Computer Networking

Michaelmas/Lent Term
M/W/F 11:00-12:00
LT1 in Gates Building

Slide Set 2
Andrew W. Moore

andrew.moore@cl.cam.ac.uk
2014-2015

Topic 4: Network Layer

Our goals:
* understand principles behind network layer
services:
— network layer service models
— forwarding versus routing (versus switching)
— how a router works
— routing (path selection)
— |Pv6

* For the most part, the Internet is our
example — again.

Name: a something
Address: Where a something is

Routing: How do | get to the
something

Addressing (at a conceptual level)

Assume all hosts have unique IDs
No particular structure to those IDs

Later in topic | will talk about real IP addressing
Do | route on location or identifier?

If a host moves, should its address change?
— If not, how can you build scalable Internet?
— |If so, then what good is an address for identification?

Packets (at a conceptual level)

* Assume packet headers contain:

— Source ID, Destination ID, and perhaps other

information

Destination
|dentifier

Source
|dentifier

Payload

Why include
this?

Switches/Routers

 Multiple ports (attached to other switches or hosts)

incoming links Switch outgoing links

* Ports are typically duplex (incoming and outgoing)

A Variety of Networks

* |SPs: carriers
— Backbone
— Edge
— Border (to other ISPs)
* Enterprises: companies, universities
— Core
— Edge
— Border (to outside)
e Datacenters: massive collections of machines
— Top-of-Rack
— Aggregation and Core
— Border (to outside)

Switches forward packets
|

GLASGOW ——— EDINBURGH

switch# switch#2

Forwarding Table

‘iiiiiiiiiiillllllIiiiiiiiilllll

111010010

GLASGOW 4
OXFORD 5
EDIN 2
UCL S
_“switch#5s
OXFORD/ UOL

switch#3

Router definitions

N-1 R bits/sec

* N = number of external router “ports”
* R = speed (“line rate”) of a port
* Router capacity =N xR

Networks and routers

edge (enterprlse)

= INTEL,

AL F T
=< P

..........

........

Examples of routers (core)

Cisco CRS
 R=10/40/100 Gbps
* NR=922 Thps
* Netflix: 0.7GB per
hour (1.5Mb/s)

* ~600 million
concurrent Netflix
users AN

72 racks, > 1MW

Examples of routers (edge)

Cisco ASR
 R=1/10/40 Gbps
* NR =120 Gbps

Examples of routers (small business)

Cisco 3945E

e R =10/100/1000 Mbps
* NR < 10 Gbps

What’s inside a ro

Route/Control

Linegards (input)

ﬁ 2
\ Interconnect ‘
= (Switching)
® Fabric
®

What’s inside a router?

ﬁ

Linecards (input)//

Route/Control
Processor

1 |

ﬁ

> B

N4

Interconnect
(Switching)
Fabric

Linecards (output)

/,I

1

g

\

1t

What’s inside a rout

_ ’___— ~---
g Route/Control
\\
Seeo Processor -
Linecards<input)
P ~9
,’V \‘
"4 \\
\\
\1

i\\
Interconnect 1
¢ Fabri !
apric ® ’,

® /

@ /

’I

® ® /‘
,/
\\~ P d {
ﬁ \\~~ N N’” P
-
~~~~~ -
~-= — y— =-—-——




Forwarding Decisions

* When packet arrives..
— Must decide which outgoing port to use
— In single transmission time
— Forwarding decisions must be simple

* Routing state dictates where to forward packets
— Assume decisions are

* Global routing state means collection of routing state
in each of the routers

— Will focus on where this routing state comes from
— But first, a few preliminaries....



Forwarding vs Routing

* Forwarding: “data plane”
— Directing a data packet to an outgoing link
— Individual router using routing state

* Routing: “control plane”
— Computing paths the packets will follow
— Routers talking amongst themselves
— Jointly creating the routing state

* Two very different timescales....



“Autonomous System (AS)” or “Domain”
Region of a network under a single administrative entity

“End hosts”
“Clients”, “Users”
“End points”

| \
{ , ) ’
“Interior Routers”

19



Context and Terminology

are responsible for constructing
and updating the forwarding tables at routers




Routing Protocols

* Routing protocols implement the core function of a network
— Establish paths between nodes

— Part of the network’s “control plane”

 Network modeled as a graph
— Routers are graph vertices
— Links are edges

— Edges have an associated “cost”
e e.g., distance, loss

* Goal: compute a “good” path from source to destination
— “good” usually means the shortest (least cost) path

21



Internet Routing

Internet Routing works at two levels

Each AS runs an intra-domain routing protocol that
establishes routes within its domain
— (AS -- region of network under a single administrative entity)
— Link State, e.g., Open Shortest Path First (OSPF)
— Distance Vector, e.g., Routing Information Protocol (RIP)

ASes participate in an inter-domain routing protocol that
establishes routes between domains
— Path Vector, e.g., Border Gateway Protocol (BGP)



Addressing (for now)

* Assume each host has a unique ID (address)
* No particular structure to those IDs

e Later in course will talk about real IP
addressing



Outline

ink State
Distance Vector

Routing: goals and metrics (if time)



Link-State



Link State Routing

« Each node maintains its local “link state” (LS)
— i.e., alist of its directly attached links and their costs

(N1,N2)
(N1,N4)
(N1,N5) Host C
Host A
L] v
N1 N2
>N3
N5
Host E
|

N6 N7 =



Link State Routing

Each node floods its local link state

— on receiving a new LS message, a router forwards the message
to all its neighbors other than the one it received the message from

Host A
(N1,N2)
O
S— (N1, N5)
(N1,N2)
(N1, Na)
(N1, N5)
N2
Nl (N1,N2)
(N1, N4)
(N1, N5)
(N1,N2)
(N1, N4) T N
(N1, N5)
(N1,N2) (N1,N2)
(N1, N4) N (N1, N4)
(N1, N5 (N1, N5) (N1,N2)
(N1, N4)
) ey
(Nl: N5)
Host B
N/ Host E
= I
i |
(N1, N4) N6 (N2, N5) 4 N7 =7
(N1, NS) a 27




Link State Routing

* Hence, each node learns the entire network topology
— Can use Dijkstra’s to compute the shortest paths between nodes

7 Host C

—~/| O

}\

7

|B

§I>/} £ D




Dijkstra’s Shortest Path Algorithm

* INPUT:
— Network topology (graph), with link costs

« OUTPUT:

— Least cost paths from one node to all other nodes

* lterative: after k iterations, a node knows the
least cost path to its k closest neighbors



30



Notation

c(i,]): link cost from node i
to j; cost is infinite if not
direct neighbors; 2 0

D(V): total cost of the current
least cost path from source
to destination v

P(V): v's predecessor along
path from source to v

S: set of nodes whose least
cost path definitively known

r Source ]

31



Dijkstra’ s Algorithm

* ¢(i,)): link cost from node i to j

1 Initialization:
2 S={A}: * D(v): current cost source — v
3 for all nodes v * p(v): v's predecessor along path
4  if vadjacentto A from source to v
3) then D(v) = c(A,v); « S: set of nodes whose least cost
6 else D(v) = o0; path definitively known
7
—8 Loop
9 find wnotin S such that D(w) is a minimum;
10 addwto S;

11 update D(v) for all v adjacent to w and not in S:
12 if D(w) + c(w,v) < D(v) then
Il w gives us a shorter path to v than we 've found so far
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

— 0




Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F)
g A 2,A 9,A 1,A o0 o0
1
2
3
4
)

1 Initialization:

2 S={A}

3 for all nodes v

4 if vadjacentto A

3 then D(v) = c(A,v);
6 else D(v) = o0;

33



Example: Dijkstra’ s Algorithm

Step setS  D(B),p(B) D(C),p(C) D(D),pR).  D(E), p(E) D(F), p(F)
0 A 2.A 5,A 1,A (
— ~
2 \
3 \
4 \
5 \
- 8 Loop \

9 @p&tsiﬂ S s.t. D(w) is a min@
10 addwios;

11 update D(v) for all v adjacent
tow and not in S:

12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
—14 until all nodes in S;

34



Example: Dijkstra’ s Algorithm

tep setS D(B),p(B) D(C),p(C) D(D).p(D) D(E),p(E) D(F),p(F)

A 2A 5A 1,A o0 o0

8 Loop
\9,. | in S s.t. D(w) is a minimum;
QO addwto S;
11 update D(v) for all v adjacent
to w and not in S:
12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;
—14 until all nodes in S;

35



Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F)
0 A 2,A 5A 1A X o
I AD Q;D 2D O

2 X

3 \

4 \

5

\

- 8 Loop
9 findwnotin S s.t. D(w) is a minimum;

10 addwto S;

update Ij(v) for all v adjacent h
tow and not in S:

12 If D(w) + c(w,v) < D(v) then

43 D(v) = D(W) + c(w,v); p(v) = W;

—14  until all nodes in S;

36



Example: Dijkstra’ s Algorithm

Step setS _D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F)
0 A 2,A 9,A 1,A o0 o0
1 AD 4,D 2,D
-2 ADE 3,E 4.E
3
4
3
~ 8 Loop
9 findwnotin S s.t. D(w) is a minimum;
10 addwto S;

11 update D(v) for all v adjacent
tow and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14  until all nodes in S;

37



Example: Dijkstra’ s Algorithm

Step setS  D(B),p(B) D(C),p(C) D(D),p(D) D(E).p(E) D(F),%g:)

0 A 2,A 9,A 1,A o0
1 AD 4,D 2,D
2 ADE 3,E 4,E
-3 ADEB
4
3
~ 8 Loop
9 findwnotin S s.t. D(w) is a minimum;
10 addwto S;

11 update D(v) for all v adjacent
tow and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14  until all nodes in S;

38



Example: Dijkstra’ s Algorithm

Step _setS D(B),p(B) D(C).p(C) D(D),p(D) D(E),p(E) D(F),p(F)
0 A 2,A 5,A 1,A % %
1 AD 4,D 2,D

2 ADE 3,E 4,E

3 ADEB

% ADEBC
5

~ 8 Loop
9 findwnotin S s.t. D(w) is a minimum;
10 addwto S;

11 update D(v) for all v adjacent
tow and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14  until all nodes in S;

39



Example: Dijkstra’ s Algorithm

Step setS D(B).p(B) D(C),p(C) D(D),p(D) D(E).p(E) D(F),p(F)
0 A 2,A 9,A 1,A o0 o0
1 AD 4,D 2,D
2 ADE 3,E 4.E
3 ADEB
4 ADEBC
-5 ADEBCF
~ 8 Loop
9 findwnotin S s.t. D(w) is a minimum;
10 addwto S;

11 update D(v) for all v adjacent
tow and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14  until all nodes in S;

40



Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D{D),p(D) D(E).p(E) D(F),gg:)

A 2,A 9,A U\,é) —~_ L
—_—2D)

AD

ADE BE)— 4,E

ADEB

ADEBC

arwdNh-~0

ADEBCF

To determine path A — C (say),
work backward from C via p(v)

41



The Forwarding Table

* Running Dijkstra at node A gives the shortest

path from A to all destinations

« We then construct the forwarding table

Destination Link
B (A,B)
C (A,D)
D (A,D)
E (A,D)
F (A,D)

42



Issue #1: Scalability

How many messages needed to flood link state messages?
— O(N x E), where N is #nodes; E is #edges in graph

Processing complexity for Dijkstra’s algorithm?

— O(N?), because we check all nodes w not in S at each
iteration and we have O(N) iterations

— more efficient implementations: O(N log(N))

How many entries in the LS topology database? O(E)

How many entries in the forwarding table? O(N)



Issue#2: Transient Disruptions

* |Inconsistent link-state database

— Some routers know about failure before
others

— The shortest paths are no lonaer consistent
— sient forw#

S

Loop!

'\ /

A and D think that this E thinks that this
is the pathto C is the path to C

44



Distance Vector



Learn-By-Doing

Let’s try to collectively develop
distance-vector routing from first principles

46



Experiment

* Your job: find the (route to) the youngest person in the room

e Ground Rules

— You may not leave your seat, nor shout loudly
across the class

— You may talk with your immediate neighbors

(N-S-E-W only)
(hint: “exchange updates” with them)

* Atthe end of 5 minutes, | will pick a victim and ask:
— who is the youngest person in the room? (date&name)
— which one of your neighbors first told you this info.?



Go!



Distance-Vector



Cvamnla gf Distributed Computation

| am three hops away
| am two hops away

| am two hops away

N -
| am two hops away
\

| am three hops away

Destination

| am three hops away

| am two hops away

50



Distance Vector Routing

Each router knows the links to its neighbors
— Does not flood this information to the whole network

Each router has provisional “shortest path” to
every other router

— E.g.: Router A: “I can get to router B with cost 11~
Routers exchange this distance vector
information with their neighboring routers

— Vector because one entry per destination

Routers look over the set of options offered by
their neighbors and select the best one

Iterative process converges to set of shortest
paths



A few other inconvenient truths

e What if we use a non-additive metric?
— E.g., maximal capacity

e What if routers don’t use the same metric?

— | want low delay, you want low loss rate?

 What happens if nodes lie?



Can You Use Any Metric?

* | said that we can pick any metric. Really?
 What about maximizing capacity?



What Happens Here?

‘ Problem: “cost” does not change around loop

N

Additive measures avoid this problem!




No agreement on metrics?

If the nodes choose their paths according to
different criteria, then bad things might happen
Example

— Node A is minimizing latency

— Node B is minimizing loss rate

— Node Cis minimizing price

Any of those goals are fine, if globally adopted
— Only a problem when nodes use different criteria

Consider a routing algorithm where paths are
described by delay, cost, loss



What Happens Here?

Cares about price, Cares about delay,
then loss . then price
Low price link
Z—

Low defay lin

Cares about loss,
then delay

elay link

Low loss link Low price link

56



Must agree on loop-avoiding metric

* When all nodes minimize same metric
* And that metric increases around loops

 Then process is guaranteed to converge



What happens when routers lie?

What if a router claims a 1-hop path to
everywhere?

All traffic from nearby routers gets sent there
How can you tell if they are lying?

Can this happen in real life?
— It has, several times....



Link State vs. Distance Vector

* Core idea
— LS: tell all nodes about your immediate neighbors

— DV: tell your immediate neighbors about (your least
cost distance to) all nodes



Link State vs. Distance Vector

LS: each node learns the complete network map; each node
computes shortest paths independently and in parallel

DV: no node has the complete picture; nodes cooperate to
compute shortest paths in a distributed manner

= LS has higher messaging overhead
= LS has higher processing complexity
=2 LS is less vulnerable to looping



Link State vs. Distance Vector

Message complexity

* LS: O(NxE) messages;
— Nis #nodes; E is #edges

 DV: O(#lterations x E)

— where #lterations is ideally
O(network diameter) but varies due
to routing loops or the
count-to-infinity problem

Processing complexity
e LS: O(N?)
 DV: O(#lterations x N)

Robustness: what happens if router
malfunctions?
* LS:
— node can advertise incorrect /ink
cost

— each node computes only its own
table

e DV:

— node can advertise incorrect path
cost

— each node’ s table used by others;
error propagates through network



Routing: Just the Beginning

* Link state and distance-vector are the
deployed routing paradigms for intra-domain
routing

* |nter-domain routing (BGP)
— more Part Il (Principles of Communications)
— A version of DV



What are desirable goals for a routing
solution?

e “Good” paths (least cost)
* Fast convergence after change/failures
— no/rare loops

e Scalable

— #messages

— table size

— processing complexity

* Secure
* Policy
e Rich metrics (more later)



Delivery models

e What if a node wants to send to more than
one destination?

— broadcast: send to all
— multicast: send to all members of a group
— anycast: send to any member of a group

 What if a node wants to send along more
than one path?



Metrics

* Propagation delay

* Congestion

* Load balance

 Bandwidth (available, capacity, maximal, bbw)
* Price

* Reliability

* Loss rate

 Combinations of the above

In practice, operators set abstract “weights” (much
like our costs); how exactly is a bit of a black art



From Routing back to Forwarding

* Routing: “control plane”
— Computing paths the packets will follow
— Routers talking amongst themselves

— Jointly creating the routing state

 Forwarding: “data plane”
— Directing a data packet to an outgoing link
— Individual router using routing state

* Two very different timescales....



Basic Architectural Components
of an IP Router

N
Management
& CLI

Routing

Protocols

Y
2JeM]JoS

Routing Control Plane

Table

T
Forwarding s %)_ Datapath
Table | SWitching S = per-packet
= processing

67



Per-packet processing in an IP
Router

1. Accept packet arriving on an incoming link.

2. Lookup packet destination address in the
forwarding table, to identify outgoing port(s).

3. Manipulate packet header: e.g., decrement
TTL, update header checksum.

4. Send packet to the outgoing port(s).
5. Buffer packet in the queue.
6. Transmit packet onto outgoing link.

68



Generic Router Architecture

Data

~1M prefixes
Off-chip DRAM

Lookup

IP Address

v

Update
Header

Address
Table

Data |[lels

Queue
Packet

Buffer | ~1M packets

69



Generic Router Architecture

Header Processing

Lookup Update
IP Address Header
21
H
Address
Table

Header Processing

Lookup Update
IP Address Header
: B
H :
Address
Table

Header Processing

Lookup Update
IP Address Header
21
H
Address
Table

@)

Buffer
Manager

Data

T 1

Buffer

Memory

Buffer
Manager

Data

Data

Buffer
Manager

oata [
Data [T

T 1

Buffer
Memory




Forwarding tables

IP address }32 bits wide = ~ 4 billion unique address

Naive approach:
One entry per address

Entry Destination Port
1 0.0.0.0 1
2 0.0.0.1 2 . .
; ; ; — ~ 4 billion entries
232 255.255.255.255 12

Improved approach:
Group entries to reduce table size

Entry Destination Port
1 0.0.0.0-127.255.255.255 1

2 128.0.0.1 —128.255.255.255 2

50 248.0.0.0 — 255.255.255.255 12

71



IP addresses as a line

Your computer My computer
kmbrldge/Oxford
USA Europe

|
All IP addresses

Destination

1 Cambridge 1
Oxford 2
Europe 3

USA 4

Everywhere (default) 5

u b W N

72



Longest Prefix Match (LPM)

Entry Destination Port
; Cacr;:( ?cr)lrige ; } Universities
3 Europe 3 } Continents
4 USA 4
5 )/~ Everywhere (default) 5 Planet

e Cambridge Most specific

* Europe
* Everywhere

To:

' Dat
Cambridge ot




Longest Prefix Match (LPM)

Entry Destination Port
; Cacr;:( ?cr)lrige ; } Universities
3 Europe 3 } Continents
4 USA 4
5 //— Everywhere (default) 5 Planet

Most specific

* Everywhere

To: France Data




Implementing Longest Prefix Match

Destination

Cambridge Searching Most specific

4 USA 4 FOUND l
Everywhere (default) 5 Least specific

75



Router Architecture Overview

Two key router functions:
* run routing algorithms/protocol

(RIP, OSPF, BGP)

forwarding datagrams from incoming to outgoing link

input port output port
= [ M
o switching o
o @
o ®
input port fabric output port
—F B - T b
A

routing

processor

76



Input Port Functions

lookup,
forwarding

queueing

data link

line processing
termination (protocol,

/,/ decapsulation)

Physical layer:
bit-level reception

switch

fabric

Data link layer: Decentralized switching:

e.g., Ethernet e given datagram dest., lookup output port using
see chapter 5 forwarding table in input port memory
e goal: complete input port processing at ‘line
speed’

* queuing: if datagrams arrive faster than
forwarding rate into switch fabric

77



Three examples of switching fabrics
(comparison criteria: speed, contention, complexity)

——
>[I
B
> JIm>
C
[ ]~
memory bus
A
LI — .
B
L 1 crossbar
C
[ |~

I I
b~ B B~
N

78



Switching Via Memory

First generation routers:

* traditional computers with switching under direct control of CPU

* packet copied to system’ s memory

* speed limited by memory bandwidth (2 bus crossings per datagram)

Input
Port

Memory

Output
Port

v

System Bus




Switching Via a Bus

datagram from input port memory
to output port memory via a shared bus

bus contention: switching speed limited by
bus bandwidth

Lots of ports?? speed up the bus
no contention bus speed =
2 x port speed x port count

32 Gbps bus, Cisco 5600: sufficient speed for
access routers

80



Switching Via An Interconnection Network

overcome bus bandwidth limitations

Banyan networks, other interconnection nets initially
developed to connect processors in multiprocessor stages

advanced design: fragmenting datagram into fixed length
cells, switch cells through the fabric.

Cisco CRS-1: switches 1.2 Tbps through the
interconnection network



Output Ports

switch queuing: data Iir_1k
N buffer processing line
fabI’IC (protoco' . . _}
management 5 termination
decapsulation)

Buffering required when datagrams arrive from fabric faster than the
transmission rate

Scheduling discipline chooses among queued datagrams for
transmission

=» Who goes next?



Output port queueing

=
| Switch e Switch —
Fobric/ Fabric
—{ = — > — >
- - S = —{ _—
Qutput Port Contention One Packet
al Time ! Time loter

e buffering when arrival rate via switch exceeds output line speed
e queueing (delay) and loss due to output port buffer overflow!



Input Port Queuing

Fabric slower than input ports combined -> queueing may
occur at input queues

Head-of-the-Line (HOL) blocking: queued datagram at front
of queue prevents others in queue from moving forward

queueing delay and loss due to input buffer overflow!

"}
‘1 H 2 H-
-

output port contention green packet
at time t - only one red experiences HOL blocking
packet can be transferred

84



Buffers in Routers

e So how large should the buffers be?

Buffer size matters
— End-to-end delay
* Transmission, propagation, and queueing de
* The only variable part is queueing delay
— Router architecture
* Board space, power consumption, and co

* On chip buffers: higher density, higher
* Optical buffers: all-optical routers

You are now touching the edge of the research zone......

.

1.4m long spiral
waveguide with input
from HeNe laser

85




—~, BufferSizing Story.
O =

/

\
(1 X

) / 2T xC o 5
2T x C — =) 0(logW)
# of O E @
&1 1,000,000 10,000 20 - 50
packets E % %
ntuiton % TCP m| Sawtooth | Non-bursty
o | Sawtooth = Smoothing > Arrivals
! c
% Single TCP €| Many Flows, =] Paced TCP,
Assume (¢ | Flow, 100% 2 100% 85-90%
Utilization Utilization Utilization
Simulations,
Simulation Test-bed and Simulations,
Evidence Imuation, Real Test-bed
Emulation :
Network Experiments

86

Experiments



Continuous ARQ (TCP) adapting to congestion

PR Rule for adjusting VW

nly W packets . L

may be outstanding — If an ACK is received: W & W+1/W
1 — If a packetis lost: W < W/2

util = 0%

V4

time




Rule-of-thumb — Intuition

Rule for adjusting \/\V/
Only W packets

may be outstanding o Ifan ACKis received: W & W+1/W
l o If a packet is lost: W & W/2

Source FTTTTT171 Dest

Window size

| L arxe

tIZTxC

S

\©)




Small Buffers — Intuition

Synchronized Flows

Aggregate window has same
dynamics

Therefore buffer occupancy has

same dynamics
Rule-of-thumb still holds.

Many TCP Flows

Independent, desynchronized
Central limit theorem says the
aggregate becomes Gaussian
Variance (buffer size) decreases
as N increases

- vy

100

80 -

60

40

20

o
Gaussian wittHMean 7729.1 Packets, StdDev 252.3 -------

Buf

/
/
/
3 FT WﬁLﬁ_‘

0 Ll= — I I il
6800 7000 7200 7400 7600 7800 8000 8200 8400 8600

89



The Internet version of a Network layer

Host, router network layer functions:

|

Network
layer

|

Routing protocols
epath selection
*RIP, OSPF, BGP

IP protocol

eaddressing conventions
edatagram format

epacket handling conventions

forwarding

table ICMP protocol

eerror reporting
erouter “signaling”

90



IPv4 Packet Structure

20 Bytes of Standard Header, then Options

apit | Abit 8-bit .
Version | Header | Type of Service 16-bit Total Length (Bytes)
Length (TOS)
: e 3-bit :
16-bit Identification Flags | 13-bit Fragment Offset
8-bit Time to .
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

91



(Packet) Network Tasks One-by-One

Read packet correctly

Get packet to the destination

Get responses to the packet back to source
Carry data

Tell host what to do with packet once arrived

Specify any special network handling of the
packet

Deal with problems that arise along the path



Reading Packet

Correctly

e Version number (4 bits)
— Indicates the version of the IP protocol
— Necessary to know what other fields to expect
— Typically “4” (for IPv4), and sometimes “6” (for IPv6)

Header length (4 bits)

— Number of 32-bit words in the header
— Typically “5” (for a 20-byte IPv4 header)
— Can be more when IP options are used

Total length (16 bits)
— Number of bytes in the packet
— Maximum size is 65,535 bytes (21° -1)
— ... though underlying links may impose smaller limits

93



4-bit 4-bit 8-bit
° Version || Header Type of Service 16-bit Total Length (Bytes
Gett ket t
etting Packet to T

16-bit Identification ~ § Flags | 13-bit Fragment Offset

Destination and Back s [ | s —

32-bit Source IP Address

32-bit Destination IP Address

e Two IP addresses

— Source IP address (32 bits) | ..

— Destination IP address (32 bits)

* Destination address
— Unique identifier/locator for the receiving host
— Allows each node to make forwarding decisions

* Source address
— Unique identifier/locator for the sending host
— Recipient can decide whether to accept packet
— Enables recipient to send a reply back to source



Telling Host How to

3-bit
FFFFF

i gment Offset
8-bit Time to
I P t Live (TTL) [ 8-bit Protocol 16-bit Header Checksum
I I a d e aC | :e 32-bit Source IP Address

32-bit Destina

tion IP Address

aaaaaaa

* Protocol (8 bits)
— |dentifies the higher-level protocol

— Important for demultiplexing at receiving host

 Most common examples

— E.g., “6” for the Transmission Control Protocol (TCP)
— E.g., “17” for the User Datagram Protocol (UDP)

protocol=6 protocol=17
IP header IP header
TCP header UDP header

95




Special Handling

* Type-of-Service (8 bits)

-bi
Version

3-bit
16-bit Identification ~ § Flags | 13-bit Fragment Offset

— Allow packets to be treated differently based on

needs

— E.g., low delay for audio, high bandwidth for bulk

transfer

— Has been redefined several times

* Options

96



Potential Problems

 Header Corrupted:
* Loop: TTL

* Packet too large:



Header Corruption

 Checksum (16 bits)

— Particular form of checksum over packet header

* |If not correct, router discards packets
— So it doesn’t act on bogus information

* Checksum recalculated at every router

98



16-bit Identification

3-bit
Flags 13-bit Fragment Offset
n
8-bit Time to \ . )
Live (TTL) ) 8-bit Protocol k| 16-bit Header Checksu m
32-bit Source IP Address

(aka Internet Zombie plan)

32-bit Destination IP Address

* Forwarding loops cause packets to cycle forever
— As these accumulate, eventually consume all capacity

- - -

-

* Time-to-Live (TTL) Field (8 bits)
— Decremented at each hop, packet discarded if reaches O

— ...and “time exceeded” message is sent to the source
99 * Using “ICMP” control message; basis for traceroute




Fragmentation

(some assembly required)

* Fragmentation: when forwarding a packet, an
Internet router can split it into multiple pieces
(“fragments”) if too big for next hop link

 Must reassemble to recover original packet
— Need fragmentation information (32 bits)
— Packet identifier, flags, and fragment offset

100



IP Fragmentation & Reassembly

network links have MTU
(max.transfer size) - largest
possible link-level frame.

— different link types, different
MTUs

large IP datagram divided
(“fragmented”) within net

fragmentation:
In: one large datagram
out: 3 smaller datagrams

— one datagram becomes several

datagrams
“« ” . reassembly
— reassembled only at final —
destination @:-
Nl
— IP header bits used to identify, 4

order related fragments

IPv6 does things differently...

101



IP Fragmentation and Reassembly

length
=4000

ID
=X

fragflag
=0

offset
=0

H

Example
7 4000 byte datagram

T MTU = 1500 bytes

1480 bytes in
data field

offset =
1480/8

One large datagram becomes
several smaller datagrams

'Iength ID | fragflag | offset
=1500 [=x = =
length |ID | fragflag | offset I
:1500 EXefeem "=185
length |ID | fragflag | offset
=1040 |=x = =370

Pop quiz question: What happens when a fragment is lost?

102



Fragmentation

Detalls

32-bit Destination IP Address

aaaaaaa

 |dentifier (16 bits): used to tell which fragments
oelong together

* Flags (3 bits):
— Reserved (RF): unused bit

— Don’t Fragment (DF): instruct routers to not fragment
the packet even If it won’t fit

* Instead, they drop the packet and send back a “Too Large”
ICMP control message

* Forms the basis for “Path MTU Discovery”
— More (MF): this fragment is not the last one

e Offset (13 bits): what part of datagram this
fragment covers

Pop quiz question: Why do frags use offset and not a frag number?




3-bit
16-bit Identification Flags 13-bit Fragment Offset
[ ]
8-bit Time to . )
Live (TTL) 8-bit Protocol k| 16-bit Header Checksu m
32-bit Source IP Address

32-bit Destination IP Address

 End of Options List

 No Operation (padding between options)
 Record Route

* Strict Source Route

* Loose Source Route

* Timestamp

* Traceroute

* Router Alert



IP Addressing: introduction

P address: 32-bit @E-“-l _@
223.1.2.

identifier for host, router g@-“-z

interface 2231.1,4_223.1.2.9 ‘
interface: connection g_ ‘ 223.1.2|_2
between host/router and 223.1.1.3  223.1.3.27 '—@
physical link
— router’ s typically have
multiple interfaces 223.1.3.1 223.1.3.2
— host typically has one @ @

interface

— |P addresses associated
with each interface 223.1.1.1 = 11011111 00000001 DO000001 HO000001

223 1 1 1

105



 |P address:
— subnet part (high order bits)
— host part (low order bits)

« What’s a subnet ?

— device interfaces with same
subnet part of IP address

— can physically reach each
other without intervening

router
subnet - host
T part o7 part. "

11011111 00000001 00000011 OOOO0000

223.1.3.0/24
CIDR: Classless InterDomain Routing

— subnet portion of address of arbitrary length
— address format: a.b.c.d/x, where x is # bits in

subnet portion of address

Subnets

223.1.1.0/24 223.1.2.0/24

@2&1.1.1
223.1.2.1*@
@2_2_3.1.1.2 ‘
23.1.2.9

223.1.1_2 |
@_ 223.1.2.2
223.1.1.3 223.1.3.27 L@

/ subnet
223.1.3.1 i I 223.1.3.2
223.1.3.0/24

Subnet mask: /24

network consisting of 3 subnets
106



IP addresses: how to get one?

Q: How does a host get IP address?

* hard-coded by system admin in a file

— Windows: control-panel->network->configuration->tcp/
ip->properties
— UNIX: /etc/rc.config (circa 1980’s your mileage will vary)

* DHCP: Dynamic Host Configuration Protocol: dynamically get address
from as server

— “plug-and-play”



Goal: allow host to dynamically

DHCP client-server scenario

obtain its IP address from network

server when it joins network
Can renew its lease on address in use
Allows reuse of addresses (only hold
address while connected an “on”)
Support for mobile users who want to

join network (more shortly)

ol

2231.1.1 DHCP

serve

23.1.1.2

223.1.1.3 223.1.3.27

223.1. 223.1.2.9
223.1.

network

DHCP server: 223.1.2.5 ) arriving
DHCP discover client
src:0.0.0.0, 68 @M
dest.: 255.255.255.255,67
yiaddr: 0.0.0.0 -
transaction ID: 654
DHCP offer
src: 223.1.2.5, 67
dest: 255.255.255.255, 68
transaction ID: 654
Lifetime: 3600 secs —
DHCP request
src: 0.0.0.0, 68
223.1.2.1 dest:: 255.255.255.255, 67
yiaddrr: 223.1.2.4 —
transaction ID: 655 v
— Lifetime: 3600 secs time
@
<_ DHCP ACK
\ src: 223.1.2.5, 67
2.2 arriving DHCP dest: 255.255.255.255, 68
—AE . yiaddrr: 223.1.2.4 L
client needs transaction ID: 655
address in this Lifetime: 3600 secs



IP addresses: how to get one?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’ s

address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization 0 11001000 00010111 00010000 00000000
Organization1 11001000 00010111 00010010 00000000
Organization 2 11001000 00010111 00010100 00000000

Organization 7 11001000 00010111 00011110 00000000

200.23.16.0/23
200.23.18.0/23
200.23.20.0/23

200.23.30.0/23

109



Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing
information:

Organization O
200.23.16.0/23

with addresses
Organization 2

beginning
200.23.20.0/23 Fly-By-Night-I1SP 200.23.16.0/20

200.23.30.0/23 -

“Send me anything
—_— ISPs-R-Us with addresses

beginning
/ 199.31.0.0/16”

Internet
Organization 7

Organization 1 \ oo !
200.23.18.0/23 end me anything
\



Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

Organization O

200.23.16.0/23
\ “Send me anything

with addresses

Organization 2 beginning
200.23.16.0/20”

200.23.20.0/23 . Fly-By-Night-ISP \
. ’ Internet
Organization7 | /
200.23.30.0/23 /

“Send me anything
ISPs-R-Us with addresses

/
Organization 1 s beginning 199.31.0.0/16
200.23.18.0/23 / or 200.23.18.0/23



IP addressing: the last word...

Q: How does an ISP get a block of addresses?
& ICANN: Internet Corporation for Assigned
Names and Numbers

— allocates addresses

— manages DNS
— assigns domain names, resolves disputes



Cant get more IP addresses? well there is always.....

NAT: Network Address Translation

+«— |ocal network >
Internet (e.g., home network)

10.0.0/24 F@ 10.0.0.1

«—— rest of

v

10.0.0.4 10.0.05
e @ o
138.76.29.7 4
_@ 10.0.0.3
All datagrams leaving local Datagrams with source or
network have same single source NAT IP destination in this network
address: 138.76.29.7, have 10.0.0/24 address for

different source port numbers source, destination (as usual)



NAT: Network Address Translation

* Motivation: local network uses just one IP address as far as
outside world is concerned:

— range of addresses not needed from ISP: just one IP
address for all devices

— can change addresses of devices in local network
without notifying outside world

— can change ISP without changing addresses of
devices in local network

— devices inside local net not explicitly addressable,
visible by outside world (a security plus).



NAT: Network Address Translation

Implementation: NAT router must:

— outgoing datagrams: replace (source IP address, port #)
g;‘ every outgoing datagram to (NAT IP address, new port
... remote clients/servers will respond using (NAT IP address,
new port #) as destination addr.

— remember (in NAT translation table) every (source IP
address, port #) to (NAT IP address, new port #)
translation pair

— incoming datagrams: replace (NAT IP address, new port
#) in dest fields of every incoming datagram with
cotglrespondmg (source |IP address, port #) stored in NAT
table

115



NAT: Network Address Translation

NAT translation table

1: host 10.0.0.1
2: NAT router WAN side addr LAN side addr =
changes datagram

source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

sends datagram to
138.76.29.7, 5001 |10.0.0.1, 3345 128.119.40.186, 80

$:10.0.0.1, 3345

D: 128.119.40.186, 80 j
i —5@ 10.0.0.1
S:138.76.29.7, 5001
@ D: 128.119.40.186, 80 10.0.0.4
¥ 10.0.0.2
7 /

138.76.29.7 " $:128.119.40.186, 80 _@_
1t ,, 0:10.0.0.1, 3345
[ S: 128.119.40.186, 80 @ ' _@

D: 138.76.29.7, 5001
_5/, " : 4: NAT router 10.0.0.3
2: REPIy arrives changes datagram

dest. address:
dest addr from
138.76.29.7, 5001 138.76.29.7, 5001 to 10.0.0.1, 3345

!/

116



NAT: Network Address Translation

* 16-bit port-number field:
— 60,000 simultaneous connections with a single
LAN-side address!
* NAT is controversial:
— routers should only process up to layer 3

— violates end-to-end argument (?)

* NAT possibility must be taken into account by app
designers, eg, P2P applications

— address shortage should instead be solved by IPv6



NAT traversal problem

* client wants to connect to
server with address 10.0.0.1
— server address 10.0.0.1 local to Client

LAN (client can’ t use it as ?
destination addr) @

— only one externally visible NATted \
address: 138.76.29.7 7
* solution 1: statically configure 138.76:25.7 r(')\'uAtTer
NAT to forward incoming
connection requests at given
port to server

— e.g., (138.76.29.7, port 2500)

always forwarded to 10.0.0.1 port
25000




NAT traversal problem

* solution 2: Universal Plug and Play
(UPnP) Internet Gateway Device

(IGD) Protocol. Allows NATted host
to:

s*learn public IP address
(138.76.29.7) 13576207 " N

s*add/remove port mappings router
(with lease times)

l.e., automate static NAT port
map configuration



NAT traversal problem

e solution 3: relaying (used in Skype)
— NATed client establishes connection to relay
— External client connects to relay
— relay bridges packets between to connections

2. connection to @
"=y relay initiated
S~ Y

by client
—

1. connection to
relay initiated
by NATted host

3. relaying
established

Client

7
138.76.29.7  NAT

router

120



Remember this? Traceroute at work...

traceroute: rio.cl.cam.ac.uk to munnari.oz.au
(tracepath on pwf is similar)

AﬂwThree delay measurements from
traceroute munnari.oz.au rio.cl.cam.ac.uk to gatwick.net.cl.cam.ac.uk

traceroute to munnari.oz.au (202.29.151.3), 30 hops max, 60 byte packets

1

AN N kAW

7

gatwick.net.cl.cam.ac.uk (128.232.32.2) 0.416 ms 0.384 ms 0.427 ms .
cl-sby.route-nwest.net.cam.ac.uk (193.60.89.9) 0.393 ms 0.440 ms 0.494 ms trans-continent
route-nwest.route-mill.net.cam.ac.uk (192.84.5.137) 0.407 ms 0.448 ms 0.501 ms link
route-mill.route-enet.net.cam.ac.uk (192.84.5.94) 1.006 ms 1.091 ms 1.163 ms

xe-11-3-0.camb-rbr1.eastern.ja.net (146.97.130.1) 0.300 ms 0.313 ms 0.350 ms

ae24.lowdss-sbrl .ja.net (146.97.37.185) 2.679 ms 2.664 ms 2.712 ms

ae28.londhx-sbrl .ja.net (146.97.33.17) 5.955 ms 5.953 ms 5.901 ms

8 janet.mxl.lon.uk.geant.net (62.40.124.197) 6.059 ms 6.066 ms 6.052 ms

9

10
11
12
13
14
15
16
17
18
19
20
21

ac(.mx1.par.fr.geant.net (62.40.98.77) 11.742 ms 11.779 ms 11.724 ms
acl.mx1.mad.es.geant.net (62.40.98.64) 27.751 ms 27.734 ms 27.704 ms
mb-s0-02-v4.bb.tein3.net (202.179.249.117) 138.296 ms 138.314 ms 138.282'ms
sg-s0-04-v4.bb.tein3.net (202.179.249.53) 196.303 ms 196.293 ms 196.264 ms
th-pr-v4.bb.tein3.net (202.179.249.66) 225.153 ms 225.178 ms 225.196 ms
pyt-thairen-to-02-bdr-pyt.uni.net.th (202.29.12.10) 225.163 ms 223.343 ms 223.363 ms
202.28.227.126 (202.28.227.126) 241.038 ms 240.941 ms 240.834 ms

202.28.221.46 (202.28.221.46) 287.252 ms 287.306 ms 287.282 ms

k ok ok
ok ok * means no response (probe lost, router not replying)

k ok Xk

coe-gw.psu.ac.th (202.29.149.70) 241.681 ms 241.715 ms 241.680 ms
munnari.0Z.AU (202.29.151.3) 241.610 ms 241.636 ms 241.537 ms

121



Traceroute and ICMP

Source sends series of UDP * When ICMP message arrives,
segments to dest source calculates RTT
— Firsthas TTL=1 * Traceroute does this 3 times
— Second has TTL=2, etc. Stopping criterion
— Unlikely port number » UDP segment eventually arrives
When nth datagram arrives to nth at destination host
router: e Destination returns ICMP “host
— Router discards datagram unreachable” packet (type 3,
— And sends to source an ICMP code 3)

t 11, code O i
message (type 11, code 0)  When source gets this ICMP,

— Message includes name of
8 stops.

router& IP address



ICMP: Internet Control Message Protocol

used by hosts & routers to
communicate network-level
information

— error reporting: unreachable
host, network, port, protocol

— echo request/reply (used by
ping)
network-layer “above” IP:

— ICMP msgs carried in IP
datagrams

ICMP message: type, code plus first 8
bytes of IP datagram causing error

Type Code description

0

W W wWwwwwo
OO WN - O

(0e]

10
11
12

O Oo O o

echo reply (ping)

dest. network unreachable
dest host unreachable
dest protocol unreachable
dest port unreachable
dest network unknown
dest host unknown

source guench (congestion
control - not used)

echo request (ping)

route advertisement
router discovery

TTL expired

bad IP header



SUEHASALOTOF MILES
ONHER, BUT My DADAND T FIND
& WAGTOKEEP HER RUNNING.

IPv6 R

* Motivated (prematurely) by address exhaustion

— Address field four times as long

* Steve Deering focused on simplifying IP

— Got rid of all fields that were not absolutely necessary
— “Spring Cleaning” for IP

e Resultis an elegant, if unambitious, protocol

124



IPv4 and IPv6 Header Comparison

IPv4

Version IHL Type of Service Total Length

Time to Live Protocol

Identification Flags Fragment Offset

Header Checksum

Source Address

Destination Address

Options Padding

130

Field name kept from IPv4 to IPv6
Fields not kept in IPv6
Name & position changed in IPv6

New field in IPv6

IPv6

Version Traffic Class Flow Label
Payload Length Next Header Hop Limit

Source Address

Destination Address

125



Summary of Changes

* Eliminated fragmentation
* Eliminated header length

* Eliminated checksum

* New options mechanism (next header)
 Expanded addresses

 Added Flow Label

126



Version

Time to Live Protocol

IPv4 and IPv6 Header Comparison

IPv4

IHL Type of Service Total Length

Identification Flags Fragment Offset

Header Checksum

Source Address

Destination Address

Options Padding

130

Field name kept from IPv4 to IPv6
Fields not kept in IPv6
Name & position changed in IPv6

New field in IPv6

IPv6

Version Traffic Class Flow Label
Payload Length Next Header Hop Limit

Source Address

Destination Address

127



Philosophy of Changes

 Don’t deal with problems: leave to ends
— Eliminated fragmentation
— Eliminated checksum

e Simplify handling:
— New options mechanism (uses next header approach)
— Eliminated header length

* Provide general flow label for packet
— Not tied to semantics
— Provides great flexibility

128



Comparison of Design Philosophy

IPv4 IPv6

Identification Flags Fragment Offset

Time to Live - Header Checksum

Source Address

Hop Limit

Source Address

Destination Address

To Destination and Back (expanded)

Deal with Problems (greatly reduced) Desﬁnaﬁon Address
Read Correctly (reduced)

130

Special Handling (similar)

129



Transition From IPv4 To IPv6

* Not all routers can be upgraded simultaneous
—no “flag days”

— How will the network operate with mixed IPv4 and
IPv6 routers?

* Tunneling: IPv6 carried as payload in IPv4
datagram among |IPv4 routers



Tunneling
Logical view: 6_‘&6_6

IPv6 IPv6 IPv6 IPv6

IPv6 IPv6 IPv4 IPv4 IPv6 IPv6

131



Tunneling
Logical view: 6_‘&6_6

IPv6 IPv6 IPv6 [Pv6
IPv6 IPv6__ IPv4 IPv4 IPv IPv6

— >

Flow: X Flow: X

Src: A Src: A

Dest: F Dest: F

data data

t t
AI';‘\’/'GB' B-to-C: B-to-C: E;;?/'GF'
IPv6 inside IPv6 inside

IPv4 IPv4

132



Improving on |IPv4 and IPv6?

Why include unverifiable source address?
— Would like accountability and anonymity (now neither)
— Return address can be communicated at higher layer

Why packet header used at edge same as core?
— Edge: host tells network what service it wants

— Core: packet tells switch how to handle it
* One s local to host, one is global to network

Some kind of payment/responsibility field?
— Who is responsible for paying for packet delivery?
— Source, destination, other?

Other ideas?



Gluing it together:
How does my Network (address) interact
with my Data-Link (address) ?



Switches vs. Routers Summary

both store-and-forward devices
— routers: network layer devices (examine network layer headers)
— switches are link layer devices

routers maintain routing tables, implement routing algorithms
switches maintain switch tables, implement filtering, learning

algorithms
5 5
4 4
3 % 3
2 2 2 2
1 1 1 1

Host Bridge Router Host

135



MAC Addresses (and IPv4 ARP)

or How do | glue my network to my data-link?

e 32-bit IP address:

— network-layer address
— used to get datagram to destination IP subnet

 MAC (or LAN or physical or Ethernet) address:

— function: get frame from one interface to another
physically-connected interface (same network)

— 48 bit MAC address (for most LANS)

* burned in NIC ROM, also (commonly) software settable

136



LAN Addresses and ARP

Each adapter on LAN has unique LAN address

@_

71-6F7-2B-08-53

+—1A-2F-BB-709-AD

LAN

(wired or
wireless)

58-23-D7-FA-20-B0O

' 0C-C4-11-6F-E3-98

Ethernet
Broadcast address =
FF-FF-FF-FF-FF-FF

B = adapter

137



Address Resolution Protocol

* Every node maintains an ARP table
— <IP address, MAC address> pair

* Consult the table when sending a packet
— Map destination IP address to destination MAC address
— Encapsulate and transmit the data packet

e But: what if IP address not in the table?
— Sender broadcasts: “Who has IP address 1.2.3.1567”
— Receiver responds: “MAC address 58-23-D7-FA-20-B0”
— Sender caches result in its ARP table

138



Example: A Sending a Packet to B

How does host A send an IP packet to host B?

88-B2-2F-54-1A-0F

74-29-9C-E8-FF-55
h
Baeh E6-EQ9-00-17-BB-4B /IE 03

1A-23-F9-CD-06-98

ROUTER] L
t 222.222.222.222
222.222.222.23
hos
111.111.111.110

R 49-BD-D2-C7-56-2A

111.111.111 .1 222.222.222.221

A

o B Bt o o e B D O

!

hosat

CC-49-DE-D0O-AB-7D B

139



Example: A Sending a Packet to B

How does host A send an IP packet to host B?

88-B2-2F-54-1A-0F

74-29-9C-E8-FF-55
h
Baeh E6-EQ9-00-17-BB-4B /% 03

1A-23-F9-CD-06-98

ROUTER L

T

T 222.222.222.2

111.111.111 .1 222.222.222.221

A

222.222.222.222

111.111.111.1 o
Il 111.111.111.110
hosf R 49-BD-D2-C7-56-24
CC-49-DE-D0-AB-7D B

1. A sends packet to R.
2. R sends packet to B.

140



Host A Decides to Send Through R

* Host A constructs an IP packet to send to B
— Source 111.111.111.111, destination 222.222.222.222
* Host A has a gateway router R
— Used to reach destinations outside of 111.111.111.0/24

— Address 111.111.111.110 for R learned via DHCP/config

88-B2-2F-54-1A-0F

74-29-9C-E8-FF-55
et E6-EQ-00-17-BB-4B /}Jhoet

T

222.222.222.221

1A-23-F9-CD-06-98

ROUTER %1—

b P Iy B B B B By iy

A

I T 222.222.222.222
: ¥
222.222.222.23
AT A o
Il 111.111.111.110
hosf R 49-BD-D2-C7-56-24

CC-49-DE-DO-AB-7D B



Host A Sends Packet Through R

e Host A learns the MAC address of R’s interface
— ARP request: broadcast request for 111.111.111.110
— ARP response: R responds with E6-E9-00-17-BB-4B

* Host A encapsulates the packet and sends to R

88-B2-2F-54-1A-0F

74-29-9C-E8-FF-55
Fso E6-EQ-00-17-BB-4B /}Jhoet

T

222.222.222.221

1A-23-F9-CD-06-98

ROUTER %1—

b P Iy B B B B By iy

A

I T 222.222.222.222
: ¥
222.222.222.23
AT A e
Il 111.111.111.110
hosf R 49-BD-D2-C7-56-24

CC-49-DE-DO-AB-7D B



R Decides how to Forward Packet

* Router R’s adaptor receives the packet

— R extracts the IP packet from the Ethernet frame
— R sees the IP packet is destined to 222.222.222.222

* Router R consults its forwarding table

— Packet matches 222.222.222.0/24 via other adaptor

88-B2-2F-54-1A-0F

74-29-9C-E8-FF-55
Fso E6-EQ-00-17-BB-4B /}Jhoet

T

222.222.222.221

1A-23-F9-CD-06-98

ROUTER é}—
T 222.222.222.222
222.222.222.25 ¥
hos
111.111.111.110

R 49-BD-D2-C7-56-2A

b P Iy B B B B By iy

A

o 1 Pt I e B Dy O

!

hoai

CC-49-DE-DO-AB-7D B



R Sends Packetto B

* Router R’ s learns the MAC address of host B
— ARP request: broadcast request for 222.222.222.222
— ARP response: B responds with 49-BD-D2-C7-52A

* Router R encapsulates the packet and sends to B

74-29-9C-E8-FF-55

b P Iy B B B B By iy

A

o 1 Pt I e B Dy O

!

hoai

CC-49-DE-DO-AB-7D

EG-ES-00-17-BB-4B

1A-23-F9-CD-06-98

88-B2-2F-54-1A-0F

/Ehoe

222.222.222.221

ROUTER

-

1119192111910

R

T

I 222.222.222.22

222.222.222.222

\I? hos

49-BD-D2-C7-56-2A

B




Security Analysis of ARP

* Impersonation
— Any node that hears request can answer ...

— ... and can say whatever they want

* Actual legit receiver never sees a problem

— Because even though later packets carry its IP
address, its NIC doesn’t capture them since not its
MAC address

145



Key Ideas in Both ARP and DHCP

* Broadcasting: Can use broadcast to make contact
— Scalable because of limited size

e Caching: remember the past for a while
— Store the information you learn to reduce overhead
— Remember your own address & other host’s addresses

e Soft state: eventually forget the past
— Associate a time-to-live field with the information
— ... and either refresh or discard the information
— Key for robustness in the face of unpredictable change

146



Why Not Use DNS-Like Tables?

e When host arrives:

— Assign it an IP address that will last as long it is
present

— Add an entry into a table in DNS-server that maps
MAC to IP addresses

* Answer:
— Names: explicit creation, and are plentiful

— Hosts: come and go without informing network
* Must do mapping on demand

— Addresses: not plentiful, need to reuse and remap
e Soft-state enables dynamic reuse

147



Summary Network Layer

* understand principles behind network layer
services:

— network layer service models

— forwarding versus routing (versus switching)
— how a router works

— routing (path selection)

— IPv6

* Algorthims
— Two routing approaches (LS vs DV)
— One of these in detail (LS)
— ARP



