STO0C-¥10¢
)N-oe‘wed’|D@aJ00W malpue

9JOOIA "W\ MaJpuy
¢ 1°S 9PI|S

guip|ing sa1e9 Ul T17
00:CT-00:TT 4/M/IN
wJa] jua/sew|aeydin

SuDjJOMIaN J9Indwo)

Topic 6 — Applications

* Overview

* Traditional Applications (web)
* Infrastructure Services (DNS)
* Multimedia Applications (SIP)

* P2P Networks

Client-server architecture

server:
— always-on host
— permanent IP address

— server farms for scaling
clients:

— communicate with server

— may be intermittently connected

— may have dynamic IP addresses

— do not communicate directly
with each other

Pure P2P architecture

* ho aIways-on server

* arbitrary end systems
directly communicate peer-peer

Hybrid of client-server and P2P

Skype
— voice-over-IP P2P application
— centralized server: finding address of remote
party:
— client-client connection: direct (not through
server)
Instant messaging
— chatting between two users is P2P
— centralized service: client presence detection/
location
* user registers its IP address with central server
when it comes online
« user contacts central server to find IP addresses of
buddies

e peers are intermittently P
connected and change IP -
addresses éﬁ

Highly scalable but difficul LE i

ighly scalable but difficult to p
manage p=e] i
Addressing processes
* toreceive messages, jdentifier includes both IP

process must have address and port numbers

identifier associated with process on
* host device has unique 32- host.

bit IP address

* Q:does IP address of host
on which process runs

¢ Example port numbers:
— HTTP server: 80

suffice for identifying the — Mail server: 25
process? * tosend HTTP message to
— A: No, many processes yuba.stanford.edu web
can be running on same server:
host — IP address: 171.64.74.58

— Port number: 80

¢ more shortly...

Recall: Multiplexing is a service
provided by (each) layer too!

Multiplexing l [Demultipexing

Lower channel
Application: one web-server multiple sets of content
Host: one machine multiple services
Network: one physical box multiple addresses (like vns.cl.cam.ac.uk)
UNIX: /etc/protocols = examples of different transport-protocols on top of IP

UNIX: /etc/services = examples of different (TCP/UDP) services — by port

(These files are an example of a (static) approach to name services)

App-layer protocol defines

Types of messages Public-domain protocols:
exchanged, + defined in RFCs
— .8y request, response + allows for interoperability

Message syntax: « eg., HTTP, SMTP
— what fields in messages & . .
how fields are delineated Proprietary protocols:
Message semantics * e.g. Skype
— meaning of information in
fields
Rules for when and how
processes send & respond
to messages

What transport service does an app need?

Data loss Throughput) :)
) 0 some apps (e.g., multimedia) require
* some apps (e.g., BUdlo) can minimum amount of throughput to be
tolerate some loss “effective”

X O other apps (“elastic apps”) make use of
* other apps (e'g" file tranSfer’ whatever throughput they get

telnet) require 100% reliable Security
data transfer 0 Encryption, data integrity, ...

Timing Mysterious secret of Transport

* There is more than sort of transport layer
* some apps (e.g., Internet

telephony, interactive Shocked?
games) require low delay I seriously doubt it...

to be “effective”
Recall the two most common TCP and UDP

Naming

Internet has one global system of addressing: IP
— By explicit design

And one global system of naming: DNS
— Almost by accident

At the time, only items worth naming were hosts
— A mistake that causes many painful workarounds

Everything is now named relative to a host
— Content is most notable example (URL structure)

Logical Steps in Using Internet

* Human has name of entity she wants to access
— Content, host, etc.

* Invokes an application to perform relevant task
— Using that name

* App invokes DNS to translate name to address

* App invokes transport protocol to contact host
— Using address as destination

Addresses vs Names

Scope of relevance:
— App/user is primarily concerned with names
— Network is primarily concerned with addresses
Timescales:
— Name lookup once (or get from cache)
— Address lookup on each packet
When moving a host to a different subnet:
— The address changes
— The name does not change
When moving content to a differently named host
— Name and address both change!

Relationship Between
Names&Addresses

Addresses can underneath
— Move www.bbc.co.uk to 212.58.246.92
— Humans/Apps should be unaffected

Name could map to IP addresses
— www.bbc.co.uk to multiple replicas of the Web site

— Enables
* Load-balancing
* Reducing latency by picking nearby servers

. for the same address
— E.g., aliases like www.bbc.co.uk and bbc.co.uk
— Mnemonic stable name, and dynamic canonical name
* Canonical name = actual name of host

Mapping from Names to Addresses

* Originally: per-host file /etc/hosts
— SRI (Menlo Park) kept master copy
— Downloaded regularly
— Flat namespace

* Single server not resilient, doesn’t scale
— Adopted a distributed hierarchical system

Two intertwined hierarchies:
— Infrastructure: hierarchy of DNS servers
— Naming structure: www.bbc.co.uk

Domain Name System (DNS)

* Top of hierarchy: Root
— Location hardwired into other servers

* Next Level: Top-level domain (TLD) servers
— .com, .edu, etc.
— .uk, .au, .to, etc.
— Managed professionally

* Bottom Level: Authoritative DNS servers
— Actually do the mapping
— Can be maintained locally or by a service provider

Distributed Hierarchical Database

unnamed root

“"-6 ORROIC

generic domains country domams
Top-Level Domains (TLDs)

my east. baredu cl.cam.ac.uk

DNS Root

* Located in Virginia, USA
* How do we make the root scale?

Verisign, Dulles, VA

DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)
— Labeled A through M
* Does this scale?

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G US DoD Vienna, VA K RIPE London
H ARL Aberdeen, MD

J Verisign

I Autonomica, Stockholm

E NASA Mt View, CA

F Internet Software
Consortium

Palo Alto, CA \

M WIDE Tokyo

B USC-IS| Marina del Rey, CA
LICANN Los Angeles, CA

18

DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)
— Labeled A through M
* Replication via any-casting (localized routing for addresses)

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD

G US DoD Vienna, VA K RIPE London (plus 16 other locations)
H ARL Aberdeen, MD

1 Verisign (21 locations)

| Autonomica, Stockholm (plus

) Gther locations)
E NASA Mt View, CA

F Internet Software
o, 1 ot oo
) \ plus Seoul, Paris,

(and 37 other locations)

San Francisco

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

19

Using DNS

* Two components
— Local DNS servers
— Resolver software on hosts

* Local DNS server (“default name server”)
— Usually near the endhosts that use it

— Local hosts configured with local server (e.g., /etc/
resolv.conf) or learn server via DHCP

* Client application
— Extract server name (e.g., from the URL)
— Do gethostbyname() to trigger resolver code

How Does Resolution Happen?
(Iterative example)

root DNS server
Hostatcl.cam.ac.uk

wants IP address for
2
www.stanford.edu 3
TLD DNS server
to local DNS server

local DNS server 4
5 @
O Consider

dns.cam.ac.uk
transactions 2 — 7 only 1] 8
O contacted server replies
with name of next server

iterated query:
O Host enquiry is delegated

authoritative DNS server

to contact dns.stanford.edu
T “I don’ t know this name, requesting host
but ask this server” cl.cam.ac.uk www . stanford. edu

21

DNS name resolution recursive example

root DNS server

recursive query:
O puts burden of name
resolution on contacted

name server TLD DNS server
O heavy load? Tl
local DNS server
dns.cam.ac.uk 5([4
1 8

authoritative DNS server

3 dns.stanford.edu

requesting host
cl.cam.ac.uk

www.stanford.edu

Recursive and Iterative Queries - Hybrid case

¢ Recursive query root DNS server
— Ask server to get

answer for you 3
— E.g., requests 1,2 TLD DNS server

4
5
and responses Site DNS server —_—
9,10 dns.cam.ac.uk 6
1l

* |terative query
— Ask server who Site DNS server

9

to aSk next dns.cam.ac.uk @
1 10
- Eg' a” Other authoritative DNS server
request- dns.stanford.edu

response pairs 3
requesting host
my-host.cl.cam.ac.uk

23

DNS Caching

* Performing all these queries takes time

— And all this before actual communication takes place
— E.g., 1-second latency before starting Web download
Caching can greatly reduce overhead

— The top-level servers very rarely change

— Popular sites (e.g., www.bbc.co.uk) visited often

— Local DNS server often has the information cached
How DNS caching works

— DNS servers cache responses to queries

— Responses include a “time to live” (TTL) field

— Server deletes cached entry after TTL expires

Negative Caching

* Remember things that don’ t work
— Misspellings like bbcc.co.uk and www.bbc.com.uk
— These can take a long time to fail the first time
— Good to remember that they don’t work
— ... so the failure takes less time the next time around

* But: negative caching is optional
— And not widely implemented

Reliability

* DNS servers are replicated (primary/secondary)
— Name service available if at least one replica is up
— Queries can be load-balanced between replicas
* Usually, UDP used for queries
— Need reliability: must implement this on top of UDP
— Spec supports TCP too, but not always implemented
* Try alternate servers on timeout
— Exponential backoff when retrying same server
* Same identifier for all queries
— Don’t care which server responds

DNS Measurements (miT data from 2000)

* What is being looked up?
— ~60% requests for A records
— ~25% for PTR records
— ~5% for MX records
— ~6% for ANY records

* How long does it take?
— Median ~100msec (but 90t percentile ~500msec)

— 80% have no referrals; 99.9% have fewer than four

* Query packets per lookup: ~2.4
— But this is misleading....

27

DNS Measurements viT data from 2000)

* Does DNS give answers?
— ~23% of lookups fail to elicit an answer!

— ~13% of lookups result in NXDOMAIN (or similar)
* Mostly reverse lookups

— Only ~64% of queries are successful!
* How come the web seems to work so well?

* ~ 63% of DNS packets in unanswered queries!
— Failing queries are frequently retransmitted
— 99.9% successful queries have <2 retransmissions

DNS Measurements (miT data from 2000)

* Top 10% of names accounted for ~70% of lookups
— Caching should really help!

* 9% of lookups are unique
— Cache hit rate can never exceed 91%

* Cache hit rates ~ 75%
— But caching for more than 10 hosts doesn’t add much

A Common Pattern.....

* Distributions of various metrics (file lengths, access
patterns, etc.) often have two properties:

— Large fraction of total metric in the top 10%
— Sizable fraction (~10%) of total fraction in low values

* Not an exponential distribution
— Large fraction is in top 10%
— But low values have very little of overall total

* Lesson: have to pay attention to both ends of dist.
* Here: caching helps, but not a panacea

Moral of the Story

* If you design a highly resilient system, many
things can be going wrong without you
noticing it!

and this is a good thing

Cache Poisoning, a badness story

* Suppose you are a Bad Guy and you control

the name server for foobar.com. You receive a
+ 4 1 £ | A | 1

;; QUESTION SECTION:
;www.foobar.com. IN A

;3 ANSWER SECTION:

www.foobar.com. 300 IN 212.44.9.144

;3 AUTHORITY SECTION:
foobar.com. 600 NS dnsl.foobar.com.
foobar.com. 600 NS google.com.

;; ADDITIONAL SEC
google.com. IN
3 A foobar.com machine, not google.com

DNS and Security

* No way to verify answers
— Opens up DNS to many potential attacks
— DNSSEC fixes this

* Most obvious vulnerability: recursive resolution
— Using recursive resolution, host must trust DNS server
— When at Starbucks, server is under their control
— And can return whatever values it wants

* More subtle attack: Cache poisoning
— Those “additional” records can be anything!

Why is the web so successful?

What do the web, youtube, fb have in common?
— The ability to self-publish

Self-publishing that is easy, independent, free

* No interest in collaborative and idealistic endeavor
— People aren’t looking for Nirvana (or even Xanadu)
— People also aren’t looking for technical perfection

* Want to make their mark, and find something neat
— Two sides of the same coin, creates synergy
— “Performance” more important than dialogue....

Web Components

Infrastructure:
— Clients
— Servers
— Proxies

Content:
— Individual objects (files, etc.)
— Web sites (coherent collection of objects)

* Implementation
— HTML: formatting content
— URL: naming content

— HTTP: protocol for exchanging content
Any content not just HTML!

HTML: HyperText Markup Language

* A Web page has:
— Base HTML file
— Referenced objects (e.g., images)

* HTML has several functions:
— Format text
— Reference images
— Embed hyperlinks (HREF)

URL Syntax

protocol : / /hostname] : port] /directorypath /resource

protocol http, ftp, https, smtp, rtsp, etc.
hostname DNS name, IP address
port Defaults to protocol’ s standard port

e.g. http: 80 https: 443

directory path Hierarchical, reflecting file system

resource Identifies the desired resource

Can also extend to program executions:
http://us.f413.mail.yahoo.com/ym/ShowLetter?box=
%40B
$40Bulk&MsgId=2604_1744106_29699_1123_1261_0_28917
_3552_1289957100&Sear £aYY=3145450rder=d
wn&sort=date&pos=0&view=a&head=b

HyperText Transfer Protocol (HTTP)

* Request-response protocol

Reliance on a global namespace
* Resource metadata

 Stateless

ASCII format

$ telnet www.cl.cam.ac.uk 80
GET /~awm22/win HTTP/1.0
<blank line, i.e., CRLF>

Steps in HTTP Request

HTTP Client initiates TCP connection to server

— SYN

— SYNACK

— ACK

Client sends HTTP request to server

— Can be piggybacked on TCP’s ACK

HTTP Server responds to request

Client receives the request, terminates connection
¢ TCP connection termination exchange

How many RTTs for a single request?

Client-Server Communication

¢ two types of HTTP messages: request, response
* HTTP request message: (GET POST HEAD)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
\esder | USeE-agent: Mozilla/4.0
Connection: close
nes | Accept-language: £x

HTTP response message

s T ke 200 ox
(extra carriage return, line feed) statu Connection close

Carriage return,__—~ Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)

lines Content-Length: 6821
Content-Type: text/html

data data data data data

40

reader | Last-Modified: Mon, 22 Jun 1998

Different Forms of Server

. Response
* Return a file

— URL matches a file (e.g., /www/index.html)
— Server returns file as the response
— Server generates appropriate response header

* Generate response dynamically
— URL triggers a program on the server
— Server runs program and sends output to client

* Return meta-data with no body

41

HTTP Resource Meta-Data

* Meta-data
— Info about a resource, stored as a separate entity

* Examples:

— Size of resource, last modification time, type of
content

* Usage example: Conditional GET Request
— Client requests object “If-modified-since”
— If unchanged, “HTTP/1.1 304 Not Modified”
— No body in the server’s response, only a header

HTTP is Stateless

e Each request-response treated independently
— Servers not required to retain state

Good: Improves scalability on the server-side
— Failure handling is easier

— Can handle higher rate of requests

— Order of requests doesn‘t matter

Bad: Some applications need persistent state
— Need to uniquely identify user or store temporary info
— e.g., Shopping cart, user profiles, usage tracking, ...

43

State in a Stateless Protocol:

Cookies

* Client-side state maintenance

— Client stores small» state on behalf of server

— Client sends state in future requests to the server
* Can provide authentication

Request

J

w

__/ Response A
| /| «Set-Cookie: XYZ
Y

L

T

= Request
Cookie: XY
44

HTTP Performance

* Most Web pages have multiple objects
—e.g., HTML file and a bunch of embedded images

* How do you retrieve those objects (naively)?
— One item at a time

* Put stuff in the optimal place?
— Where is that precisely?
* Enter the Web cache and the CDN

45

Fetch HTTP ltems: Stop & Wait

Client Server
Start fetching Request item 1

page 4’\
Transfer item 1

’/Ensf/eritﬂ3//’
Finish; display
.

page

awiy

46

Improving HTTP Performance:

Concurrent Requests & Responses

* Use multiple connections in !f
parallel P =]

* Does not necessarily maintain

order of responses A R2 R3

T2 73

e Client=© 4

e Server = ©

* Network = ® Why?

47

Improving HTTP Performance:

Pipelined Requests & Responses

* Batch requests and responses
— Reduce connection overhead Client Server
— Multiple requests sent in a single Request 1
batch \Re?%:
— Maintains order of responses %

— Item 1 always arrives before item 2

* How is this different from W
concurrent requests/responses? ‘W

)) 3

— Single TCP connection ‘W

Improving HTTP Performance:
Persistent Connections

* Enables multiple transfers per connection
— Maintain TCP connection across multiple requests
— Including transfers subsequent to current page
— Client or server can tear down connection

* Performance advantages:
— Avoid overhead of connection set-up and tear-down
— Allow TCP to learn more accurate RTT estimate
— Allow TCP congestion window to increase
— i.e., leverage previously discovered bandwidth

e Defaultin HTTP/1.1

49

HTTP evolution

1.0 — one object per TCP: simple but slow

Parallel connections - multiple TCP, one object
each: wastes b/w, may be svr limited, out of order
1.1 pipelining — aggregate retrieval time: ordered,
multiple objects sharing single TCP

1.1 persistent — aggregate TCP overhead: lower

overhead in time, increase overhead at ends (e.g.,
when should/do you close the connection?)

Scorecard: Getting n Small Objects

Time dominated by latency

* One-at-a-time: ~2n RTT

* Persistent: ~ (n+1)RTT

* M concurrent: ~2[n/m] RTT
* Pipelined: ~2 RTT

* Pipelined/Persistent: ~2 RTT first time, RTT
later

Scorecard: Getting n Large Objects

Time dominated by bandwidth

* One-at-a-time: ~ nF/B
* M concurrent: ~ [n/m] F/B

— assuming shared with large population of users
* Pipelined and/or persistent: ~ nF/B

— The only thing that helps is getting more
bandwidth..

Improving HTTP Performance:

Caching

* Many clients transfer same information

— Generates redundant server and network
load

— Clients experience unnecessary latency

Server |i

Improving HTTP Performance:

Caching: How

* Modifier to GET requests:
— If-modified-since —returns “not modified” if
resource not modified since specified time
* Response header:
- Expires —how long it’s safe to cache the resource

—No-cache —ignore all caches; always get resource
directly from server

Improving HTTP Performance:

Caching: Why

* Motive for placing content closer to client:
— User gets better response time
— Content providers get happier users
« Time is money, really!
— Network gets reduced load

* Why does caching work?
— Exploits locality of reference

* How well does caching work?
— Very well, up to a limit
— Large overlap in content
— But many unique requests

Improving HTTP Performance:

Caching on the Client

Example: Conditional GET Request
¢ Return resource only if it has changed at the server

ReueR YR SRIVEILRsPurces!

GET /~awm22/win HTTP/1.1

Host: www.cl.cam.ac.uk

User-Agent: Mozilla/4.03

If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT

* HowY
— Client specifies “if-modified-since” time in request
— Server compares this against “last modified” time of desired resource
— Server returns “304 Not Modified” if resource has not changed
— ...ora “200 OK” with the latest version otherwise

Improving HTTP Performance:
Caching with Reverse Proxies

Cache documents close to server
- decrease server load
* Typically done by content providers

* Only works for static(*) content

Server
(*) static can also be snapshots
of dynamic content

Reverse proxies

Backisone ISP

Clients =g
55 =

Improving HTTP Performance:
Caching with Forward Proxies

Cache documents close to clients
-> reduce network traffic and decrease latency

* Typically done by ISPs or corporate LANs

Server

Reverse proxies

Forward proxies

Improving HTTP Performance:

Caching w/ Content Distribution Networks

Integrate forward and reverse caching functionality
— One overlay network (usually) administered by one entity
— e.g., Akamai
* Provide document caching
— Pull: Direct result of clients’ requests
— Push: Expectation of high access rate
¢ Also do some processing
— Handle dynamic web pages
— Transcoding
— Maybe do some security function — watermark IP

Improving HTTP Performance:

Caching with CDNs (cont.)

Server

Forward proxies

Clients =g

e

Improving HTTP Performance:

CDN Example — Akamai

* Akamai creates new domain names for each client
content provider.

— €.8., a128.g.akamai.net

* The CDN’s DNS servers are authoritative for the new
domains

* The client content provider modifies its content so
that embedded URLs reference the new domains.
— “Akamaize” content

— €.8.: http://www.bbc.co.uk/popular-image.jpg becomes http://
al28.g.akamai.net/popular-image.jpg

Requests now sent to CDN’s infrastructure...

Hosting: Multiple Sites Per
Machine

* Multiple Web sites on a single machine
— Hosting company runs the Web server on behalf of
multiple sites (e.g., www.foo.com and www.bar.com)
* Problem: GET /index.html
— www.foo.com/index.html O www.bar.com/index.html?
* Solutions:
— Multiple server processes on the same machine
* Have a separate IP address (or port) for each server
— Include site name in HTTP request
 Single Web server process with a single IP address
* Client includes “Host” header (e.g., Host: www.£foo.com)
* Required header with HTTP/1.1

Hosting: Multiple Machines Per Site

* Replicate popular Web site across many machines
— Helps to handle the load
— Places content closer to clients

* Helps when content isn’t cacheable
* Problem: Want to direct client to particular
replica

— Balance load across server replicas
— Pair clients with nearby servers

63

Multi-Hosting at Single Location

* Single IP address, multiple machines
— Run multiple machines behind a single IP address

— | Load Balancer I—

/ 64.236.16.20

— Ensure all packets from a single
TCP connection go to the same replica

Multi-Hosting at Several Locations

¢ Multiple addresses, multiple machines
— Same name but different addresses for all of the replicas
— Configure DNS server to return closest address

12.1.11 64.236.16.20

me
o

6473.72.54.131

CDN examples round-up

* CDN using DNS
DNS has information on loading/distribution/location

* CDN using anycast
same address from DNS name but local routes

* CDN based on rewriting HTML URLs
(akami example just covered — akami uses DNS too)

SIP — Session Initiation Protocol

Session?

Anyone smell an OSI / 1SO standards document burning?

SIP - VolIP

princeton.edu
proxy

bsd-pc.cisco.com lip-ph.cs.princeton.edu

cisco.com
proxy

bruce@cisco.com larry@princeton.edu

Establishing communication
through SIP proxies.

SIP?

* SIP — bringing the fun/complexity of
telephony to the Internet
—User location
—User availability
—User capabilities
—Session setup
—Session management
* (e.g. “call forwarding”)

69

H.323-1TU

¢ Why have one standard when there are at least two....

¢ The full H.323 is hundreds of pages
— The protocol is known for its complexity — an ITU hallmark

e SIPis not much better

— |ETF grew up and became the ITU....

70

Multimedia Applications

cisco.com princeton.edu

bsd-pe.cisco.com proxy proxy IIp-ph.cs.princeton.edu

—_invite

I
100tying ____~———_invite

100tying - _invito

l— 180 inging >

180 ringing ”

— 20006~

2000K

Message flow for a basic SIP session

71

The (still?) missing piece:
Resource Allocation for Multimedia Applications

ISP

Public
Internet

Customer
1P phone. router

| can ‘differentiate’ VolIP from data but...
| can only control data going into the Internet

72

Multimedia Applications

* Resource Allocation for Multimedia Applications

Proxy or gatekeeper

Wide area
link__

Head office

P phones at
branch office

Admission control using session control protocol.

73

Resource Allocation for Multimedia Applications

Coming soon...

who are we kidding??

Co-ordination of SIP signaling and
resource reservation.

&
So where does it happen? B
Inside single institutions or domains of control.....
(Universities, Hospitals, big corp...)

What about my aDSL/CABLE/etc it combines voice and data?
Phone company controls the multiplexing on the line
and throughout their own network too......

74

P2P — efficient network use that
annoys the ISP

Pure P2P architecture

* ho aIways-on server

* arbitrary end systems
directly communicate

peer-peer e =
e peers are intermittently
connected and change IP

=
addresses =
* Three topics:
— File distribution _ @

— Searching for information =] pe] 3’
— Case Study: Skype

File Distribution: Server-Client vs P2P

Question : How much time to distribute file from
one server to N peers?

u,: server upload

bandwidth
Server
u,: peer i upload
bandwidth
d;: peer i download
F|Ie size F bandwidth
Network (with L

abundant bandwidth)
uN .

77

File distribution time: server-client

Server
* server sequentially uﬁdl u//
sends N copies:
— NF/u time B g;lt,:g;ﬁt(g::dwidth) y
* client i takes F/d, o)
time to download T, .

Time to distribute F

to N clients using = d,, = max { NF/u,, F/mln(d) }
client/server approach

increases linearly in N

(for large N) %

File distribution time: P2P

Server
* server must send one copy: u
. us\\d; 2
F/u time

* client i takes F/d;time to

d, Network (with
download @—' <N abundant bandwidth) ¢
* NF bits must be ety .
downloaded (aggregate) LR .

O fastest possible upload rate: u, + Zu‘

dpyp = max { F/u,, F/min(d) , NF/(u, + Zu;) }

79

Server-client vs. P2P: example

Client upload rate =u, F/u=1 hour, u,=10u, d, 2 u,

35

1= P2P ././'
3 1 |- Client-Server /.,r'/'
25 J'l,f

2

Minimum Distribution Time
P

05 /W

0 T T T T T T
0 5 10 15 20 25 30 35

80

File distribution: BitTorrent*

*rather old BitTorrent
O P2P file distribution

tracker: tracks peers torrent: gaouppf
participating in torrent peers exchanging

chunks of a file

obtain list
L trading
chunks

of peers
@) ‘

81

BitTorrent (1) &
&
file divided into 256KB chunks.

peer joining torrent: g::'@'\.

— has no chunks, but will accumulate them over time

— registers with tracker to get list of peers, connects to
subset of peers (“neighbors”)

while downloading, peer uploads chunks to other peers.

peers may come and go

once peer has entire file, it may (selfishly) leave or
(altruistically) remain

BitTorrent (2)

Pulling Chunks Sending Chunks: tit-for-tat
i X . [Alice sends chunks to four neighbors
* atany given time, different currently sending her chunks at the
peers have different highest rate

< re-evaluate top 4 every 10 secs
[every 30 secs: randomly select another
* periodically, a peer (Alice) peer, starts sending chunks

asks each neighbor for list % newly chosen peer may join top 4
<+ “optimistically unchoke
of chunks that they have.

subsets of file chunks

« Alice sends requests for her
missing chunks

— rarest first

83

BitTorrent: Tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’ s top-four providers

®®

sz /=

With higher upload rate,
can find better trading
partners & get file faster!

84

Distributed Hash Table (DHT)

DHT = distributed P2P database
Database has (key, value) pairs;

— key: ss number; value: human name

— key: content type; value: IP address
Peers query DB with key

— DB returns values that match the key
Peers can also insert (key, value) peers

P2P Case study: Skype

Skype clients (SC)

inherently P2P: pz:irs of B B B
users communicate. o 7 "‘-""@
proprietary application- Skype =
layer protocol (inferred ~ login server

via reverse engineering)
hierarchical overlay with
SNs

Index maps usernames to
IP addresses; distributed
over SNs

Peers as relays

* Problem when both Alice
and Bob are behind
“NATs”.

— NAT prevents an outside peer
from initiating a call to insider
peer

* Solution:

— Using Alice” s and Bob’ s SNs,
Relay is chosen

— Each peer initiates session
with relay.

— Peers can now communicate
through NATs via relay

Distributed Hash Table (DHT)

DHT = distributed P2P database
Database has (key, value) pairs;

— key: ss number; value: human name
— key: content type; value: IP address
Peers query DB with key

— DB returns values that match the key

Peers can also insert (key, value) peers

DHT lIdentifiers

* Assign integer identifier to each peer in range
[0,2n-1].
— Each identifier can be represented by n bits.
* Require each key to be an integer in same range.
* To get integer keys, hash original key.
— eg, key = h(“Game of Thrones season 4”)
— This is why they call it a distributed “hash” table

How to assign keys to peers?

Central issue:

— Assigning (key, value) pairs to peers.

Rule: assign key to the peer that has the
closest ID.

Convention in lecture: closest is the
immediate successor of the key.

Ex: n=4; peers: 1,3,4,5,8,10,12,14;
— key = 13, then successor peer =14

— key =15, then successor peer =1

Circular DHT (1)

1

15

12

10
8

* Each peer only aware of immediate successor
and predecessor.

+ “Overlay network”

Circle DHT (2)

O(N) messages

on avg to resolve
query, when there
are N peers

Define closest .
as closest

1000
successor

Circular DHT with Shortcuts

Who' s resp
for key 1110?

Each peer keeps track of IP addresses of predecessor, successor,
short cuts.

Reduced from 6 to 2 messages.

Possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

Peer Churn

*To handle peer churn, require
3 each peer to know the IP address
15 of its two successors.
* Each peer periodically pings its
4 two successors to see if they

12 are still alive.

10
8

* Peer 5 abruptly leaves

* Peer 4 detects; makes 8 its immediate successor; asks 8
who its immediate successor is; makes 8" s immediate
successor its second successor.

* What if peer 13 wants to join?

Summary.

* Apps need protocols too

* We covered examples from
— Traditional Applications (web)
— Scaling and Speeding the web (CDN/Cache tricks)

* Infrastructure Services (DNS)
— Cache and Hierarchy

* Multimedia Applications (SIP)
— Extremely hard to do better than worst-effort

* P2P Network examples

Datacenters
(Optional fun)

What we will cover
(Datacenter Topic 7 is not examinable in 2014-15)

Characteristics of a datacenter environment

— goals, constraints, workloads, etc.

How and why DC networks are different (vs. WAN)
— e.g., latency, geo, autonomy, ...

How traditional solutions fare in this environment
— e.g., IP, Ethernet, TCP, ARP, DHCP

* Not details of how datacenter networks operate

Disclaimer

* Material is emerging (not established) wisdom

* Material is incomplete

— many details on how and why datacenter networks
operate aren’t public

Why Datacenters?

Your <public-life, private-life, banks, government>
live in my datacenter.

Security, Privacy, Control, Cost, Energy, (breaking)
received wisdom; all this and more come together
into sharp focus in datacenters.

Do I need to labor the point?

What goes into a datacenter (network)?

* Servers organized in racks

What goes into a datacenter (network)?

 Servers organized in racks
* Each rack has a "Top of Rack’ (ToR) switch

What goes into a datacenter (network)?

* Servers organized in racks
* Each rack has a "Top of Rack’ (ToR) switch
* An “aggregation fabric’ interconnects ToR switches

Top of
— o= rack
Switch

TN

‘Aggregation
Switch

=5

===

==

EES

= | = === RO
Server

.=

What goes into a datacenter (network)?

* Servers organized in racks
* Each rack has a "Top of Rack’ (ToR) switch
* An ‘aggregation fabric’ interconnects ToR switches

* Connected to the outside via ‘core’ switches
— note: blurry line between aggregation and core
* With network redundancy of ~2x for robustness

Example 1

Campus
Network

Data Center N
Aggregation/Core MK
e
i

N 66
NN
10 GbE - WP i
Servers NN W
A 0

Brocade reference design

Example 2

Internet \V W

~ 40-80 servers/rack

Cisco reference design

Observations on DC architecture

* Regular, well-defined arrangement
* Hierarchical structure with rack/aggr/core layers
* Mostly homogenous within a layer

* Supports communication between servers and
between servers and the external world

Contrast: ad-hoc structure, heterogeneity of WANs

Datacenters have been around for a while

1949, EDSAC 13

What’s new?

SCALE!

How big exactly?

* 1M servers [Microsoft]
— less than google, more than amazon

* > $1B to build one site [Facebook]
* >$20M/month/site operational costs [Microsoft '09]

But only O(10-100) sites

What's new?

* Scale

* Service model
— user-facing, revenue generating services
— multi-tenancy
— jargon: Saas, Paa$, Daas, laas, ...

Implications

* Scale
— need scalable solutions (duh)
— improving efficiency, lowering cost is critical
- 'scale out’ solutions w/ commodlity technologies

* Service model
— performance means $S
— virtualization for isolation and portability

Multi-Tier Applications

* Applications decomposed into tasks
—Many separate components
—Running in parallel on different machines

Componentization leads to different
types of network traffic

* “North-South traffic”
— Traffic between external clients and the datacenter

— Handled by front-end (web) servers, mid-tier application
servers, and back-end databases

— Traffic patterns fairly stable, though diurnal variations

North-South Traffic

user requests from the Internet

Front-End Front-End
Proxy Proxy

Data Data
Cache Cache

Database Database

Componentization leads to different
types of network traffic

* “North-South traffic”
— Traffic between external clients and the datacenter

— Handled by front-end (web) servers, mid-tier application
servers, and back-end databases

— Traffic patterns fairly stable, though diurnal variations

 “East-West traffic”
— Traffic between machines in the datacenter
— Comm within “big data” computations (e.g. Map Reduce)
— Traffic may shift on small timescales (e.g., minutes)

East-West Traffic

Distributed Map Reduce Distributed
Storage Tasks Tasks Storage

East-West Traffic

Distributed
Storage

Distributed
Storage

What's different about DC networks?

Characteristics
* Huge scale:

—~20,000 switches/routers
— contrast: AT&T ~500 routers

What’s different about DC networks?

Characteristics
* Huge scale:
* Limited geographic scope:
— High bandwidth: 10/40/100G
— Contrast: Cable/aDSL/WiFi
— Very low RTT: 10s of microseconds
— Contrast: 100s of milliseconds in the WAN

What's different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

* Single administrative domain

— Can deviate from standards, invent your own, etc.
— “Green field” deployment is still feasible

What’s different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

* Single administrative domain

* Control over one/both endpoints
— can change (say) addressing, congestion control, etc.

— can add mechanisms for security/policy/etc. at the
endpoints (typically in the hypervisor)

What's different about DC networks?

Characteristics

¢ Huge scale

* Limited geographic scope

* Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink

— e.g., map-reduce scheduler chooses where tasks run
— alters traffic pattern (what traffic crosses which links)

What’s different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

* Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink

* Regular/planned topologies (e.g., trees/fat-trees)

— Contrast: ad-hoc WAN topologies (dictated by
real-world geography and facilities)

What's different about DC networks?

Characteristics

* Huge scale

* Limited geographic scope

* Single administrative domain

* Control over one/both endpoints

* Control over the placement of traffic source/sink
* Regular/planned topologies (e.g., trees/fat-trees)

¢ Limited heterogeneity
— link speeds, technologies, latencies, ...

What’s different about DC networks?

Goals

* Extreme bisection bandwidth requirements
—recall: all that east-west traffic
— target: any server can communicate at its full link speed
— problem: server’s access link is 10Gbps!

Full Bisection Bandwidth

0(40x10x100)

Inte\r Gbps) \V W
—30ps _ ?R fg
0(40x10)Gbps e AR/ ‘AR
) " A s —1is
(10Gbps m 7”7 N
o Lsd Isd s s | 7\ VAN
NN NG| .

Traditional tree topologies “scale up”
« full bisection bandwidth is expensive
* typically, tree topologies “oversubscribed”

\

Full Bisection Bandwidth Not Sufficient

Core

. Aggregation
. ‘ .. Edge
7 X % ~

\ 4 7\ /N /N / \
EE EEE e e
G H 1

* To realize full bisectional throughput, routing must spread
traffic across paths
* Enter load-balanced routing
— How? (1) Let the network split traffic/flows at random
(e.g., ECMP protocol -- RFC 2991/2992)
— How? (2) Centralized flow scheduling?
— Many more research proposals

What's different about DC networks?

Goals

Extreme bisection bandwidth requirements
Extreme latency requirements

—real money on the line

— current target: 1us RTTs

— how? cut-through switches making a comeback
— how? avoid congestion
* reduces queuing delay

A “Scale Out” Design

* Build multi-stage "Fat Trees’ out of k-port switches
—k/2 ports up, k/2 down
— Supports k3/4 hosts:
* 48 ports, 27,648 hosts

All links are the
same speed
(e.g. 10Gps)

\.

What’s different about DC networks?

Goals

Extreme bisection bandwidth requirements
Extreme latency requirements
— real money on the line

— current target: 1us RTTs

— how? cut-through switches making a comeback
* reduces switching time

What’s different about DC networks?

Goals

Extreme bisection bandwidth requirements
Extreme latency requirements

— real money on the line

— current target: 1us RTTs

— how? cut-through switches making a comeback (lec. 2!)
— how? avoid congestion

— how? fix TCP timers (e.g., default timeout is 500ms!)

— how? fix/replace TCP to more rapidly fill the pipe

An example problem at scale - INCAST

—
Worker 1 | » Synchronized mice collide.
» Caused by Partition/Aggregate.
Worker 2 Aggregator
Worker 3
RTO,;,= 300 ms
Worker 4

4= TCP timeout

The Incast Workload

Data Block

Synchronized Read

>\

Client Switch

Server
1 2 2 & = Request Unit
(SRU)

O«

Client now sends

Storage Servers
next batch of requests €

41

Incast Workload Overfills Buffers

Synchronized Read
if —|
S f—
R Z 3
i ;
Client Switch
1 2 3 4 Server
_(--Request Unit
SRU
Requests Responses 1-3 ()
Received completed .
Link Idle!
[1 | | |
LI I | T
Requests Response 4 Response 4
Sent dropped n Resent 2

Queue Buildup

Sender 1

* Big flows buildup queues.
» Increased latency for short flows.

Receiver
%

* Measurements in Bing cluster
» For 90% packets: RTT < 1ms
» For 10% packets: 1ms < RTT < 15ms

Sender 2

43

Link-Layer Flow Control

Common between switches but this is flow-control to the end host too...

* Another idea to reduce incast is to employ
Link-Layer Flow Control.....

Recall: the Data-Link can use specially coded
symbols in the coding to say “Stop” and “Start”

Link Layer Flow Control — The Dark side
Head of Line Blocking....

Such HOL blocking does not even
differentiate processes so this can occur
between competing processes on a pair of
machines — no datacenter required.

>
et

Waiting for no good
reason....

Link Layer Flow Control
But its worse that you imagine....

Double down on trouble....

Did I mention this is Link-
Layer!

That means no (IP) control
traffic, no routing
messages....

QM a whole system waiting for
one machine

i Incast is very unpleasant.

Reducing the impact of HOL in Link Layer Flow Control can be done through priority

queues and overtaking....
46

What’s different about DC networks?

Goals
* Extreme bisection bandwidth requirements
* Extreme latency requirements
* Predictable, deterministic performance
— “your packet will reach in Xms, or not at all”
— “your VM will always see at least YGbps throughput”
— Resurrecting "best effort’ vs. "Quality of Service’ debates
— How is still an open question

What's different about DC networks?

Goals

¢ Extreme bisection bandwidth requirements
¢ Extreme latency requirements

* Predictable, deterministic performance

 Differentiating between tenants is key
— e.g., “No traffic between VMs of tenant A and tenant B”
— “Tenant X cannot consume more than XGbps”
— “Tenant Y’s traffic is low priority”

What’s different about DC networks?

Goals

* Extreme bisection bandwidth requirements
* Extreme latency requirements

* Predictable, deterministic performance

* Differentiating between tenants is key

* Scalability (of course)
— Q: How’s Ethernet spanning tree looking?

What's different about DC networks?

Goals

* Extreme bisection bandwidth requirements

* Extreme latency requirements

* Predictable, deterministic performance

« Differentiating between tenants is key

* Scalability (of course)

* Cost/efficiency
— focus on commaodity solutions, ease of management
— some debate over the importance in the network case

Summary

* new characteristics and goals

* some liberating, some constraining

* scalability is the baseline requirement
* more emphasis on performance

* |less emphasis on heterogeneity

* less emphasis on interoperability

