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Concurrent and Distributed Systems

Introduction

8 lectures on Concurrent Systems, Michaelmas term 2014
Prof Jean Bacon (standing in for Dr Robert N. M. Watson)
Colour copies of slides are on the course materials page.
Also, Dr Watson’s slides from last year
Dr Watson will give the Case Study lecture Weds Oct 22nd TBC

• 8 lectures on Distributed Systems (Lent term 2015)
Dr Robert Watson

• Builds on Part 1A Operating Systems concepts

(coloured notes are expensive – bring some coloured pens?)
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Concurrent Systems

Introduction

1. Introduction and overview
Concurrency in and supported by OS. Thread models.

2. Shared memory – low level concurrency control 

3. Shared memory – high-level language concurrency control
3a. Lock-free programming, if time allows (not to be examined)

4. Inter-process communication with no shared memory

5. Liveness properties – Deadlock

*  
6. Transactions: composite operations on persistent objects (Thurs. Oct 23rd)

7. Concurrency control and recovery for transaction systems

* (8). FreeBSD case study 
will be given Weds Oct 22nd (TBC) by Dr Watson  
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Concurrent and Distributed Systems Introduction

• “8 lectures on concurrency control in centralised systems” (with FJava)
- concurrent execution of software components in main memory
- concurrent executions involving main memory and persistent storage

(concurrency control and crashes)
• 8 lectures on distributed systems (Lent term 2015, after some comms.)

Let’s look at the total system picture first

How do distributed systems differ fundamentally from centralised systems?

Introduction
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Fundamental characteristics of distributed systems

1. Concurrent execution of components on different nodes
2. Independent failure modes of nodes and connections
3. Network delay between nodes
4. No global time – each node has its own clock

Developers of distributed software have to live with these properties

Some implications: to be studied in lectures 9 – 16 
1      Nodes and connections may fail or may just be congested or slow

- how to program for this and tell the difference?
1, 3  Inconsistent views of state/data when it’s copied and distributed

- can’t wait for “no activity” to resolve inconsistencies
4      Timestamps generated by different nodes can’t be ordered

What are the fundamental problems for a single node?

Introduction



3

5

single node characteristics cf. distributed systems

1. Concurrent execution of components within a single node  YES

2. Failure modes - all components crash together, 

but disc failure modes are independent – similar concept to DS

3.      Network delay is not a concern, but:

- data structures on disc are copied to main memory and updated

- uncertainty about what updates have reached disc are

like concerns about distributed/replicated data.

4.      A node has a single clock 

– event ordering is not a problem in a single node

Introduction
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single node characteristics 1: concurrent execution

Some old systems, e.g. original UNIX, assumed uniprocessor operation. 

Concurrent execution of components is achieved on uniprocessors 
by interleaving OS level and user-level components.

Multiprocessors are now the norm – we shall assume that
real concurrent execution of processes/threads is possible.

Recall interrupt-driven scheduling of components: non-preemptive or
preemptive.  The latter creates most potential flexibility and most difficulties. 

Multi-core instruction sets are being examined in detail and instruction ordering
is being found to be problematic sometimes (sequential consistency). 

This course will assume sequential ordering of atomic machine-level instructions.

Introduction
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single node characteristics 2: failure modes

Failure modes: all in-memory components crash together when main memory 
is lost but disc is not affected by a main memory failure

e.g. on main-memory failure during an interaction to write to disc: 

write (fileID) is a composite operation: 

* find free block(s) from free-block list 

* update file metadata (inode in Unix) to record new block(s) 

* transfer data

Updates are made to copies of data structures in main memory. 

Even when they are written to disc, they may stay in an in-memory buffer for 
some time, and writes be re-ordered. 

The system restart procedure needs to check/restore consistency on disc.

In lectures 6,7 we consider programs that operate on persistent data on disc. 
We define transactions: composite operations  

in the presence of both concurrent execution and crashes. 

Introduction

Need for concurrency control in Operating Systems

Concurrency control was first studied for OS and later for 
programming languages.
Let’s see where concurrency occurs in OS and how problems 
might arise.

Introduction 8
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CDS: single node as DS component (for lectures 9-16)

Support for distributed software components is by a software layer 
(middleware) above potentially heterogeneous OS

components of
distributed software

middleware layer

OS
functions

Homogeneous, simpler interface
above heterogeneous OS
(e.g. Java RMI, RPC, 

JMS, MQseries)
OS interface

network

comms.
subsystem

We first consider a single node’s software structure and dynamic execution

Introduction
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single node: some software components 

• Software structure

• Support for persistent storage

• Dynamic concurrent execution ? – see next slide

device
handlers

OS functions
OS interface

network

comms.
subsystem

storage
subsystem

disc
controller

program/
process
runtime

program/
process
runtime

I/O
devices

Introduction
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single node – concurrent execution

OS interface

• note shared data areas in OS: data buffers between devices and process-level
data structures on process status etc.

• also, at application level, programs may share data
• also, “threads” (see later) in a concurrent program may share data

device
handlers

OS functions

network

comms.
subsystem

storage
subsystem

disc
controller

I/O
devices

data

Introduction

data

program/
process
runtime

program/
process
runtime
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Interaction of concurrent execution and process scheduling

device
handlers

OS functions
OS interface

comms.
subsystem

• assume preemptive scheduling
• interrupt-driven execution – devices, timers, system calls generate interrupts
• OS processes have static priority, page fault > disc > …. > system call handling
• OS process priority higher than application process priority, including system calls

RECALL from part 1A  OS:

PROBLEM: process preemption while reading/writing shared data

Introduction

data

data

program/
process
runtime

program/
process
runtime
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Examples: some OS components and processes - 1

OS interface (language independent)

device
handler

operations
for access to
data buffers

user program

interrupt service
routine (ISR)

data buffers 

buffer area for a device type

language 
runtime/library

system call

I/O control

hardware interface

programming language-
defined I/O interface

read or write

read or write

• synchronous I/O   
user process calls into system
(becomes a system process)

• asynchronous I/O
a system process takes the call
user process picks up result later 

Introduction
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Examples: some OS components and processes - 2

device
handler

operations 
for access to
data buffers

user program

interrupt service
routine (ISR)

data buffers 

buffer area for a device type

language 
runtime/library

system call

I/O control • so buffers must be accessed under mutual exclusion
(how? – see later) but this is not enough -

• condition synchronisation is also needed:
process gets mutex access to buffer (how? - see later)
process finds buffer full on write or empty on read
process must BLOCK until space or data available
process must not block while holding mutex access
(else we have deadlock!)

• note priority of device handlers > priority of user calls
• interrupts are independent of process execution
• top-down access could be preempted

by interrupt- driven, bottom-up access, 
resulting in deadlock or incorrect data.

Introduction



8

15

Examples: some OS components and processes - 3

process A 

interrupt –
driven code

event data

• interrupts are independent of process execution

• interrupt-driven code may preempt calls to wait (Unix sleep) and signal (Unix wakeup)

• animation first shows intended operation (A recorded) then race condition and deadlock 

• so wait and signal must be atomic operations

wait (event)

implementation of processes and events

use of processes and events

A

wait ( )

signal ( )

event manager process data

A

block ( )

unblock ( )

process manager

schedule

finds A is not waiting
so sets a “wake-up-waiting”
(event has occurred) and exits
A proceeds to await event and block
We have deadlock!

finds event has not occurred
… then is interrupted before
event data is updated

Introduction

We now look at OS support for multi-threaded processes.

terminology

user threads: defined in a concurrent program

kernel threads: supported and scheduled by the OS

Introduction 16
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Processes and threads
a) Sequential programming languages

OS kernel

one program
one process

runtime
system

kernel threads

one program
one process

runtime
system

address space address space

b) Concurrent programming language, no OS support (user threads only)

OS kernel

one program
many processes

runtime system

kernel threads

address space

user  threads

one program
many processes

runtime system

address space

user  threads

c) Concurrent programming language,
OS kernel threads for user threads 

OS kernel

one program
many processes

runtime system

kernel threads

address space

user  threads

one program
many processes

runtime system

address space

user  threads

Introduction
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Runtime system - user threads only
17 b) Concurrent programming language, no OS support (user threads only)

OS kernel

kernel threads :  only one per process

one program
many processes

runtime system

address space

user  threads

A B N
user  threads

address space of a process

runtime system – user thread implementation

per thread data
stack and
control block

user thread operations
(utID = user thread ID)
utID = create_thread ( )
kill_thread (utID)

wait_thread (utID)
signal_thread (utID)
call scheduler ( ) 

Introduction

see later
wait and signal
could be on a mutex,
not on a thread

many variations:
coroutines – application programmer
does scheduling (passes control)
processes – runtime system schedules

The OS does not schedule these threads,
but schedules only one process for this program
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user threads only - implications

1. the application can’t respond to OS events by switching user-threads

2. can’t use for real-time applications – delay is unbounded

3. the whole process is blocked if any thread makes a system call and 
blocks

4. applications can’t exploit a multiprocessor. The OS knows, and can 
schedule, only one kernel thread 

5. BUT handling shared data in the concurrent program is simple. 
There is no user-thread preemption i.e. threads are ONLY switched 
on calls to the runtime system. 

After an interrupt, control returns to the point in the program 
execution at which the interrupt occurred.

Introduction
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Runtime system - kernel threads
17 c) Concurrent programming language, OS can have several kernel threads per process

OS kernel

one program
many processes

runtime system

several kernel threads      per process

address space

user  threads
A B N

user  threads

address space of a process

runtime system – user thread implementation

per thread data
stack and 
control block

user/kernel thread operations
tID = create_thread ( )
kill_thread (tID)
wait_thread (tID)
signal_thread (tID)

tID = create_thread ( )  calls OS_create_thread ( )
kill_thread (tID)            calls OS_kill_thread (tID)
wait_thread (tID)   may call  OS_block_thread (tID)
signal_thread (tID) may call  OS_unblock_thread (tID)

The OS schedules threads made known to it by the program’s runtime system.
The create_thread call may be able to indicate a priority for the thread.

Introduction



11

21

kernel threads and user threads

1. thread scheduling is via the OS scheduling algorithm 

2. Applications can respond to OS events (e.g. interrupts) by switching 
threads, but only if OS scheduling is preemptive and priority-based. 

Real-time response is therefore OS-dependent.

3. user threads can make blocking system calls without blocking 

the whole process – other threads can run

4.     Applications can exploit a multiprocessor (threads can run in parallel)

5.     Managing shared writeable data becomes complex

6. There are different thread packages   e.g. posix pthreads, FreeBSD …

7.     The runtime need not create exactly one kernel thread per user thread.

Modern applications may create large numbers of threads (1000s)

The kernel may allow a maximum number of threads per process

related to the number of physical processors.

Introduction

Lecture 1 summary

Issues of distribution and concurrency

Examples of the need for concurrency control from OS implementations

- showed the need for mutual exclusion and condition synchronisation

Thread support in programming languages and OSs

Next:

How to implement concurrency control for concurrent processes with 
access to shared writeable data in main memory.

Introduction 22


