Concurrent systems

Lecture 2: Mutual exclusion and
process synchronisation

Dr Robert N. M. Watson

Reminder from last time

* Definition of a concurrent system
* Origins of concurrency within a computer
* Processes and threads

e Challenge: concurrent access to shared
resources

* Mutual exclusion, race conditions, and
atomicity

23/10/2013

From last time: beer-buying example

 Thread 1 (person 1) Thread 2 (person 2)

1. Lookin fridge 1. Look in fridge

2. If no beer, go buy 2. If no beer, go buy
beer beer

3. Put beerin fridge 3. Put beerin fridge

* In most cases, this works just fine...

We spotted race conditions in obvious concurrent implementations

Ad hoc solutions (e.g., leaving a note) failed
Even naive application of atomic operations failed
What we want is a general solution for mutual exclusion

This time

e General mutual exclusion: how to [not] do it
* Hardware support for mutual exclusion

* Semaphores for mutual exclusion, process
synchronisation, and resource allocation

* Two-party and general producer-consumer
relationships

* Multi-reader single-writer locks

23/10/2013

General mutual exclusion

 We would like the ability to define a region of
code as a critical section e.g.

// thread 1 // thread 2
ENTER_CSQ); ENTER_CSQ);
beer = checkFridge(Q); beer = checkFridge(Q);
if(!lbeer) if(!'beer)

buyBeer(); buyBeer();
LEAVE_CSQ) ; LEAVE_CSQ);

 This should work ...

e ... providing that our implementation of
ENTER_CS() / LEAVE_CS() is correct

Implementing mutual exclusion

* One option is to prevent context switches

— e.g. disable interrupts (for kernel threads), or set an
in-memory flag (for user threads)

e ENTER_CS() = “disable context switches”;
LEAVE_CS() = “re-enable context switches”

e Can work but:

— Rather brute force (stops all other threads, not just
those who want to enter the critical section)

— Potentially unsafe (if disable interrupts and then sleep
waiting for a timer interrupt ;-)

— And doesn’t work across multiple CPUs

23/10/2013

Imglementing mutual exclusion

Associate a mutual exclusion lock with each
critical section, e.g. a variable L

(must ensure use correct lock variable!)

ENTER_CS() = “LOCK(L)”
LEAVE_CS() = “UNLOCK(L)”

Can implement LOCK() using read-and-set():

Lock(L) { UNLOCK(L) {
while(!read-and-set(L)) L = 0;
; // do nothing }
}

Solution #3: mutual exclusion locks

// thread 1 // thread 2
LOCK(fridgeLock) ; LOCK(fridgeLock);
beer = checkFridge(Q); beer = checkFridge();
if(!beer) if(!beer)

buyBeer(); buyBeer();
UNLOCK (fridgeLock) ; UNLOCK (fridgeLock);

e This is —finally! —a correct program
* Still not perfect

— Lock might be held for quite a long time (e.g. imagine
another person wanting to get the milk!)

— Waiting threads waste CPU time (or worse)
— Contention occurs when consumers have to wait for locks

* Mutual exclusion locks often known as “mutexes”

23/10/2013

23/10/2013

Compare and Swap (CAS

* Found on CISC systems such as x86
Test and Set (TAS) another variation
* Caller provides previous value as argument

* If memory contents match, assignment occurs
Return value can be tested to trigger loop

mov %edx, 1 # New value

spin:
mov foo_lock, %eax # Load old value
test %eax, %eax # If non-zero (owned),
jnz spin # loop
Tock cmpxchg %edx, foo_Tlock # If foo_lock == %eax,
test %eax, xeax # swap 1n value from
jnz spin # %edx; else loop

Load linked-store conditional (LL/SC)

* Found on RISC systems (MIPS, Alpha, ARM, ...)
Load value from memory with LL

Manipulate value in register

SC fails if memory modified since load linked
* Return value can be tested to trigger loop

spin:
11d $t0, 0(%$a0) # Load old value
bnez $t0, spin # If non-zero (owned), Tloop
d14 $t0, 1 # New value (branch-delay slot)
scd $t0, 0(%$a0) # Cconditional store to $%$a0
begz $t0, spin # If failed ($t0 zero), Tloop
nop # Branch-delay slot

What if no hardware support?

* Solution #3 requires an atomic ‘read-and-set’ operation...
but what if we don’t have one?
* Option 1:
— Fake atomic operation by disabling interrupts (or context
switches) between read and set
— But doesn’t work across multiple CPUs
* Option 2:
— Build a mutual exclusion scheme which only relies on atomic
reads and writes!
— Hot topic in the 1970s/80s; mostly irrelevant now
— Probably doesn’t even work on modern hardware!

* In practice, we almost always build mutual exclusion on top
of atomic instructions like CAS, TAS, LL/SC, ...

11

Semaphores

* Even with atomic operations, busy waiting for
a lock is inefficient...

— Better to sleep until resource available

e Dijkstra (THE, 1968) proposed semaphores
— New type of variable
— Initialized once to an integer value (default 0)

* Supports two operations: wait() and signal()

— Sometimes called down() and up()
— (and originally called P() and V() ... blurk!)

12

23/10/2013

Semaphore implementation

* Implemented as an integer and a queue
wait(sem) {
if(sem > 0) {
sem = sem-1;
} else suspend caller & add to queue for sem

}

signal(sem) {
if no threads are waiting {
sem = sem + 1;
} else wake up some thread on queue

}

* Method bodies are implemented atomically
* “suspend” and “wake” invoke threading APlIs

13

Mutual exclusion with a semaphore

aSem A B C
e

EE—» wait (aSem)
EE_, B wait|(aSem)

CS B blocked

EE—» B,C wait (pSem)

. C blocked
signal (gSem)

(&)

(0T ¢
EE-’ signal (aSem)
1]

CS

signal (ISem)

\4 \4

* Initialize semaphore to 1; wait() is lock(), signal() is unlock()

14

23/10/2013

Two process sxnchronization

wait before signal signal before wait
aSem A B A B
asem
14 o1
wait|(aSem)
m'A ! signall (aSem)

A blocked] “wake-up waiting”

;

signall(aSem) wait {aSem)

EE_. A continues

A continues

\4 v v v

* Initialize semaphore to 0; A proceeds only after B signals

15

N-resource allocation

* Suppose there are N instances of a resource
— e.g. N printers attached to a DTP system

* Can manage allocation with a semaphore sem,
initialized to N
— Anyone wanting printer does wait(sem)

— After N people get a printer, next will sleep

— To release resource, signal(sem)
* Will wake someone if anyone is waiting

* Will typically also require mutual exclusion
— e.g. to decide which printers are free

16

23/10/2013

Semaphore programming examples

 Semaphores are quite powerful
— Can solve mutual exclusion...

— Can also provide condition synchronization

* Thread waits until some condition set by another thread
becomes true

* Let’s look at some examples:

1. One producer thread, one consumer thread, with a
N-slot shared memory buffer

2. Any number of producer and consumer threads,
again using an N-slot shared memory buffer

3. Multiple reader, single writer synchronization

17

Producer-consumer problem

e Shared buffer B[] with N slots, initially empty

* Producer thread wants to:
— Produce an item
— If there’s room, insert into next slot;
— Otherwise, wait until there is room
* Consumer thread wants to:

— If there’s anything in buffer, remove an item (and
consume it)

— Otherwise, wait until there is something

* General concurrent programming paradigm
— e.g. pipelines in Unix; staged servers; work stealing

18

23/10/2013

Producer-consumer solution

int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);
items = new Semaphore(0);
// producer thread // consumer thread
while(true) { while(true) {
item = produce(); if there is an item {
if there 1is space { item = buffer[out];
buffer[in] = item; out = (out + 1) % N;
in = (in + 1) % N; }
} consume(item);
} }

buffer

N-1

19

Producer-consumer solution
int buffer[N]; int in = 0, out = 0;
spaces = new Semaphore(N);
items = new Semaphore(0);
// producer thread // consumer thread
while(true) { while(true) {
item = produce(); wait(items);
wait(spaces); item = buffer[out];
buffer[in] = item; out = (out + 1) % N;
in = (in + 1) % N; signal (spaces);
signal (items); consume (item);
} }
buffer

20

23/10/2013

10

Producer-consumer solution

* Use of semaphores for N-resource allocation
— In this case, “resource” is a slot in the buffer
— “spaces” allocates empty slots (for producer)
— “items” allocates full slots (for consumer)

* No explicit mutual exclusion

— threads will never try to access the same slot at
the same time; if “in == out” then either
* buffer is empty (and consumer will sleep on ‘items’), or
 buffer is full (and producer will sleep on ‘spaces’)

21

Generalized Eroducer-consumer

* Previously had exactly one producer thread,
and exactly one consumer thread

* More generally might have many threads
adding items, and many removing them

* |f so, we do need explicit mutual exclusion

— e.g. to prevent two consumers from trying to
remove (and consume) the same item

* Can implement with one more semaphore...

22

23/10/2013

11

Generalized P-C solution

int buffer[N]; int in = 0, out = O;

spaces = new Semaphore(N);
items = new Semaphore(0);
guard = new Semaphore(l); // for mutual exclusion
// producer threads // consumer threads
while(true) { while(true) {
item = produce(); wait(items);
wait(spaces); wait(guard);
wait(guard); item = buffer[out];
buffer[in] = item; out = (out + 1) % N;
in = (in + 1) % N; signal (gquard) ;
signal (guard); signal (spaces);
signal (items); consume (item);
} }

* Exercise: allow 1 producer and 1 consumer concurrent access

23

Multiple-Readers Single-Writer

* Another common paradigm is MRSW

— Shared resource accessed by a set of threads
* e.g. cached set of DNS results

— Safe for many threads to read simultaneously, but a
writer (updating) must have exclusive access

— Data stability vs. mutual exclusion

e Simplest solution uses a single semaphore as a
mutual exclusion lock for write access
— Any writer must wait to acquire this
— First reader also acquires this; last reader releases it
— Manage reader counts using another semaphore

24

23/10/2013

12

Simplest MRSW solution

int nr = 0;
rsem = new Semaphore(l);
wSem = new Semaphore(l);

// a writer thread

// number of readers
// protects access to nr
// protects access to data

// a reader thread

wait(rSem);

nr = nr + 1;

if (nr == 1) // first 1in
wait(wSem) ;

signal (rsem) ;
. read data

wait(rSem);

wait(wSem) ;
. perform update to data
signal (wSem) ;

nr = nr - 1;
if (nr == 0) // Tast out

signal (wSem) ;
signal (rSem) ;

25

Simplest MRSW solution

* Solution on previous slide is “correct”

— Only one writer will be able to access data
structure, but — providing there is no writer —any
number of readers can access it

* However writers can starve

— If readers continue to arrive, a writer might wait
forever (since readers will not release wSem)

— Would be fairer if a writer only had to wait for all
current readers to exit...

— Can implement this with an additional semaphore

26

23/10/2013

13

A fairer MRSW solution

int nr = 0;

rsem = new Semaphore(l);
wSem = new Semaphore(l);
turn = new Semaphore(l);

'/ a writer thread
wait(turn);

wait(wSem) ;
. perform update to data

signal (turn);

signal (wSem) ;

// number of readers

// protects access to nr
// protects access to data
// for more fairness!

// a reader thread

‘wait(turn);

<",,,:;EE?7’ signal (turn);

wait(rsSem);

nr = nr + 1;

if (nr == 1) // first 1in
wait(wSem) ;

signal (rsem) ;
. read data

wait(rsem);

nr = nr - 1;

if (nhr == 0) // last out
signal (wSem) ;

signal (rSem) ; 27

Semaphores: summar

* Powerful abstraction for implementing

concurrency control:

— mutual exclusion & condition synchronization
e Better than read-and-set()... but correct use
requires considerable care
— e.g. forget to wait(), can corrupt data
— e.g. forget to signal(), can lead to infinite delay
— generally get more complex as add more semaphores

e Used internally in some OSes and libraries, but
generally deprecated for other mechanisms...

28

23/10/2013

14

Summary + next time

* General mutual exclusion: how to [not] do it
* Hardware support for mutual exclusion

* Semaphores for mutual exclusion, process
synchronisation, and resource allocation

* Two-party and generalised producer-consumer
relationships

e Multi-reader single-writer locks

* Next time:
— Conditional critical regions (CCRs); Monitors
— Condition variables; signal-and-wait vs. signal-and-continue
— Concurrency in practice; concurrency primitives wrap-up

29

23/10/2013

15

