
27/10/2014

1

1

Transactions on persistent data

We have seen how to make a single operation on a shared data object in main memory
ATOMIC (indivisible) by enforcing its execution under mutual exclusion

Now consider how to implement a single atomic operation on persistent data

Note that on a crash, all data in main memory is lost – what reached the disc before the crash?
- concurrency control can be implemented as before, enforcing mutual exclusion
- the new problem is how to achieve atomicity in the presence of crashes
- i.e. the operation has externally visible effects and the crash may occur at any time

during the operation

Definition: ATOMIC operation:
- if an atomic operation terminates normally, all its effects are made permanent
- else it has no effect at all

e.g. credit (account #, £1000)

- note: tell the user “done” AFTER checking that the new value has been written

Transactions: composite operations on persistent objects

2

Crash model, idempotent operations and atomicity

We shall assume that a crash is fail-stop:
processors, TLBs, caches, main memory are lost
persistent memory on disc is not lost – but what state is it in?

To what extent can operations be made idempotent (repeatable)?
e.g. append-to-file (address-in-memory, byte-count) is not
e.g. append-to-file (address-in-memory, byte-count, position in file) is repeatable

- but the system may use an implicit pointer (e.g. UNIX)
- in general, not every operation can be made repeatable

How can atomic operations on persistent data be implemented?
- logging: update the data in place,

but first write a separate log record to disc of the old and new values
on a crash we can use the log record to roll-back or forward

- shadowing: keep the old data intact
build up a new version of the data
flip atomically from the old to the new version, e.g. flip a pointer

in both cases output “done” to the client after committing the update.

Transactions: composite operations on persistent objects

27/10/2014

2

3

Atomic operations involving persistence – system components

A typical structure of a centralised transaction processing system

DBMS (database management system)
responsible for fine-grained data manipulation,

concurrency control and recovery

client client………………….

OS: manages files
buffers data in memory (may defer writes for performance)

note: DBMS needs data written through to disk (flush rather than write)

persistent
store

Transactions: composite operations on persistent objects

4

Transactions – composite operations on persistent objects

One operation on shared persistent data atomic in the presence of concurrency and crashes – OK!
Now suppose a meaningful operation is composite, comprising several such operations:

e.g. delete a file (remove link from directory, remove metadata, add file blocks to free list)
e.g. transfer (£1000, account_A, account_B)

invoke_operation (args) crash!

Concurrency control: why not lock all data – do all operations – unlock?
But contention may be rare, and “locking all” may impose overhead, slow response.
Concurrency gives better performance but problems can occur – see next slides.

Crashes: have any permanent/visible/persistent changes been made to any of the data?
Has an inconsistent state resulted from the crash?

Transactions: composite operations on persistent objects

transfer

debit

credit

write

read

read

write

27/10/2014

3

5

Composite operations with no concurrency control
the “lost update” problem

Transfer operations may execute correctly until an unfortunate interleaving occurs:

What is defined as a single operation on persistent data?
In the example below, read and write to disc are taken to be separate operations.
This is known as read/write semantics (the lowest level for transactions – we can do better)

transaction P transaction Q

transfer (£1000, account_A, account_B) transfer (£200, account_C, account_A)

debit (£200, account_C) :
read (account_C) \\ into memory
account_C = account_C - 200
write (account_C) \\ to disc

debit (£1000, account_A) :
read (account_A) \\ into memory
account_A= account_A - £1000

write (account_A) \\ to disc

// Q has debited account_C by £200

credit (£200, account_A) :
read (account_A) \\ into memory
account_A= account_A + £200

write (account_A) \\ to disc

// Q’s update to account_A overwrites P’s update.

Transactions: composite operations on persistent objects

// P’s update to account_A is lost

6

Object semantics - 1
Define atomic operations on persistent objects – i.e. higher level object semantics
e.g. bank account objects, with operations that include credit and debit, assumed atomic.
Omitting create and delete we might have:

bank account objects

persistent store

check_balance ()

read_balance ()

add_interest ()

credit ()

debit ()

AA

in-memory
copy

main
memory

Transactions: composite operations on persistent objects

A is locked during a single operation invocation

27/10/2014

4

7

Object semantics – 2

Suppose add_interest updates all accounts daily.
As before, the operations may execute correctly until an unfortunate interleaving occurs.

Object operations are atomic – we have object semantics, not read/write semantics.
Does this solve the concurrency control problems? NO

transaction P transaction Q

transfer (£1000, account_A, account_B) add_interest (account_N)

add_interest (account_A)
add_interest (account_B)

check_balance (£1000, account_A) \\ keeping A locked between operations
debit (£1000, account_A) \\ doesn’t solve the problem

credit (£1000, account_B)

The interest on £1000 is lost to the account holders, gained by the system.
The database state is (arguably) incorrect
The problem is due to the visibility of the effects of the sub-operations of transfer,

involving related operations on two objects
transfer is the meaningful high-level operation – how to make a composite operation atomic?

Transactions: composite operations on persistent objects

8

Object semantics – 3

transaction P

transfer (£1000, account_A, account_B)

lock (account_A)
check_balance (£1000, account_A)
debit (£1000, account_A)

lock (account_B)
credit (£1000, account_B)
unlock (account_B)
unlock (account_A

lock A held
lock B requested

Transactions: composite operations on persistent objects

Transaction Q?
can’t use 2PL on all objects in the system.
Should the service be unavailable
while interest is added to all objects?
NOT NEEDED!
The operations on the accounts are not related.
Q is NOT executing a huge composite operation
but many small individual-object transactions .
Transactions such as P prevent lost interest.

Make lock an explicit operation. Hold one lock while acquiring others?
Two-phase locking (2PL) is the most common method of database concurrency control

But recall the conditions for deadlock ……. We’ll come back to this …….

27/10/2014

5

9

Transactions – notation
Example using transaction identifiers, commit and abort:

Ti = starti ,
checkbalance i (account_A, £1000) , ……..
debiti (£1000, account_A) ,
crediti (£1000, account_B) ,
commiti

Each operation of a transaction is tagged with the transaction identifier i
The last operation on successful termination is commit
If the transaction fails, e.g. checkbalance returns fail/false, the last operation is abort
On abort any intermediate effects of the transaction must be UNDONE

Suppose a crash occurs after debit. A crash aborts an uncommitted transaction.
account_A must be restored to its initial state
(note that credit is the UNDO operation for debit)

The abort operation could be given to the application programmer, e.g.:
transaction {

if checkbalance (account_A, £1000)
then transfer (£1000, account_A, account_B); commit
else abort }

Transactions: composite operations on persistent objects

10

Serialisability – intuition (definition on slide 15)
If transactions execute strictly serially then the system state (and any output) is correct.
i.e. transactions are meaningful, high-level operations.
The execution of a transaction moves the system from one consistent state to another.

If we can show that a concurrent, interleaved execution is equivalent to some serial
execution then the concurrent execution is correct

Examples:

Transactions: composite operations on persistent objects

serial execution:
debit (£1000, account_A)
credit (£1000, account_B)
add_interest (account_A)
add_interest (account_B)

serial execution
add_interest (account_A)
add_interest (account_B)
debit (£1000, account_A)
credit (£1000, account_B)

non-serialisable execution:
debit (£1000, account_A)
add_interest (account_A)
add_interest (account_B)
credit (£1000, account_B)

non-serialisable execution:
add_interest (account_A)
debit (£1000, account_A)
credit (£1000, account_B)
add_interest (account_B)

serialisable execution:
debit (£1000, account_A)
add_interest (account_A)
credit (£1000, account_B)
add_interest (account_B)

serialisable execution:
add_interest (account_A)
debit (£1000, account_A)
add_interest (account_B)
credit (£1000, account_B)

27/10/2014

6

11

Serialisation of composite operations - visualisation

P1 P2 P3 P1 P2 P3 P1 P2 P3

single-object/operation
serialisation

composite operation
serial execution

composite operation
a concurrent execution

(not serialisable)

Transactions: composite operations on persistent objects

12

Transactions - ACID properties

Atomicity all or none of the operations are done (executed on the persistent store)

Consistency a transaction transforms the system from one consistent state to another

Isolation the effects of a transaction are not visible to other transactions until
it is committed

Durability the effects of a committed transaction endure/persist

C and I are defined with concurrency control primarily in mind,
A and D with requirements for crash recovery primarily in mind
But the mechanisms for enforcing concurrency control and crash recovery are related.

Strict enforcement of I reduces concurrency, sometimes unnecessarily.
See later: can I be relaxed in implementations while still ensuring serialisability?

D can be implemented by using techniques such as stable storage, involving redundant disc
writes, RAID array techniques, etc. and we shall not study this property further

Transactions: composite operations on persistent objects

27/10/2014

7

13

Object model for transaction processing – object semantics

• objects are identified uniquely
• each operation is atomic i.e. an object is locked during an operation invocation
• the object has a single clock
• for each operation invocation completed, the object records completion time and transaction-ID

bank account objects

persistent store

check_balance ()

read_balance ()

add_interest ()

credit ()

debit ()

AA

in-memory
copy

main
memory

Transactions: composite operations on persistent objects

A is locked during a single operation invocation

14

Object semantics – definition of conflicting operations

DEFINITION of conflicting (non-commutative) operations
The final state or output value
depends on the order in which these operations are carried out

debit and add_interest conflict,
credit and add_interest conflict,

credit and credit or debit and debit or credit and debit do not conflict
so they can be applied to objects in any order

Arithmetic
+ and – do not conflict (are commutative) X +3+5 = X+5+3, X-2 +7 = X+7-2
* conflicts (does not commute) with + and –

X * 2 + 3 = (X+3)*2

Serialisability is concerned with the order in which operations are invoked on objects.
We need only be concerned with conflicting, non-commutative operations.

Transactions: composite operations on persistent objects

27/10/2014

8

15

Serialisability definition

For serialisability of two transactions it is necessary and sufficient
for their order of execution of all conflicting pairs of operations
to be the same for all the objects that are invoked by both

transaction T1 transaction T2
debit (£1000, account_A)

add_interest (account_A)
add_interest (account_B)

credit (£1000, account_B)

objects account_A and account_B are invoked by T1 and T2
operation add_interest conflicts with operations debit and credit

object account_A T1 before T2

object account_B T2 before T1

The above operation interleavings do NOT form a serialisable execution schedule

Transactions: composite operations on persistent objects

Visualisation of serialisability condition

Assuming T1 and T2 execute conflicting operations on C and D

A concurrent execution of T1 and T2 is serialisable if and only if

either T1 operates on both C and D before T2

or T2 operates on both C and D before T1

Transactions: composite operations on persistent objects
16

A C E
B D F

transaction T1
objects A, B, C, D

transaction T2
objects C, D, E, F

T1 T2

T1 T2

27/10/2014

9

17

Serialisability – transaction execution representation

transaction T1

W and X
conflict

W
A

X

Y and Z
conflict

Y
B

Z

transaction T2

S1 W1A Y1B C1

X2A Z2BS2 C2

T1 and T2 are serialisable if both W1A is before X2A and Y1B is before Z2B
(or if both W1A is after X2A and Y1B is after Z2B)

T1 and T2 are NOT serialisable if W1A is before X2A and Y1B is after Z2B
(or if W1A is after X2A and Y1B is before Z2B)

Note that the Isolation property of transactions is not being enforced in the implementations.

Transactions: composite operations on persistent objects

18

Serialisation graphs

DEFINITION: A history represents the concurrent execution of a set of transactions.
(as in the previous slide when the order of execution of conflicting operations is included)

DEFINITION: A serialisable history represents a serialisable execution

DEFINITION: a serialisation graph shows only transaction IDs and dependencies between them.

T1 T2 T1 T2

A transaction history is serialisable if and only if its serialisation graph is acyclic

T1

T2

T3

T4

Transactions: composite operations on persistent objects

T1

T2

T3

T4

27/10/2014

10

19

Cascading aborts

transaction T1

W and X
conflict

W
A

X

Y and Z
conflict

Y
B

Z

transaction T2

S1 W1A Y1B A1

X2A Z2BS2 C2

Suppose that to enforce serialisability the transaction scheduler makes
T2 execute conflicting operations on shared objects A and B after transaction T1

Now suppose T1 aborts after updating the objects
T2 must also be aborted – a CASCADING ABORT

This has resulted from not enforcing the Isolation property of transactions.
T2 has operated on uncommitted state (for maximum concurrency)
An execution in which Isolation is enforced is defined as STRICT

X

Transactions: composite operations on persistent objects

20

Recovering state – 1 (without conflicting operations)

To implement transactions, it must be possible to recover some previously committed state.
What are the implications of not enforcing the Isolation property?

start1
credit1 (£1000, account_A)
credit1 (£500, account_B)
start2
credit2 (£200, account_A)
credit1(£300, account_C)
abort1

credit2 (£600, account_B)
abort2

Money in accounts: A B C
£5000 £1000 £8000
£6000 … …

…. £1500 …

£6200 … …
… … £8300

undo £8000
undo £1000
undo £5200
This is possible only because credits do not conflict
and undo for credit is debit

…. £1600 …
undo £1000
undo £5000

Transactions: composite operations on persistent objects

27/10/2014

11

21

Recovering state – 2 (with conflicting operations)
Money in account: A

Start1 £5000
credit1 (£1000, account_A) £6000
start2

credit2 (£2000, account_A) £8000
start3

add_interest (account_A) £8008
request commit ……. commit pended – state of uncommitted transactions has been used

start4

credit4 (£1000, account_A) £9008
request commit commit pended – state of uncommitted transactions has been used

abort1 undo4 £8008
undo3 £8000
undo1 £7000
redo3 £7007
redo4 £8007

abort2 undo4 £7007
undo3 £7000
undo2 £5000
redo3 £5005
redo4 £6005

commit3
commit4

\\ undo all to before conflicting operation
\\ no need to undo T2s credit

Transactions: composite operations on persistent objects

22

Transactions - Summary

Considered composite operations on persistent objects subject to concurrency and crashes
looked at problems due to concurrent executions

Defined read/write semantics and object-operation semantics
which problems are solved, and which are not?

Defined conflicting (non-commutative) operations

Defined serialisability

Defined ACID properties of transactions

Looked at cascading aborts and recovering state

NEXT
Concurrency control and recovery

Transactions: composite operations on persistent objects

