Lambda-Definable Functions



Encoding data in A-calculus

Computation in A-calculus is given by B-reduction. To
relate this to register/Turing-machine computation, or to
partial recursive functions, we first have to see how to
encode numbers, pairs, lists, ...as A-terms.

We will use the original encoding of numbers due to
Church. ..
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Church’s numerals

Af x.x
Afx.fx
Afx.f(f x)

Mg (f))

n times

IN = o
(1> {I> [I>

I
||>

M°N 2N
Notation:{ MIN £MN
M"tIN 2 M(M"N)

so we can write 12 as Af x.f"x and we have [ n M N =g M" N |,
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Church’s numerals

0 = Afxx

1 = Afxfx

2 = Afx,

n 5 Afx.f(e (f x) -

n times

M°N £N
Notation:{ MIN £MN
M"tIN 2 M(M"N)

so we can write 12 as Af x.f"x and we have [ n M N =g M" N |,
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A-Definable functions

Definition. f € IN"~IN is A-definable if there is a closed
A-term F that represents it: for all (xy,...,x,) € IN" and
y €N

> if f(x1,...,%,) =y, then Fxy---x, =pY

> if f(x1,...,%,)T, then Fxq -+ x, has no B-nf.

For example, addition is A-definable because it is represented by
P2 Axyx0.Af x.x1 f (%2 f X):

Pmn=gAfx.mf(nfx)
=p Af x.m f(f"x)
=p Afx. f"(f"x)
= /\fx.fm+"x

=m-+n
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Computable = A-definable

Theorem. A partial function is computable if and only if it
is A-definable. J

We already know that

Register Machine computable
= Turing computable
= partial recursive.

Using this, we break the theorem into two parts:

» every partial recursive function is A-definable
» A-definable functions are RM computable
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A-Definable functions

Definition. f € IN"~IN is A-definable if there is a closed
A-term F that represents it: for all (xq,...,x,) € N" and
y €N

> if f(x1,...,%,) =y, then Fxy - - ‘X =p Y

> i}f f(x1,...,%4)T, then Fxq -+ x, has no B-nf.

This condition can make it quite tricky to find a A-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are A-definable.
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Basic functions
» Projection functions, proj? € IN"—IN:

proj?(x1, ..., x,) = x;

» Constant functions with value 0, zero™” € IN"—IN:

zero™ (X1, ..., X,) 20

» Successor function, succ € IN—IN:

succ(x) = x+1
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Basic functions are representable

» proj? € IN"=IN is represented by Axq ...x,.x;
» zero” € IN"—IN is represented by Axy ...x,.0
» succ € IN—IN is represented by

Succ = Axg fx.f(x1 f x)

since

Succn =g Af x. f(n f x)
=5 Afx. f(f" )
=Afx f"tx
=n—+1
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Basic functions are representable

» proj? € IN"=IN is represented by Axq ...x,.x;
» zero” € IN"—IN is represented by Axy ...x,.0
» succ € IN—IN is represented by

Succ = Axg fx.f(x1 f x)

Succn =g Af x. f(n f x)
—p Afx. f(f7%)
=Afx f"tx
=n+1

(7‘3‘41&1- f (f2) also rQ)IOr&SGV\l'S' Suce )
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Representing composition

If total function f € IN"—IN is represented by F and total
functions g1,...,gxn € IN"=IN are represented by
G1,..., Gy, then their composition

fo (81, .. .,gn) € IN"—IN is represented simply by

Ax1 .o X F(G1x1.. %) oo (G X1. o X))

because F(Giai...am)...(Gyai...am)
=g Fgi(ay,...,am)...gu(a1,..., am)
=g f(g1(ar,...,am),---, gn(a1,..., am))
= fo(gy,..-,qn)(a1,...,am)

L11 124



Representing composition

If total function f € IN"—IN is represented by F and total
functions g1,...,gxn € IN"=IN are represented by
G1,..., Gy, then their composition

fo (81, .. .,gn) € IN"—IN is represented simply by

Ax1 .o X F(G1x1.. %) oo (G X1. o X))

This does not necessarily work for partial functions. E.g. totally

undefined function u € IN—IN is represented by U = Ax1.Q (why?)
and zero! € N-IN is represented by Z = Ax71.0; but zero! o u is not
represented by Axq. Z(U x1), because (zerol o u)(n)? whereas
(Ax1.Z(Ux1)) n = ZQ =4 0. (What is zero' o u represented
by?)

(see Ex. 12)
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Primitive recursion

Theorem. Given f € IN"~IN and g € IN"T2IN, there
is a unique h € IN"T1 N satisfying

{h(:‘c’,O) = (%)
h(¥,x+1) = g(¥,x,h(¥ x))

for all ¥ € IN" and x € IN.

We write p"(f, g) for h and call it the partial function
defined by primitive recursion from f and g.
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € N""25N is represented by a A-term G,
we want to show A-definability of the unique

h € N"T1IN satisfying

h(d,0) = f(a)
h(d,a+1) = g(d,a,h(d, a))
or equivalently

h(d,a) = if a = 0 then f(d)
else g(d,a —1,h(d,a —1))

L11
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € N""25N is represented by a A-term G,
we want to show A-definability of the unique
h € N"t1SIN satisfying |h = @, (h)

where ®¢, € (N"T'-IN) - (IN"t1-IN) is given by

@ (h)(d,a) =if a=0 then f(d)
else g(d,a—1,h(d,a —1))

L11
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € IN"T25IN is represented by a A-term G,

we want to show A-definability of the unique
h € N"t1SIN satisfying |h = @, (h)

where ®¢, € (N"T'-IN) - (IN"T1-IN) is given by. ..

Strategy:

» show that @, is A-definable;
» show that we can solve fixed point equations

up to B-conversion in the A-calculus.
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Representing booleans

True £ Axy.x
False = Axy.y
If £ Afxy.fxy

satisfy

» If TrueM N =g TrueM N =8 M
» If False M N =8 False M N =8 N
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Representing test-for-zero

Eq, = Ax.x(Ay. False) True

satisfies

» Eqy0 =g 0(Ay.False) True
=g True
» Equn+1 =g n+1(Ay.False) True
=4 (Ay.False)"*! True

=g (Ay.False)((Ay.False)” True)
=g False
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Representing predecessor

Want A-term Pred satisfying

Predn + 1
Pred 0

g n
g 0

Have to show how to reduce the “n 4+ 1-iterator” n + 1 to the
“n-iterator” n.

Idea: given f, iterating the function g7 : (x,y) — (f(x),x) n+1
times starting from (x, x) gives the pair (f*T1(x), f*(x)). So we can
get f"(x) from f"+1(x) parametrically in f and x, by building g
from f, iterating n 4 1 times from (x,x) and then taking the second
component.

Hence. ..
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Representing ordered pairs

Pair = Axyf.fxy
Fst = Af.f True
Snd £ Af. fFalse

satisfy
» Fst(PairMN) =g Fst(Af.f MN)
=g (Af.f M N) True
=B True M N
> Snd(PairMN) =g:--=g N
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Representing predecessor

Want A-term Pred satisfying

Predn+1 =g n
PredQ =B Q

Pred £ Ay f x.Snd(y (G f) (Pairxx))

where

G = Af p.Pair(f(Fst p)) (Fst p)

has the required B-reduction properties.
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € N""25N is represented by a A-term G,
we want to show A-definability of the unique
h € N"t1SIN satisfying |h = @, (h)

where ®¢, € (N"T'-IN) - (IN"t1-IN) is given by

@ (h)(d,a) =if a=0 then f(d)
else g(d,a—1,h(d,a —1))
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € N""25N is represented by a A-term G,
we want to show A-definability of the unique

h € N"t1SIN satisfying |h = @, (h)
where ®¢, € (N"T'-IN) - (IN"T1-IN) is given by. ..
Strategy:

@ow that @, is /\—de@
A

2% . TH Eq0) (F1 ) G (Pred Y@ (Red )
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