM support: TSX (Whoops: HSW136!)

Giant locking the kernel

* FreeBSD follows footsteps of Cray, Sun, ...
* First, allow user programs to run in parallel

— One instance of kernel code/data shared by all CPUs

— Different user processes/threads on different CPUs

— No affinity model: schedule work on first available CPU
e ‘Giant’ spinlock around kernel

— Acquire on syscall/trap to kernel; drop on return

— In effect: kernel ‘migrates’ between CPUs on demand
* Interrupts

— If interrupt delivered on CPU X while kernel is on CPU Y,
forward interrupt to Y using an IPI

21/10/2014

Giant-locked scheduling

CPUO =~

sshd

sshd (k)

User-user
parallelism

~

apache | apache (k) | idle

netier sshd (k) sshd | apache (k) | apache = =
)

CPUQ =~

CPU1 ==~

Kernel-user
................... parallelism e
sshd | 'sshd (k) idle sshd idle o
apache spin apache (k) | idle | netisr | sshd (k) | apache (k) | apache idle - =

contention

[Kernel giant-lock

|

Serial kernel execution; parallelism
opportunity missed

Fine-

rained lockin

Giant locking is fine for user-program parallelism
Kernel-centered workloads trigger Giant contention

— Scheduler, IPC-intensive workloads
— TCP/buffer cache on high-load web servers
— Process-model contention with multithreading (VM, ...)

Motivates migration to fine-grained locking

— Greater granularity (may) afford greater parallelism
— Mutexes/condition variables rather than semaphores

Why this approach?

— Increasing consensus on pthreads-like synchronization
— Unlike semaphores, access to priority inheritence

10

21/10/2014

Fine-grained scheduling

CPUO== sshd | sshd (k) | apache | apache (k) | idle | netisr | sshd (k) sshd | apache (k) | apache = =
CPU 1o 0 0 o e > - - - - - - - - - - - - - -
CPUO== sshd | sshd (k) idle sshd idle o
| | I

CPU 1=+ apa netisr | sshd (k) | apache (k) | apache idle -

? True kernel S| >

parallelism

CPUO=«= sshd | sshd (k) idle sshd (k) sshd idle - =
CPU 1=« apache | apache (k) | idle | netisr | apache (k) | apache idle - =

11

Kernel synchronization primitives

* Spin locks —scheduler, interrupt synchronization

Mutexes, reader-writer, read-mostly locks

— Most heavily used — different optimization tradeoffs

— Sleep for only a ‘bounded’ period of time

Shared-eXclusive (SX) locks, condition variables
— May sleep for an unbounded period of time
— Implied lock order: unbounded before bounded; why?

Condition variables usable with any lock type
Adaptive: sleeping is expensive, spin for a bit first
Most primitives support priority propagation

12

21/10/2014

WITNESS lock-order checker

* Kernel relies on partial lock order to prevent deadlock
(Recall dining philosophers)

WITNESS is a lock-order debugging tool
— Warns when lock cycles (could) arise by tracking edges
— Only in debugging kernels due to overhead (15%+)
Tracks both statically declared, dynamic lock orders
— Static orders most commonly intra-module
— Dynamic orders most commonly inter-module
In-field lock-related deadlocks are (very) rare

Unbounded sleep (e.g., I/0) deadlocks harder to debug
— What thread should have woken up a CV being waited on?

17

WITNESS: global lock-order graph*

* Turns out that the global lock-order
graph is pretty complicated. 18

21/10/2014

* Commentary on WITNESS full-system lock-order
graph complexity; courtesy Scott Long, Netflix 19

Excerpt from global lo

This bit mostly has to do
with networking

ck-order graph*

Local clusters: e.g., related
locks from the firewall: two
leaf nodes; one is held over
calls to other subsystems

g (ﬂm-..) C -4--:—0.)~ ; \# j‘
Network interface locks: \t__:-—_«..._"k =

“transmit” tends to occurat L

I: (: - u.ﬁ [C mbrsal snioch) (’ Ak fW

/l'
the bottom of call stacks via A\T\“ —_————— —
many layers holding locks . :

Y

e e e UMA zone lock implicitly or
W] | e .
O =2 =————— - a— == explicitly follows most other
TS D G e locks, since most kernel
—— — O~ ¢ components depend on
o memory allocation

* The local lock-order graph is also complicated.

21/10/2014

WITNESS debug output

1st Oxffffff80025207f0 run0 node lock (run0 node lock) @ /usr/src/sys/
net80211/ieee80211 ioctl.c:1341

2nd Oxffffff80025142a8 run0 (network driver) @ /usr/src/sys/modules/usb/
run/../../../dev/usb/wlan/if run.c:3368

KDB: stack backtrace:

db trace self wrapper() at db trace self wrapper+0x2a [MEeIe Q1ETNERIETaloRTeIN] (ol
kdb backtrace() at kdb backtrace+0x37 code Iocations of
_witness debugger() at witness debugger+0x2c . . .
witness checkorder() at witness checkorder+0x853 acquisitions addmg the
_mtx lock flags() at mtx lock flags+0x85 of'fending graph edge
run_raw_xmit() at run raw xmit+0x58

ieeeB80211 send mgmt() at ieee80211 send mgmt+0x4d5

domlme() at domlme+0x95

setmlme common() at setmlme common+0x2£f0

ieeeB80211 ioctl setmlme() at ieee80211 ioctl setmlme+0x7e
ieee80211 ioctl set80211() at ieee80211 ioctl set80211+0x46f

in control() at in control+0Oxad

ifioctl() at ifioctl+0Oxece

kern ioctl() at kern ioctl+0xcd Stack trace to acquisition
sys_ioctl() at sys ioctl+0xf0 that triggered cycIe
amd64 syscall() at amdé64 syscall+0x380

Xfast syscall() at Xfast syscall+0xf7

-—- syscall (54, FreeBSD ELF64, sys ioctl), rip = 0x800de7aec, rsp =
0x7fffffffd848, rbp = 0x2a ---

How does this work in practice?

* Kernel is heavily multi-threaded
* Each user thread has a corresponding kernel thread
— Represents user thread when in syscall, page fault, etc.
* Kernels services often execute in asynchronous threads
— Interrupts, timers, 1/O, networking, etc.
* Therefore extensive synchronization
— Locking model is almost always data-oriented
— Think ‘monitors’ rather than ‘critical sections’
— Reference counting or reader-writer locks used for stability

— Higher-level patterns (producer-consumer, active objects,
etc.) used frequently

22

21/10/2014

21/10/2014

Kernel threads in action

robert@lemongrass-freebsd64:~> procstat —at 12 100037 intr
oTo 7tp com ToaNE chu eR1 sTATE 12 100038 intr Vast hoards of threads

0 100000 kernel swapper 1 84 sleep 13 100010 geom

0 100014 kenel Fooe take et T represent concurrent
kernel activities

0 100016 kernel thread tag
0 100020 kernel acpi_task |

0 100021 kernel acpi_task | Idle CPUS are occupied by

0 100022 kernel acpi_task |

0 100023 kernel ffs_trim t an idle thread s Why? 32 sleep -

0 100033 kernel em0 taskg 84 sleep psleep
PID TID COMM WCHAN

11 100003 idle idle: cpu0

12 100024 intr irgl4d: ata0

12 100025 intr irgl5: atal

12 10000% intr swil: netisr 0
3588 1004 sshd

12 10000¢ sSwid: s = 938 100077 getty
12 1004 i3: vm i 939 100067 getty
940 100072 getty

Device-driver interrupts
execute in kernel interrupt
threads (ithreads) within
kernel-only ‘intr’ process

Familiar userspace
thread: sshd, blocked in
network 1/0 (‘in kernel’)

Asynchronous packet
processing occurs in a
netisr ‘soft’ ithread

Kernel-internal concurrency is represented using a familiar
shared memory threading model

Case study: the network stack (1)

 What is a network stack?
— Kernel-resident library of networking routines
— Sockets, TCP/IP, UDP/IP, Ethernet, ...

* Implements user abstractions, network-interface
abstraction, sockets, protocol state machines, etc.

— System calls: socket(), connect(), send(), recv(), listen(), ...

* Highly complex and concurrent subsystem
— Composed from many (pluggable) elements
— Socket layer, network device drivers, protocols, ...

* Typical paths ‘down’ and ‘up’: packets come in, go out

24

10

Network-stack work flows

Applications send,
receive, await data
on sockets

Data/packets
processed;
enqueued at
various dispatch
\or buffering points

f
Packets go in and

out of network
interfaces

Application

System call layer

Socket layer [m |
TCP layer
IP layer
Link layer

Device driver EE@-

send() recv()
send() recv()
sosend() | [. sorecieve() |
sbappend() Sbappend()
I |-
tep_send() tcp_reass()
tcp_output() tep_input()
ip_putput() ip_input()
g - |
ether_output() ether_input()
....... Z '.:1:;.‘:{:8. [ap——o em_intr()

p

The work: adding/removing headers, calculating checksums, fragmentation/
\defragmentation, segment reassembly, ensuring order, flow control, congestion, etc.

Case study: the network stack (2)

* First, make it safe without the Giant lock

— Lots of data structures require locks

— Condition signaling already exists but will be added to

— Establish key work flows, lock orders

* Then, optimize
— Especially locking primitives themselves

* As hardware becomes more parallel, identify and
exploit further concurrency opportunities

— Add more threads, distribute more work

26

21/10/2014

11

What to lock and how?

Fine-grained locking overhead vs. coarse-grained contention

— Some contention is inevitable: reflects need for communication

— Other contention is ‘false sharing’: side effect of data structure choices
Principle: lock data, not code (i.e., not critical sections)

— Key structures: network interfaces, sockets, work queues

— Independent instances should be parallelizable
Horizontal vs. vertical parallelism

— H: Different locks for different connections (e.g., TCP1 vs. TCP2)

— H: Different locks within a layer (e.g., receive vs. send socket buffers)

— V: Different locks at different layers (e.g., socket vs. TCP state)
Things not to lock: packets in flight - mbufs (‘work’)

27

Example: universal memory allocator
(UMA)

Memory consumers (mbufs, sockets, ...) ° Key kerne| Service
Consumer Consumer e Slab allocator
[/ \\ // ‘\ — (Bonwick 1994)
* Object-oriented model
— init/destroy, alloc/free
S B * Per-CPU caches
(\] l\ b — Protected by critical
“one Gache sections
[ower o[ae o o] — Encourage cache locality
UMA zone by next allocating memory
\w’ where last freed
e — Avoid zone-lock contention

28

21/10/2014

12

Work distribution

Packets (mbufs) are units of work

Parallel work requires distribution to multiple
threads

— Must keep packets ordered — or TCP gets cranky!

Implication: strong per-flow serizliation
— l.e., no generalized producer-consumer/round robin

— Various strategies to keep work ordered; e.g.:
* Process in a single thread
* Multiple threads in a ‘pipeline’ linked by a queue

Establish flow-CPU affinity can both order
processing and utilize caches well

29

TCP input path

Potential dispatch points

Hardware Kernel

Userspace

Device

L

Linker layer P

+ driver
Validate

TCP + Socket Socket

a8
B e

Application

A
i

Receive, Interpret and Validate Reassemble i Data stream
validate strips link Chsetzksﬁjm‘ checksum, strip Look up segments, K:Jtn ,?:t:ffglis to
checksum layer header he; der TCP header socket dzg‘(’:igo clusters application
e ot te -
' ithread w netisr software ithread b user thread !

30

21/10/2014

13

More recent trend: multiqueue NICs

Key source of contention:
locks around access to
hardware devices

Parallelism for hardware
interface: give each NICn
input and output queues

Flow order maintained by
hashing IP/port-tuples in

packet headers

Each input/output queue

pair assigned its own
device-driver thread

31

rans

Scalability

|

What might we expect if we
didn’t hit contention?

pesql sysbench on 16-core xe

€ h

Key idea:
speedup

As we add more

96808 -

8000 |-

7008 -

6608 -

5608 -

4000 |-

3608

2008 -

on (4 corcslpack./
T T T T

« I

FreeBSD 8,0, ULE —+—

FlreeBSl) li.l!i ULE topology %

"o

parallelism, we would like
the system to get faster.

Another key idea:
performance collapse

Sometimes parallelism
hurts performance more
than it helps due to work-

distribution overheads,

contention. /

L
2 4 6 8 10 12 14
Concurrenc: y (% threads)

16 18

20 32

21/10/2014

14

Complex interactions between
scheduling and work

Varying dispatch strategy — bandwidth

1 1 1

3 —single
2 a
6 .
5 L)
C Single-threaded \\4 N
processing caps 1 > A Software work
out a bit over 2 - single_link_proto . distribution to
1Gb/s on this ; | —= multiple threads
_ hardware : — Agets close to 4Gb/s
g 4 — W
a 3 .
2 [1)
1 *
1 — multi —
Hardware work distribution\ - '
to multiple threads has = Nohceshapegof
higher throughput , but | | | = curves: parallelism
more importantly, has 1 2 3 ‘ helps, but
IOWGF variance. Why? Net bandwidth in Gb/s saturation hurts /

Changes in hardware impact software

* Hardware-design dynamics affect software:
— Counting instructions = cache misses
— Lock contention = cache-line contention
— Locking = find parallelism opportunities
— Work ordering, classification, distribution
— NIC offload of even more protocol layers
— Vertically integrate distribution/affinity
— DMA/cache interactions

e But: core principles for concurrency control
(synchronization) remain the same

34

21/10/2014

15

Longer-term strategies

e Optimize for inevitable contention

* Lockless primitives
— E.g., stats, queues

e Tune primitives for workloads
— E.g., rmlocks, read-copy-update (RCU)

* Replicate data structures; with weak consistency?
— E.g., per-CPU statistics, per-CPU memory caches

* Distribution/affinity to minimize contention

* From parallelism to NUMA + |/O affinity

35

Conclusions

* FreeBSD employs many of C&DS techniques
— Mutual exclusion, process synchronization
— Producer-consumer
— Lockless primitives

* Real-world systems are really complicated

— Hopefully, you will mostly consume, rather than
produce, concurrency primitives like these

— Composition is not straightforward
— Parallelism performance wins are a lot of work
— Hardware continues to evolve

* See you in distributed systems!

36

21/10/2014

16

