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Liveness properties

From a theoretical viewpoint we must ensure that we eventually make progress

i.e. we want to avoid

Deadlock: blocked threads/processes waiting for each other

Livelock: processes/threads execute but make no progress

From a practical viewpoint we also want good performance:

No starvation – a single thread must make progress

more generally, may aim for fairness 

Minimality – no unnecessary waiting or signalling

Deadlock
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Deadlock

Real-life example (Kansas, 1920s) “When two trains approach each other at a crossing, 
both shall stop and neither shall start up again until the other has gone” 

In concurrent programs, deadlock tends to arise from taking mutual exclusion locks

Deadlock

wait ( semB )

wait ( semA )

wait ( semA )

wait ( semB )

process P process Q

A

semA

B

semB

At this point we have deadlock. Process P holds semA and is blocked, queued on semB
Process Q holds semB and is blocked, queued on semA

Neither process can proceed to use both A and B and signal the respective semaphores.
A cycle of processes exists, where each holds one resource and is blocked waiting for another, 

held by another process in the cycle.
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Concurrent composite operations  

invoke_operation ( args )

We can make one operation on shared data atomic (Lectures 2,3).

Composite operations seem to be causing the deadlock - can we avoid them?

No: the high-level, composite operation may be meaningful to the application

e.g. write-to-file means get free block(s), change metadata, write data

e.g. transfer = subtract from one object then add to another object

e.g. add/remove an item to/from an ordered linked list – change multiple pointers

Transaction semantics mean that either all the sub-operations complete or none does        
- in the presence of concurrency and crashes. 

We’ll develop this idea later and focus in this lecture on deadlock.
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Deadlock - Outline 
Systems that allocate multiple resources dynamically are subject to deadlock. 

(e.g. dynamic order of locking multiple objects).

1. Background resource allocation policies that make deadlock possible, 
and what events cause it to occur dynamically?

2. Deadlock prevention – discussion of the conditions for avoidance and recovery.
3. Example:  Dining philosophers program – discussion of policies

4. Modelling deadlock – to support deadlock detection and avoidance. 

- object allocation, resource requests and cycle detection

- data structures and an algorithm for deadlock detection

Deadlock
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Conditions for deadlock to exist

1. Policy: mutual exclusion
Processes can claim exclusive access to the resources they acquire

2. Policy: hold-while-waiting
Processes can hold the resources they have already acquired while waiting 
for additional resources.

3. Policy: no pre-emption
Resources cannot be forcibly removed from processes. Resources are explicitly 
released by processes (e.g. by unlock/signal ).

4. Dynamic occurrence: Circular wait (cycle)
A circular chain of processes exists such that each process holds (at least) one
resource being requested by the next process in the chain.

If there is only one instance of each resource and ALL of the above hold then deadlock exists.

Other processes will be able to continue execution but the system is degraded 
by the resources held by the deadlocked processes. 

Other processes may proceed to block on resources held within the deadlock cycle.
They are not part of the deadlocked set but cannot proceed until the deadlock is cleared.

Deadlock
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Deadlock prevention
At all times at least one of the four conditions must NOT hold if deadlock
is to be prevented by system design.

1 Policy: mutual exclusion       
Cannot always be relaxed – introduced to prevent corruption of shared resources.

2. Policy: hold-while-waiting
Request all resources required in advance? Inefficient and costly. 
Consider long-running computations. Processes with large resource requirements
could suffer starvation.

3.    Policy: no pre-emption
Pre-emption could introduce problems caused by visibility of intermediate results 
of transactions (meaningful composite operations) a.k.a. “dirty reads”

4.   Dynamic occurrence: Circular wait (cycle)
Impose an order of use on resources – used by some OSs. Not easy to impose
and check in general.

Perhaps allowing deadlock to occur, detecting and recovering by restarting 
some processes is preferable.

NOTE – this (support for restart) may already be in place for crash recovery.

The mechanisms for concurrency control and crash recovery could be combined.
We come back to this later.  First, another example:

Deadlock
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Dining philosophers (due to Dijkstra, 1965) - 1 

Five philosophers spend their time thinking and eating. They each have a chair at a shared table 
with a shared bowl of food and shared forks – they need two forks to eat.

To eat they “execute” an identical algorithm –
pick up left fork, pick up right fork, eat, put down forks.

repeat 
wait ( fork [i] ) ;
wait ( fork [i+1 mod 5 ] ) ;
EAT
signal ( fork [i] ) ;
signal ( fork [i+1 mod 5 ] ) ;
THINK

until false

var fork : array [0 .. 4] of semaphore  \\ all initialised to 1

philosopher i may then be specified as:

Deadlock

8

Dining philosophers - 2

We have the policies in place for deadlock to be possible: 
exclusive hold, hold-while-wait,  no preemption. 

Dynamically, deadlock can occur:
a cycle is created when the philosophers each acquire their left fork 
and block waiting for their right fork. 

The problem can be solved in a number of ways, essentially by ensuring
that at least one of the conditions necessary for deadlock to exist cannot hold
Breaking the symmetry of the algorithm can achieve this 

e.g. make odd-numbered processes pick up their forks as specified, L then R, 
and even ones pick up their forks in reverse order, R then L.

Deadlock
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Object allocation and request – graphical notation

R1 and R2 are object/resource types. R1 has one instance and R2 has two.

The directed edge from the single instance of R1 to process P indicates that P holds that resource. 

The dashed directed edge from P to the object type R2 indicates that P has an outstanding request 
for an object of type R2. Assuming both are allocated, P is blocked, waiting for an R2.

If a cycle exists in such a graph and there is only one instance of each of the types involved

in the cycle, then deadlock exists (necessary and sufficient condition).

If there is more than one object of some or all of the types, then a cycle is a necessary but

not a sufficient condition for deadlock to exist. 

R1 R2P

Deadlock
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Dynamic object allocation and request – example

resource allocation must decide whether
to give the R2 instance to P or to Q 

R1 R2Q

P

R3

give the R2 instance to Q: no cycle
AFAWK, Q can complete and release R1 and R2,
then P can have R1 and R2 and complete.
There may of course be further dynamic requests.

give the R2 instance to P: cycle = deadlock 

Deadlock

R1 R2

R3

Q

P

R1 R2

R3

Q
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Cycles without and with deadlock

a cycle exists, but no deadlock
T could release R2, and unblock Q 

R1 R2

R3

R1
R2

R3

a cycle and deadlock
P is blocked waiting for R1
Q is blocked, waiting for R2 

T

Deadlock

Q

P

Q

P
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Data structures for resource/object allocation management

Allocation matrix Amn

a11 a12 .  .  .  .  a1n

a21 a22 .  .  .  .  a2n

am1 am2 .  .  .  .  amn

Request matrix Bmn

b11 b12 .  .  .  .  b1n

b21 b22 .  .  .  .  b2n

bm1 bm2 .  .  .  .  bmn

object/resource typeobject/resource type

process

aij is the number of objects of type j
allocated to process i

bij is the number of objects of type j
requested by process i

objects being managed:  Rn = (r1 r2 . . . . rn ),   the number of type i is ri

objects available:  Vn = (v1 v2 . . . . vn ),   the number of type i is vi , 
computable from Rn minus the objects allocated 

Deadlock

process
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Algorithm for deadlock detection

Mark the rows of the allocation matrix that are NOT part of a deadlocked set **NOW** 

1. Mark all null rows of A (a process holding no resources cannot be part of a deadlocked set

2. Initialise a working vector W = V initially, the available objects

3. Search for an unmarked row, say row i, such that Bi < W 

i.e. the objects that process i is requesting are “available” in W. 

(note that a null request can always be satisfied)

If none is found, terminate the algorithm. 

4.    Set W = W + Ai and mark row i. Return to step 3.

1  0  1  1  0
1  1  0  0  0
0  0  0  1  0
0  0  0  0  0

Example  allocated:  A                requested:  B     e.g. total R        available V  W initially

0  1  0  0  1
0  0  1  0  1
0  0  0  0  1
1  0  1  0  1

2  1  1  2  1 0  0  0  0  1

Deadlock

Algorithm for deadlock detection - example
3.    Search for an unmarked row, say row i, such that Bi < W 

If none is found, terminate the algorithm. 
4. Set W = W + Ai and mark row i. Return to step 3.

1  0  1  1  0
1  1  0  0  0
0  0  0  1  0
0  0  0  0  0  X

Example  allocated:  A                requested:  B            total R         available V -> W initially

0  1  0  0  1
0  0  1  0  1
0  0  0  0  1
1  0  1  0  1

2  1  1  2  1 0  0  0  0  1

1  0  1  1  0
1  1  0  0  0
0  0  0  1  0  X
0  0  0  0  0  X

W  becomes 0  0  0  1  1  (now “available” )

process 3’s request can be satisfied

AFAWK process 3 can complete and return its resources

1  0  1 1  0
1  1  0 0  0
0  0  0  1  0  X
0  0  0  0  0  X

0  1  0 0  1
0  0  1 0  1
0  0  0  0  1
1  0  1  0  1

R  =  2  1  1 2  1
W  = 0  0  0 1  1 

processes 1 and 2 are deadlocked  over objects 2 and 3 

14
Deadlock
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Deadlock – further reading

see Bacon “Concurrent Systems” or Bacon and Harris “Operating Systems”
- for a visualisation of the above algorithm showing the object allocations and requests 

- for an extension of the approach for deadlock avoidance
in the case where the maximum resource requests of all processes are known statically.
Only grant a request if no deadlock would occur, even if all processes request their max.
(run the algorithm for this case). But this is over-conservative and limits concurrency.

- If more information is available statically we might do better. In the case of multiphase processes
we know the order in which objects are released as well as requested. 

- distributed deadlock detection, where the processes and objects reside on various
nodes of a distributed system. 

In practice, deadlock is often allowed to occur. If your program hangs, kill it and restart.

Deadlock
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Livelock
Deadlock is  relatively easy to detect by humans – systems hangs and stops making progress.

Livelock is harder – threads continue to run but do nothing useful
e.g. for the example in slide 2 of this lecture, attempt to make threads cooperate.

Deadlock

// thread 1  
lock(A); 

{   unlock(A);
yield( );            

....….          
while (!trylock(B)) 

lock(A)       } 

// put to end of runnable queue for this priority
// ….. when scheduled again:  

// thread 2  
lock(B);     

{   unlock(B);    
yield( );            

....….          
while (!trylock(A)) 

lock(B)       } 

// put to end of runnable queue for this priority
// …. when scheduled again:  
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Priority Inversion and Priority Inheritance

A liveness problem due to interaction between locking and scheduling.

e.g. Consider three threads T1 (high priority), T2 (low priority), T3 (medium priority)
suppose T2 acquires lock L
T1 preempts T2 and blocks, waiting for L
T3 is scheduled (as higher priority than T2) 

T3 prevents T2 from running and releasing L

Typical solution is priority inheritance: temporary boost of priority of lock holder 
to that of highest waiting thread 

- some realtime systems (VxWorks) allow this policy to be specified per lock

Windows “solution”
- if any ready thread hasn’t run for 300 ticks, double its quantum 

and boost its priority. 

Deadlock

T1 blocked (high)

T2
runnable (low)

T3 running (medium)
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Problems with Priority Inheritance

Hard to reason about resulting behaviour: heuristic
but solutions based on some experience may not generalise – unintended side-effects …

More complex in practice than applying to a single lock
- propagate through multiple locks? 

- how to handle reader-writer locks (wish to give priority to writers)?

How to take into account condition synchronisation?
- with locks we know what thread holds the lock
- threads also block waiting for signals
- we don’t know which thread might issue a signal or release an allocated resource
- should we also record this e.g. in a condition queue associated with a mutex

Avoid the need for priority inheritance.
- avoid resource sharing between threads of different priorities.

Deadlock

T1 blocked (high)

T2
medium

T3
low
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Summary

Liveness properties
Deadlock - policies leading to deadlock; to what extent is prevention feasible?

- condition for deadlock to exist
- resource allocation and request graphs 
- deadlock detection algorithm

Priority inversion
Priority inheritance

Next  
- Composite operations; transactions
- ACID properties, serialisability, isolation

Deadlock


