N.B. FYD\M Mmclaa,
Comp “Th. lectures

ot)0 -11 am

Universal register machine, U

"Effective’’ numerital codes

Prog . [2s 2] =y
Gode l, /)\4““““' Woxvvi-nwv\%co\l
| Coolings
Moo Tl o 3
- So
o v ier A_coAL ywn
1S Rmn ODN\PWMLLL

Universal RM U carries out the following computation,
starting with Rg = 0, Ry = e (code of a program), R, = a
(code of a list of arguments) and all other registers zeroed:

» decode e as a RM program P
» decode a as a list of register values aq, ..., a,

» carry out the computation of the RM program P
starting with Rg = 0,R; = a4,...,R, = a, (and any
other registers occurring in P set to 0).

Mnemonics for the registers of U and the role they play in
Its program:

R1 = P code of the RM to be simulated
Rp = A code of current register contents of simulated RM

R3 = PC program counter—number of the current instruction
(counting from 0)

Rg = N code of the current instruction body
Rs = C type of the current instruction body

Re¢ = R current value of the register to be incremented or
decremented by current instruction (if not HALT)

Ry = S, Rg = T and Rg = Z are auxiliary registers.

Ro result of the simulated RM computation (if any).

Overall structure of U’s program

1 | copy PCth item of list in P to N (halting if PC > length
of list); goto |2

2| if N = 0 then copy Oth item of list in A to Ry and halt,
else (decode N as (y,z); Cii=1vy; Nu= z; goto |3))

{at this point either C = 2i is even and current instruction is Rj — L,
or C = 2i +1is odd and current instruction is R; — Lj, Ly where z = (j, k) }

3| copy ith item of list in A to R; goto |4

4 | execute current instruction on R; update PC to next
abel; restore register values to A; goto |1

U

1 | copy PCth item of list in P to N (halting if PC > length
of list); goto |2

2| if N = 0 then copy 0th item of list in A to Ry and halt,
else (decode N as (y,z); Cii=1vy; Nu= z; goto |3))

{at this point either C = 2i is even and current instruction is Rj — L,
or C = 2i +1is odd and current instruction is R; — L;, Ly where z = (j, k) }

3| copy ith item of list in A to R; goto |4

4| execute current instruction on R; update PC to next
abel; restore register values to A; goto |1

To implement this, we need RMs for manipulating (codes of) lists of
numbers. . .

The program START—|S ::= R|—HALT

to copy the contents of R to S can be implemented by

START —S™ —R™ —»Z~ —— HALT
v /1)
Al RT

i

S+

The program START—|S ::= R|—HALT

to copy the contents of R to S can be implemented by

START @—» Rm—»7Z —HALT

[

Z+ R

1

S+

The program START—|S ::= R|—HALT

to copy the contents of R to S can be implemented by

START 48*3—(»?—» 7~ —HALT

(R,8,2):= (E&JS*E}%i-Q]

The program START—|S ::= R|—HALT

to copy the contents of R to S can be implemented by

(R,$,2)=(0,54R,2+R)

The program START—|S ::= R|—HALT

to copy the contents of R to S can be implemented by

START—S™ — R~ —»Z~ —— HALT

07

Zt RT

S+
precondition: postcondition:
R=x R=x
S—1vY S — X

Z=20 Z=20

push X

The program START— —sHALT |2'(2L+1)

to carry out the assignment (X,L) ::= (0,X::L) can be

implemented by

START — Z™* L™ —» 7~ —» X~ —» HALT

N

push X

The program START— —HALT

to carry out the assignment (X,L) ::= (0,X::L) can be
implemented by

o .
START — Z LT — 77 —» X~ — HALT
NI
L

(L,2):= (2+1+2 0)

push X

The program START— —HALT

to carry out the assignment (X L) :x=(0,X::L) can be
implemented by

START — ZJr L — Z — —» HALT

(L,2):=(2L+2Z 0o

push X

The program START— —HALT

to carry out the assignment (X,L) ::= (0,X::L) can be

implemented by

START — Z+\ /L — % l—» ~ —»HALT
[T
precondition: postcondition:
X=x X=0
L=2¢ L= (x,£) = 2%(2£ +1)

Z=10 Z=20

—-HALT
The program START— PP -

fo X | FXTT specified by

“if L =0 then (X:=0; goto EXIT) else
let L = {x,£) in (X::=x; Lu=¥¢; goto HALT)"

can be implemented by

START X+ HALT
| ™\ I
X—»L —— LT —L" —»Z" YA

T N

EXIT Zt

= L

{maﬂumiv\& + =0 %L}[}}
(W‘V\\]L L easean C'[h \ := JEP,L'-' N = ‘x’,r]);i

—-HALT
The program START— PP -

fo X | FXTT specified by

“if L =0 then (X:=0; goto EXIT) else
let L = {x,£) in (X::=x; Lu=¥¢; goto HALT)"

can be implemented by

START X+ HALT
| ™\ I
X—»L —— LT —L" —»Z" YA

T N

EXIT Zt

Overall structure of U’s program

1 | copy PCth item of list in P to N (halting if PC > length
of list); goto |2

2| if N = 0 then copy Oth item of list in A to Ry and halt,
else (decode N as (y,z); Cii=1vy; Nu= z; goto |3))

{at this point either C = 2i is even and current instruction is Rj — L,
or C = 2i +1is odd and current instruction is R; — Lj, Ly where z = (j, k) }

3| copy ith item of list in A to R; goto |4

4 | execute current instruction on R; update PC to next
abel; restore register values to A; goto |1

T'he program for U

START HALT
]

push 0 Tu=P pov T hor A
)

PC- w3

pop SK T push B PCiu=N RT«———C (PP b

.
R |PoP] Nt C™—qyPush R

The program for U

T=o

HALT

]

e

.| pop A

to Ry

o pop N

to C

START))
puSh 0 T o P pop T
to A S to N
PC™
pop St————{push R .
to R \—/%pto A PCu=N

pop N

pop A

fo R

to PC

push R
to S

The program for U

START ——@ 1 .
\ r=o N
push 0| | . pop T , A
to A [Tu=P to N ' lzngo
N
— Jpop N
PC L Ly
— y
pop Sk———— push R . _ A
fto R —m——1 to A/Pg"_N R+4%C DPEJPR
R—&— (pop X Nt « - push R

HALT\

f——— to PC

fo S

The program for U

HALT\

START ——@ — 2
\ r=o]
push 0| | .. pop T . pop A
to A [Tu=P to N " 'to Rg
I
- Jpop N
PC™ — APoP
Cevem g,
S h R \l(A—\‘
pop o & —pus .o + « — ———— pop
to R ——7 tOA/Pg"_N R —C Y—— to R
R |PoP] Nty Gy Push R

VAN

The program for U

HALT\

START ——@ rz
T=o0 m
push 0| | . pop T . pop A
to A | Ti=P to N " 'to Rg
N
_ Jpop N
% PC ’ﬂfc
/ Ceven J
7 A
pop Sk———— push R PC = N M Cc— & pop A
to R — b — ‘ ——— to R

push R
to S

