Definition. A partial function f is partial recursive $(f \in PR)$ if it can be built up in finitely many steps from the basic functions by use of the operations of composition, primitive recursion and minimization. The members of **PR** that are total are called recursive functions. **Fact:** there are recursive functions that are not primitive recursive. ## Examples of recursive definitions $$\begin{cases} f_1(0) & \equiv 0 \\ f_1(x+1) & \equiv f_1(x) + (x+1) \end{cases} \qquad f_1(x) = \text{sum of } \\ f_1(x) & \equiv f_1(x) + (x+1) \end{cases} \qquad \begin{cases} f_2(0) & \equiv 0 \\ f_2(1) & \equiv 1 \\ f_2(x+2) & \equiv f_2(x) + f_2(x+1) \end{cases} \qquad f_2(x) = x \text{th Fibonacci number} \\ \end{cases} \qquad \qquad \begin{cases} f_2(x) & = x \text{th Fibonacci number} \\ f_2(x) & = x \text{th Fibonacci number} \end{cases}$$ L7 85 ### Ackermann's function There is a (unique) function $ack \in \mathbb{N}^2 \rightarrow \mathbb{N}$ satisfying $$ack(0, x_2) = x_2 + 1$$ $ack(x_1 + 1, 0) = ack(x_1, 1)$ $ack(x_1 + 1, x_2 + 1) = ack(x_1, ack(x_1 + 1, x_2))$ ### Ackermann's function There is a (unique) function $ack \in \mathbb{N}^2 \rightarrow \mathbb{N}$ satisfying $$ack(0, x_2) = x_2 + 1$$ $ack(x_1 + 1, 0) = ack(x_1, 1)$ $ack(x_1 + 1, x_2 + 1) = ack(x_1, ack(x_1 + 1, x_2))$ ▶ *ack* is computable, hence recursive [proof: exercise]. #### OCaml version 4.00.1 ``` # let rec ack (x : int)(y : int) : int = match x ,y with 0 , y -> y+1 | x , 0 -> ack (x-1) 1 | x, y -> ack (x-1) (ack x (y-1));; val ack : int -> int -> int = <fun> # ack 0 0;; -: int = 1 # ack 1 1;; -: int = 3 # ack 2 2;; -: int = 7 # ack 3 3;; -: int = 61 # ack 4 4;; Stack overflow during evaluation (looping recursion?). ``` ## Ackermann's function There is a (unique) function $ack \in \mathbb{N}^2 { o} \mathbb{N}$ satisfying $$ack(0, x_2) = x_2 + 1$$ $ack(x_1 + 1, 0) = ack(x_1, 1)$ $ack(x_1+1,x_2+1) = ack(x_1,ack(x_1+1,x_2))$ - ► *ack* is computable, hence recursive [proof: exercise]. - ► Fact: ack grows faster than any primitive recursive function $f \in \mathbb{N}^2 \rightarrow \mathbb{N}$: $\exists N_f \ \forall x_1, x_2 > N_f \ (f(x_1, x_2) < ack(x_1, x_2)).$ Hence ack is not primitive recursive. In fact, writing a_x for $ack(x,-) \in \mathbb{N} \to \mathbb{N}$, one has $a_{x+1}(y) = (a_{x+1} \circ \cdots \circ a_x)(1)$ this is an e.g. of a prime recodefinition of higher type of the prime recodefinition of the prime recompose re L9 ## Lambda calculus # Notions of computability - ► Church (1936): λ -calculus - ► Turing (1936): Turing machines. Turing showed that the two very different approaches determine the same class of computable functions. Hence: **Church-Turing Thesis.** Every algorithm [in intuitive sense of Lect. 1] can be realized as a Turing machine. .9 Notation for <u>function definitions</u> in mathematical discourse: " Let f be the function $f(x) = x^2 + x + 1 \dots [f]...$ anonymous "the function $x \mapsto x^2 + x + 1 \dots$ " " the function $\frac{\lambda x \cdot x^2 + x + 1}{4} \dots$ " ## λ -Terms, M are built up from a given, countable collection of \triangleright variables x, y, z, \dots by two operations for forming λ -terms: - λ -abstraction: $(\lambda x.M)$ (where x is a variable and M is a λ -term) - ▶ application: (M M') (where M and M' are λ -terms). Some random examples of λ -terms: $$x (\lambda x.x) ((\lambda y.(xy))x) (\lambda y.((\lambda y.(xy))x))$$ ### λ -Terms, M #### **Notational conventions:** - $(\lambda x_1 x_2 \dots x_n M)$ means $(\lambda x_1 (\lambda x_2 \dots (\lambda x_n M) \dots))$ - $(M_1 M_2 ... M_n)$ means $(... (M_1 M_2) ... M_n)$ (i.e. application is left-associative) - drop outermost parentheses and those enclosing the body of a λ -abstraction. E.g. write $(\lambda x.(x(\lambda y.(y x))))$ as $\lambda x.x(\lambda y.y x)$. - ▶ x # M means that the variable x does not occur anywhere in the λ -term M. ### Free and bound variables In $\lambda x.M$, we call x the bound variable and M the body of the λ -abstraction. An occurrence of x in a λ -term M is called - ▶ binding if in between λ and . (e.g. $(\lambda x.y x) x$) - bound if in the body of a binding occurrence of x (e.g. $(\lambda x.y x) x$) - free if neither binding nor bound (e.g. $(\lambda x.y x)x$). ### Free and bound variables Sets of free and bound variables: $$FV(x) = \{x\}$$ $$FV(\lambda x.M) = FV(M) - \{x\}$$ $$FV(MN) = FV(M) \cup FV(N)$$ $$BV(x) = \emptyset$$ $$BV(\lambda x.M) = BV(M) \cup \{x\}$$ $$BV(MN) = BV(M) \cup BV(N)$$ E.g. $$FV((\lambda x.yx)x) = \{x,y\}$$ $BV((\lambda x.yx)x) = \{x\}$ ### Free and bound variables Sets of free and bound variables: $$FV(x) = \{x\}$$ $$FV(\lambda x.M) = FV(M) - \{x\}$$ $$FV(MN) = FV(M) \cup FV(N)$$ $$BV(x) = \emptyset$$ $$BV(\lambda x.M) = BV(M) \cup \{x\}$$ $$BV(MN) = BV(M) \cup BV(N)$$ If $FV(M) = \emptyset$, M is called a closed term, or combinator. E.g. $$FV(\lambda y. \lambda x. (\lambda x. yx)x) = \emptyset$$ $\lambda x.M$ is intended to represent the function f such that $$f(x) = M$$ for all x . So the name of the bound variable is immaterial: if $M' = M\{x'/x\}$ is the result of taking M and changing all occurrences of x to some variable x' # M, then $\lambda x.M$ and $\lambda x'.M'$ both represent the same function. For example, $\lambda x.x$ and $\lambda y.y$ represent the same function (the identity function). is the binary relation inductively generated by the rules: $$\frac{z \# (MN) \qquad M\{z/x\} =_{\alpha} N\{z/y\}}{\lambda x. M =_{\alpha} \lambda y. N}$$ $$\frac{M =_{\alpha} M' \qquad N =_{\alpha} N'}{M N =_{\alpha} M' N'}$$ where $M\{z/x\}$ is M with all occurrences of x replaced by z. ### For example: ``` because \lambda x.(\lambda xx'.x) \ x' =_{\alpha} \lambda y.(\lambda x \ x'.x) x'because (\lambda z \ x'.z) x' =_{\alpha} (\lambda x \ x'.x) x'because \lambda z \ x'.z =_{\alpha} \lambda x \ x'.x \ \text{and} \ x' =_{\alpha} x'because u =_{\alpha} u \ \text{and} \ x' =_{\alpha} x'. ``` **Fact:** $=_{\alpha}$ is an equivalence relation (reflexive, symmetric and transitive). We do not care about the particular names of bound variables, just about the distinctions between them. So α -equivalence classes of λ -terms are more important than λ -terms themselves. - ► Textbooks (and these lectures) suppress any notation for α -equivalence classes and refer to an equivalence class via a representative λ -term (look for phrases like "we identify terms up to α -equivalence" or "we work up to α -equivalence"). - For implementations and computer-assisted reasoning, there are various devices for picking canonical representatives of α -equivalence classes (e.g. de Bruijn indexes, graphical representations, . . .). 9 107