Computer Networking

Michaelmas/Lent Term M/W/F 11:00-12:00 LT1 in Gates Building

Slide Set 3

Andrew W. Moore

andrew.moore@cl.cam.ac.uk 2014-2015

Topic 6 – Applications

Overview

Traditional Applications (web)

• Infrastructure Services (DNS)

Multimedia Applications (SIP)

P2P Networks

Client-server architecture

server:

- always-on host
- permanent IP address
- server farms for scaling

clients:

- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

Pure P2P architecture

- *no* always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

peer-peer

Highly scalable but difficult to manage

Hybrid of client-server and P2P

Skype

- voice-over-IP P2P application
- centralized server: finding address of remote party:
- client-client connection: direct (not through server)

Instant messaging

- chatting between two users is P2P
- centralized service: client presence detection/ location
 - user registers its IP address with central server when it comes online
 - user contacts central server to find IP addresses of buddies

Addressing processes

- to receive messages, process must have identifier
- host device has unique 32bit IP address
- Q: does IP address of host on which process runs suffice for identifying the process?
 - A: No, many processes can be running on same host

- identifier includes both IP address and port numbers associated with process on host.
- Example port numbers:

- HTTP server: 80

Mail server: 25

 to send HTTP message to yuba.stanford.edu web server:

IP address: 171.64.74.58

Port number: 80

more shortly...

Recall: Multiplexing is a service provided by (each) layer too!

Lower channel

Application: one web-server multiple sets of content

Host: one machine multiple services

Network: one physical box multiple addresses (like vns.cl.cam.ac.uk)

....

UNIX: /etc/protocols = examples of different transport-protocols on top of IP

UNIX: /etc/services = examples of different (TCP/UDP) services — by port

(These files are an example of a (static) approach to name services)

App-layer protocol defines

- Types of messages exchanged,
 - e.g., request, response
- Message syntax:
 - what fields in messages & how fields are delineated
- Message semantics
 - meaning of information in fields
- Rules for when and how processes send & respond to messages

Public-domain protocols:

- defined in RFCs
- allows for interoperability
- e.g., HTTP, SMTP

Proprietary protocols:

• e.g., Skype

What transport service does an app need?

Data loss

- some apps (e.g., audio) can tolerate some loss
- other apps (e.g., file transfer, telnet) require 100% reliable data transfer

Timing

 some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

Throughput

- some apps (e.g., multimedia) require minimum amount of throughput to be "effective"
- other apps ("elastic apps") make use of whatever throughput they get

Security

Encryption, data integrity, ...

Mysterious secret of *Transport*

• There is more than sort of *transport* layer

Shocked?

I seriously doubt it...

Recall the two most common TCP and UDP

Naming

- Internet has one global system of addressing: IP
 - By explicit design
- And one global system of naming: DNS
 - Almost by accident
- At the time, only items worth naming were hosts
 - A mistake that causes many painful workarounds
- Everything is now named relative to a host
 - Content is most notable example (URL structure)

Logical Steps in Using Internet

- Human has name of entity she wants to access
 - Content, host, etc.
- Invokes an application to perform relevant task
 - Using that name
- App invokes DNS to translate name to address
- App invokes transport protocol to contact host
 - Using address as destination

Addresses vs Names

- Scope of relevance:
 - App/user is primarily concerned with names
 - Network is primarily concerned with addresses
- Timescales:
 - Name lookup once (or get from cache)
 - Address lookup on each packet
- When moving a host to a different subnet:
 - The address changes
 - The name does not change
- When moving content to a differently named host
 - Name and address both change!

Relationship Between Names&Addresses

- Addresses can change underneath
 - Move www.bbc.co.uk to 212.58.246.92
 - Humans/Apps should be unaffected
- Name could map to multiple IP addresses
 - www.bbc.co.uk to multiple replicas of the Web site
 - Enables
 - Load-balancing
 - Reducing latency by picking nearby servers
- Multiple names for the same address
 - E.g., aliases like www.bbc.co.uk and bbc.co.uk
 - Mnemonic stable name, and dynamic canonical name
 - Canonical name = actual name of host

Mapping from Names to Addresses

- Originally: per-host file /etc/hosts
 - SRI (Menlo Park) kept master copy
 - Downloaded regularly
 - Flat namespace
- Single server not resilient, doesn't scale
 - Adopted a distributed hierarchical system
- Two intertwined hierarchies:
 - Infrastructure: hierarchy of DNS servers
 - Naming structure: www.bbc.co.uk

Domain Name System (DNS)

- Top of hierarchy: Root
 - Location hardwired into other servers
- Next Level: Top-level domain (TLD) servers
 - .com, .edu, etc.
 - uk, .au, .to, etc.
 - Managed professionally
- Bottom Level: Authoritative DNS servers
 - Actually do the mapping
 - Can be maintained locally or by a service provider

Distributed Hierarchical Database

DNS Root

- Located in Virginia, USA
- How do we make the root scale?

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M
- Does this scale?

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
 - Labeled A through M
- Replication via any-casting (localized routing for addresses)

Using DNS

- Two components
 - Local DNS servers
 - Resolver software on hosts
- Local DNS server ("default name server")
 - Usually near the endhosts that use it
 - Local hosts configured with local server (e.g., /etc/ resolv.conf) or learn server via DHCP
- Client application
 - Extract server name (e.g., from the URL)
 - Do gethostbyname() to trigger resolver code

How Does Resolution Happen?

(Iterative example)

Host at cl.cam.ac.uk
wants IP address for
www.stanford.edu

local DNS server dns.cam.ac.uk

iterated query:

- Host enquiry is delegated to local DNS server
- ☐ Consider transactions 2 7 only
- contacted server replies with name of next server to contact
 - J "I don't know this name, requesting host but ask this server" cl.cam.ac.uk

root DNS server

www.stanford.edu

DNS name resolution recursive example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load?

Recursive and Iterative Queries - Hybrid case

- Recursive query
 - Ask server to get answer for you
 - E.g., requests 1,2and responses9,10
- Iterative query
 - Ask server who to ask next
 - E.g., all other request-response pairs

DNS Caching

- Performing all these queries takes time
 - And all this before actual communication takes place
 - E.g., 1-second latency before starting Web download
- Caching can greatly reduce overhead
 - The top-level servers very rarely change
 - Popular sites (e.g., www.bbc.co.uk) visited often
 - Local DNS server often has the information cached
- How DNS caching works
 - DNS servers cache responses to queries
 - Responses include a "time to live" (TTL) field
 - Server deletes cached entry after TTL expires

Negative Caching

- Remember things that don't work
 - Misspellings like bbcc.co.uk and www.bbc.com.uk
 - These can take a long time to fail the first time
 - Good to remember that they don't work
 - ... so the failure takes less time the next time around
- But: negative caching is optional
 - And not widely implemented

Reliability

- DNS servers are replicated (primary/secondary)
 - Name service available if at least one replica is up
 - Queries can be load-balanced between replicas
- Usually, UDP used for queries
 - Need reliability: must implement this on top of UDP
 - Spec supports TCP too, but not always implemented
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Same identifier for all queries
 - Don't care which server responds

DNS Measurements (MIT data from 2000)

- What is being looked up?
 - ~60% requests for A records
 - ~25% for PTR records
 - ~5% for MX records
 - ~6% for ANY records
- How long does it take?
 - Median ~100msec (but 90th percentile ~500msec)
 - 80% have no referrals; 99.9% have fewer than four
- Query packets per lookup: ~2.4
 - But this is misleading....

DNS Measurements (MIT data from 2000)

- Does DNS give answers?
 - ~23% of lookups fail to elicit an answer!
 - ~13% of lookups result in NXDOMAIN (or similar)
 - Mostly reverse lookups
 - Only ~64% of queries are successful!
 - How come the web seems to work so well?
- ~ 63% of DNS packets in unanswered queries!
 - Failing queries are frequently retransmitted
 - 99.9% successful queries have ≤2 retransmissions

DNS Measurements (MIT data from 2000)

- Top 10% of names accounted for ~70% of lookups
 - Caching should really help!
- 9% of lookups are unique
 - Cache hit rate can never exceed 91%
- Cache hit rates ~ 75%
 - But caching for more than 10 hosts doesn't add much

A Common Pattern.....

- Distributions of various metrics (file lengths, access patterns, etc.) often have two properties:
 - Large fraction of total metric in the top 10%
 - Sizable fraction (~10%) of total fraction in low values
- Not an exponential distribution
 - Large fraction is in top 10%
 - But low values have very little of overall total
- Lesson: have to pay attention to both ends of dist.
- Here: caching helps, but not a panacea

Moral of the Story

 If you design a highly resilient system, many things can be going wrong without you noticing it!

and this is a good thing

Cache Poisoning, a *badness* story

 Suppose you are a Bad Guy and you control the name server for foobar.com. You receive a

```
:: QUESTION SECTION:
;www.foobar.com.
                       IN A
                                     Evidence of the attack
                                  disappears 5 seconds later!
;; ANSWER SECTION:
www.foobar.com.
                   300
                                  212,44,9,144
                        IN
;; AUTHORITY SECTION:
foobar.com.
                          NS
                               dns1.foobar.com.
                600
foobar.com.
                600
                          NS
                               google.com.
;; ADDITIONAL SECTION
google.com.
                    IN
                              212.44.9.155
```

DNS and Security

- No way to verify answers
 - Opens up DNS to many potential attacks
 - DNSSEC fixes this
- Most obvious vulnerability: recursive resolution
 - Using recursive resolution, host must trust DNS server
 - When at Starbucks, server is under their control
 - And can return whatever values it wants
- More subtle attack: Cache poisoning
 - Those "additional" records can be anything!

Why is the web so successful?

- What do the web, youtube, fb have in common?
 - The ability to self-publish
- Self-publishing that is easy, independent, free
- No interest in collaborative and idealistic endeavor
 - People aren't looking for Nirvana (or even Xanadu)
 - People also aren't looking for technical perfection
- Want to make their mark, and find something neat
 - Two sides of the same coin, creates synergy
 - "Performance" more important than dialogue....

Web Components

- Infrastructure:
 - Clients
 - Servers
 - Proxies
- Content:
 - Individual objects (files, etc.)
 - Web sites (coherent collection of objects)
- Implementation
 - HTML: formatting content
 - URL: naming content
 - HTTP: protocol for exchanging content Any content not just HTML!

HTML: HyperText Markup Language

- A Web page has:
 - Base HTML file
 - Referenced objects (e.g., images)
- HTML has several functions:
 - Format text
 - Reference images
 - Embed hyperlinks (HREF)

URL Syntax

protocol://hostname[:port]/directorypath/resource

protocol	http, ftp, https, smtp, rtsp, etc.
hostname	DNS name, IP address
port	Defaults to protocol's standard port e.g. http: 80 https: 443
directory path	Hierarchical, reflecting file system
resource	Identifies the desired resource
37	Can also extend to program executions: http://us.f413.mail.yahoo.com/ym/ShowLetter?box= %40B %40Bulk&MsgId=2604_1744106_29699_1123_1261_0_28917 _3552_1289957100&Search=&Nhead=f&YY=31454ℴ=do wn&sort=date&pos=0&view=a&head=b

HyperText Transfer Protocol (HTTP)

- Request-response protocol
- Reliance on a global namespace
- Resource metadata
- Stateless
- ASCII format

\$ telnet www.cl.cam.ac.uk 80 GET /~awm22/win HTTP/1.0 <black line, i.e., CRLF>

Steps in HTTP Request

- HTTP Client initiates TCP connection to server
 - SYN
 - SYNACK
 - ACK
- Client sends HTTP request to server
 - Can be piggybacked on TCP's ACK
- HTTP Server responds to request
- Client receives the request, terminates connection
- TCP connection termination exchange

How many RTTs for a single request?

Client-Server Communication

- two types of HTTP messages: request, response
- HTTP request message: (GET POST HEAD)

Different Forms of Server Response

- Return a file
 - URL matches a file (e.g., /www/index.html)
 - Server returns file as the response
 - Server generates appropriate response header

- Generate response dynamically
 - URL triggers a program on the server
 - Server runs program and sends output to client
- Return meta-data with no body

HTTP Resource Meta-Data

- Meta-data
 - Info about a resource, stored as a separate entity
- Examples:
 - Size of resource, last modification time, type of content
- Usage example: Conditional GET Request
 - Client requests object "If-modified-since"
 - If unchanged, "HTTP/1.1 304 Not Modified"
 - No body in the server's response, only a header

HTTP is Stateless

- Each request-response treated independently
 - Servers not required to retain state
- Good: Improves scalability on the server-side
 - Failure handling is easier
 - Can handle higher rate of requests
 - Order of requests doesn't matter
- Bad: Some applications need persistent state
 - Need to uniquely identify user or store temporary info
 - e.g., Shopping cart, user profiles, usage tracking, ...

State in a Stateless Protocol:

Cookies

- Client-side state maintenance
 - Client stores small[®] state on behalf of server
 - Client sends state in future requests to the server
- Can provide authentication

HTTP Performance

- Most Web pages have multiple objects
 - e.g., HTML file and a bunch of embedded images

- How do you retrieve those objects (naively)?
 - One item at a time
- Put stuff in the optimal place?
 - Where is that precisely?
 - Enter the Web cache and the CDN

Fetch HTTP Items: Stop & Wait

Concurrent Requests & Responses

- Use multiple connections in parallel
- Does not necessarily maintain order of responses

- Client = 🙂
- Server = 🙂
- Network = Why?

Pipelined Requests & Responses

- Batch requests and responses
 - Reduce connection overhead
 - Multiple requests sent in a single batch
 - Maintains order of responses
 - Item 1 always arrives before item 2
- How is this different from concurrent requests/responses?
 - Single TCP connection

Persistent Connections

- Enables multiple transfers per connection
 - Maintain TCP connection across multiple requests
 - Including transfers subsequent to current page
 - Client or server can tear down connection
- Performance advantages:
 - Avoid overhead of connection set-up and tear-down
 - Allow TCP to learn more accurate RTT estimate
 - Allow TCP congestion window to increase
 - i.e., leverage previously discovered bandwidth
- Default in HTTP/1.1

HTTP evolution

- 1.0 one object per TCP: simple but slow
- Parallel connections multiple TCP, one object each: wastes b/w, may be svr limited, out of order
- 1.1 pipelining aggregate retrieval time: ordered, multiple objects sharing single TCP
- 1.1 persistent aggregate TCP overhead: lower overhead in time, increase overhead at ends (e.g., when should/do you close the connection?)

Scorecard: Getting n Small Objects

Time dominated by latency

- One-at-a-time: ~2n RTT
- Persistent: ~ (n+1)RTT
- M concurrent: ~2[n/m] RTT
- Pipelined: ~2 RTT
- Pipelined/Persistent: ~2 RTT first time, RTT later

Scorecard: Getting n Large Objects

Time dominated by bandwidth

- One-at-a-time: ~ nF/B
- M concurrent: ~ [n/m] F/B
 - assuming shared with large population of users
- Pipelined and/or persistent: ~ nF/B
 - The only thing that helps is getting more bandwidth..

Improving HTTP Performance: Caching

- Many clients transfer same information
 - Generates redundant server and network load
 - Clients experience unnecessary latency

Caching: How

- Modifier to GET requests:
 - If-modified-since returns "not modified" if resource not modified since specified time
- Response header:
 - Expires how long it's safe to cache the resource
 - No-cache ignore all caches; always get resource directly from server

Caching: Why

- Motive for placing content closer to client:
 - User gets better response time
 - Content providers get happier users
 - Time is money, really!
 - Network gets reduced load
- Why does caching work?
 - Exploits locality of reference
- How well does caching work?
 - Very well, up to a limit
 - Large overlap in content
 - But many unique requests

Caching on the Client

Example: Conditional GET Request

Return resource only if it has changed at the server

Request from client to server.

```
GET /~awm22/win HTTP/1.1
Host: www.cl.cam.ac.uk
User-Agent: Mozilla/4.03
If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT
<CRLF>
```

- How?
 - Client specifies "if-modified-since" time in request
 - Server compares this against "last modified" time of desired resource
 - Server returns "304 Not Modified" if resource has not changed
 - or a "200 OK" with the latest version otherwise

Caching with Reverse Proxies

Cache documents close to **server**

- → decrease server load
- Typically done by content providers

Caching with Forward Proxies

Cache documents close to clients

- → reduce network traffic and decrease latency
- Typically done by ISPs or corporate LANs

Caching w/ Content Distribution Networks

- Integrate forward and reverse caching functionality
 - One overlay network (usually) administered by one entity
 - *e.g.,* Akamai
- Provide document caching
 - Pull: Direct result of clients' requests
 - Push: Expectation of high access rate
- Also do some processing
 - Handle dynamic web pages
 - Transcoding
 - Maybe do some security function watermark IP

Improving HTTP Performance: Caching with CDNs (cont.)

CDN Example – Akamai

- Akamai creates new domain names for each client content provider.
 - e.g., a128.g.akamai.net
- The CDN's DNS servers are authoritative for the new domains
- The client content provider modifies its content so that embedded URLs reference the new domains.
 - "Akamaize" content
 - e.g.: http://www.bbc.co.uk/popular-image.jpg becomes http://a128.g.akamai.net/popular-image.jpg
- Requests now sent to CDN's infrastructure...

Hosting: Multiple Sites Per Machine

- Multiple Web sites on a single machine
 - Hosting company runs the Web server on behalf of multiple sites (e.g., www.foo.com and www.bar.com)
- Problem: GET /index.html
 - www.foo.com/index.html Or www.bar.com/index.html?
- Solutions:
 - Multiple server processes on the same machine
 - Have a separate IP address (or port) for each server
 - Include site name in HTTP request
 - Single Web server process with a single IP address
 - Client includes "Host" header (e.g., Host: www.foo.com)
 - Required header with HTTP/1.1

Hosting: Multiple Machines Per Site

- Replicate popular Web site across many machines
 - Helps to handle the load
 - Places content closer to clients
- Helps when content isn't cacheable
- Problem: Want to direct client to particular replica
 - Balance load across server replicas
 - Pair clients with nearby servers

Multi-Hosting at Single Location

- Single IP address, multiple machines
 - Run multiple machines behind a single IP address

Multi-Hosting at Several Locations

- Multiple addresses, multiple machines
 - Same name but different addresses for all of the replicas

CDN examples round-up

CDN using DNS
 DNS has information on loading/distribution/location

 CDN using anycast same address from DNS name but local routes

CDN based on rewriting HTML URLs
 (akami example just covered – akami uses DNS too)

SIP – Session Initiation Protocol

Session?

Anyone smell an OSI / ISO standards document burning?

SIP - VoIP

Establishing communication through SIP proxies.

SIP?

- SIP bringing the fun/complexity of telephony to the Internet
 - User location
 - User availability
 - User capabilities
 - Session setup
 - -Session management
 - (e.g. "call forwarding")

H.323 - ITU

- Why have one standard when there are at least two....
- The full H.323 is hundreds of pages
 - The protocol is known for its complexity an ITU hallmark
- SIP is not much better
 - IETF grew up and became the ITU....

Multimedia Applications

Message flow for a basic SIP session

The (still?) missing piece: Resource Allocation for Multimedia Applications

I can 'differentiate' VoIP from data but...
I can only control data going into the Internet

Multimedia Applications Resource Allocation for Multimedia Applications

Admission control using session control protocol.

Resource Allocation for Multimedia Applications

Coming soon... 1995
2000
2010
who are we kidding??

Co-ordination of SIP signaling and resource reservation.

So where does it happen?

Inside single institutions or domains of control.....
(Universities, Hospitals, big corp...)

What about my aDSL/CABLE/etc it combines voice and data? Phone company **controls** the multiplexing on the line and throughout their own network too......

P2P – efficient network use that annoys the ISP

Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

Three topics:

- File distribution
- Searching for information
- Case Study: Skype

File Distribution: Server-Client vs P2P

<u>Question</u>: How much time to distribute file from one server to *N* peers?

File distribution time: server-client

- server sequentially sends N copies:
 - $-NF/u_s$ time
- client i takes F/d_i
 time to download


```
Time to distribute F
to N clients using = d_{cs} = max \{ NF/u_s, F/min(d_i) \}
client/server approach
```

increases linearly in N (for large N)

File distribution time: P2P

- server must send one copy: F/u_s time
- client i takes F/d_i time to download
- NF bits must be downloaded (aggregate)
 - \Box fastest possible upload rate: $u_s + \sum u_i$

$$d_{P2P} = \max \{ F/u_s, F/\min(d_i), NF/(u_s + \sum_i u_i) \}$$

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, $u_s = 10u$, $d_{min} \ge u_s$

File distribution: BitTorrent*

*rather old BitTorrent

P2P file distribution

- has no chunks, but will accumulate them over time
- registers with tracker to get list of peers, connects to subset of peers ("neighbors")
- while downloading, peer uploads chunks to other peers.
- peers may come and go
- once peer has entire file, it may (selfishly) leave or (altruistically) remain

BitTorrent (2)

Pulling Chunks

- at any given time, different peers have different subsets of file chunks
- periodically, a peer (Alice)
 asks each neighbor for list
 of chunks that they have.
- Alice sends requests for her missing chunks
 - rarest first

Sending Chunks: tit-for-tat

- Alice sends chunks to four neighbors currently sending her chunks at the highest rate
- re-evaluate top 4 every 10 secs
 every 30 secs: randomly select another peer, starts sending chunks
 - newly chosen peer may join top 4
 - "optimistically unchoke"

BitTorrent: Tit-for-tat

- (1) Alice "optimistically unchokes" Bob
- (2) Alice becomes one of Bob's top-four providers; Bob reciprocates
- (3) Bob becomes one of Alice's top-four providers

Distributed Hash Table (DHT)

- DHT = distributed P2P database
- Database has (key, value) pairs;
 - key: ss number; value: human name
 - key: content type; value: IP address
- Peers query DB with key
 - DB returns values that match the key
- Peers can also insert (key, value) peers

P2P Case study: Skype

- inherently P2P: pairs of users communicate.
- proprietary applicationlayer protocol (inferred via reverse engineering)
- hierarchical overlay with SNs
- Index maps usernames to IP addresses; distributed over SNs

Peers as relays

- Problem when both Alice and Bob are behind "NATs".
 - NAT prevents an outside peer from initiating a call to insider peer

• Solution:

- Using Alice's and Bob's SNs, Relay is chosen
- Each peer initiates session with relay.
- Peers can now communicate through NATs via relay

Distributed Hash Table (DHT)

- DHT = distributed P2P database
- Database has (key, value) pairs;
 - key: ss number; value: human name
 - key: content type; value: IP address
- Peers query DB with key
 - DB returns values that match the key
- Peers can also insert (key, value) peers

DHT Identifiers

- Assign integer identifier to each peer in range [0,2ⁿ-1].
 - Each identifier can be represented by n bits.
- Require each key to be an integer in same range.
- To get integer keys, hash original key.
 - eg, key = h("Game of Thrones season 4")
 - This is why they call it a distributed "hash" table

How to assign keys to peers?

- Central issue:
 - Assigning (key, value) pairs to peers.
- Rule: assign key to the peer that has the closest ID.
- Convention in lecture: closest is the immediate successor of the key.
- Ex: n=4; peers: 1,3,4,5,8,10,12,14;
 - key = 13, then successor peer = 14
 - key = 15, then successor peer = 1

Circular DHT (1)

- Each peer *only* aware of immediate successor and predecessor.
- "Overlay network"

Circle DHT (2)

O(N) messages on avg to resolve query, when there are N peers

Define <u>closest</u> as closest successor

Circular DHT with Shortcuts

- Each peer keeps track of IP addresses of predecessor, successor, short cuts.
- Reduced from 6 to 2 messages.
- Possible to design shortcuts so O(log N) neighbors, O(log N) messages in query

Peer Churn

- •To handle peer churn, require each peer to know the IP address of its two successors.
- Each peer periodically pings its two successors to see if they are still alive.

- Peer 5 abruptly leaves
- Peer 4 detects; makes 8 its immediate successor; asks 8 who its immediate successor is; makes 8's immediate successor its second successor.
- What if peer 13 wants to join?

Summary.

- Apps need protocols too
- We covered examples from
 - Traditional Applications (web)
 - Scaling and Speeding the web (CDN/Cache tricks)
- Infrastructure Services (DNS)
 - Cache and Hierarchy
- Multimedia Applications (SIP)
 - Extremely hard to do better than worst-effort
- P2P Network examples

Datacenters (Optional fun)

What we will cover

(Datacenter Topic 7 is not examinable in 2013-14)

- Characteristics of a datacenter environment
 - goals, constraints, workloads, etc.
- How and why DC networks are different (vs. WAN)
 - e.g., latency, geo, autonomy, ...
- How traditional solutions fare in this environment
 - e.g., IP, Ethernet, TCP, ARP, DHCP
- Not details of how datacenter networks operate

Disclaimer

Material is emerging (not established) wisdom

- Material is incomplete
 - many details on how and why datacenter networks operate aren't public

Why Datacenters?

Your <public-life, private-life, banks, government> live in my datacenter.

Security, Privacy, Control, Cost, Energy, (breaking) received wisdom; all this and more come together into sharp focus in datacenters.

Do I need to labor the point?

Servers organized in racks

- Servers organized in racks
- Each rack has a 'Top of Rack' (ToR) switch

- Servers organized in racks
- Each rack has a `Top of Rack' (ToR) switch
- An `aggregation fabric' interconnects ToR switches

- Servers organized in racks
- Each rack has a `Top of Rack' (ToR) switch
- An `aggregation fabric' interconnects ToR switches
- Connected to the outside via `core' switches
 - note: blurry line between aggregation and core
- With network redundancy of ~2x for robustness

Example 1 Campus Network Brocade MLXe Brocade JCX 6650 Brocade Brocade ICX 6650 MLXe Brocade* ICX 6650 Brocade ICX 6650 Data Center Brocade ICX 6650 Aggregation/Core Brocade ICX 6650 10 GbE Servers 10 GbE Data Center 40 GbE Access

Brocade reference design

Example 2

Cisco reference design

Observations on DC architecture

- Regular, well-defined arrangement
- Hierarchical structure with rack/aggr/core layers
- Mostly homogenous within a layer
- Supports communication between servers and between servers and the external world

Contrast: ad-hoc structure, heterogeneity of WANs

Datacenters have been around for a while

SCALE!

How big exactly?

- 1M servers [Microsoft]
 - less than google, more than amazon

> \$1B to build one site [Facebook]

• >\$20M/month/site operational costs [Microsoft '09]

But only O(10-100) sites

What's new?

- Scale
- Service model
 - user-facing, revenue generating services
 - multi-tenancy
 - jargon: SaaS, PaaS, DaaS, laaS, …

Implications

- Scale
 - need scalable solutions (duh)
 - improving efficiency, lowering cost is critical
 - → `scale out' solutions w/ commodity technologies
- Service model
 - performance means \$\$
 - virtualization for isolation and portability

Multi-Tier Applications

- Applications decomposed into tasks
 - Many separate components
 - Running in parallel on different machines

Componentization leads to different types of network traffic

- "North-South traffic"
 - Traffic between external clients and the datacenter
 - Handled by front-end (web) servers, mid-tier application servers, and back-end databases
 - Traffic patterns fairly stable, though diurnal variations

North-South Traffic

21

Componentization leads to different types of network traffic

"North-South traffic"

- Traffic between external clients and the datacenter
- Handled by front-end (web) servers, mid-tier application servers, and back-end databases
- Traffic patterns fairly stable, though diurnal variations

"East-West traffic"

- Traffic between machines in the datacenter
- Comm within "big data" computations (e.g. Map Reduce)
- Traffic may shift on small timescales (e.g., minutes)

East-West Traffic

Distributed Storage

Map Tasks Reduce Tasks Distributed Storage

East-West Traffic

24

- Huge scale:
 - ~20,000 switches/routers
 - contrast: AT&T ~500 routers

- Huge scale:
- Limited geographic scope:
 - High bandwidth: 10/40/100G
 - Contrast: Cable/aDSL/WiFi
 - Very low RTT: 10s of microseconds
 - Contrast: 100s of milliseconds in the WAN

- Huge scale
- Limited geographic scope
- Single administrative domain
 - Can deviate from standards, invent your own, etc.
 - "Green field" deployment is still feasible

- Huge scale
- Limited geographic scope
- Single administrative domain
- Control over one/both endpoints
 - can change (say) addressing, congestion control, etc.
 - can add mechanisms for security/policy/etc. at the endpoints (typically in the hypervisor)

- Huge scale
- Limited geographic scope
- Single administrative domain
- Control over one/both endpoints
- Control over the placement of traffic source/sink
 - e.g., map-reduce scheduler chooses where tasks run
 - alters traffic pattern (what traffic crosses which links)

- Huge scale
- Limited geographic scope
- Single administrative domain
- Control over one/both endpoints
- Control over the placement of traffic source/sink
- Regular/planned topologies (e.g., trees/fat-trees)
 - Contrast: ad-hoc WAN topologies (dictated by real-world geography and facilities)

- Huge scale
- Limited geographic scope
- Single administrative domain
- Control over one/both endpoints
- Control over the placement of traffic source/sink
- Regular/planned topologies (e.g., trees/fat-trees)
- Limited heterogeneity
 - link speeds, technologies, latencies, ...

<u>Goals</u>

- Extreme bisection bandwidth requirements
 - recall: all that east-west traffic
 - target: any server can communicate at its full link speed
 - problem: server's access link is 10Gbps!

Full Bisection Bandwidth

Traditional tree topologies "scale up"

- full bisection bandwidth is expensive
- typically, tree topologies "oversubscribed"

A "Scale Out" Design

- Build multi-stage `Fat Trees' out of k-port switches
 - k/2 ports up, k/2 down
 - Supports $k^3/4$ hosts:
 - 48 ports, 27,648 hosts

All links are the same speed (e.g. 10Gps)

Full Bisection Bandwidth Not Sufficient

- To realize full bisectional throughput, routing must spread traffic across paths
- Enter load-balanced routing
 - How? (1) Let the network split traffic/flows at random (e.g., ECMP protocol -- RFC 2991/2992)
 - How? (2) Centralized flow scheduling?
 - Many more research proposals

<u>Goals</u>

- Extreme bisection bandwidth requirements
- Extreme latency requirements
 - real money on the line
 - current target: 1μs RTTs
 - how? cut-through switches making a comeback
 - reduces switching time

<u>Goals</u>

- Extreme bisection bandwidth requirements
- Extreme latency requirements
 - real money on the line
 - current target: 1μs RTTs
 - how? cut-through switches making a comeback
 - how? avoid congestion
 - reduces queuing delay

Goals

- Extreme bisection bandwidth requirements
- Extreme latency requirements
 - real money on the line
 - current target: 1μs RTTs
 - how? cut-through switches making a comeback (lec. 2!)
 - how? avoid congestion
 - how? fix TCP timers (e.g., default timeout is 500ms!)
 - how? fix/replace TCP to more rapidly fill the pipe

An example problem at scale - INCAST

The Incast Workload

Incast Workload Overfills Buffers

Queue Buildup

Link-Layer Flow Control

Common between switches but this is flow-control to the end host too...

 Another idea to reduce incast is to employ Link-Layer Flow Control.....

Link Layer Flow Control – The Dark side Head of Line Blocking....

Link Layer Flow Control But its worse that you imagine....

Double down on trouble....

Did I mention this is Link-Layer!

That means no (IP) control traffic, no routing messages....

a whole system waiting for one machine

Incast is very unpleasant.

Reducing the impact of HOL in Link Layer Flow Control can be done through priority queues and *overtaking*....

Goals

- Extreme bisection bandwidth requirements
- Extreme latency requirements
- Predictable, deterministic performance
 - "your packet will reach in Xms, or not at all"
 - "your VM will always see at least YGbps throughput"
 - Resurrecting `best effort' vs. `Quality of Service' debates
 - How is still an open question

Goals

- Extreme bisection bandwidth requirements
- Extreme latency requirements
- Predictable, deterministic performance
- Differentiating between tenants is key
 - e.g., "No traffic between VMs of tenant A and tenant B"
 - "Tenant X cannot consume more than XGbps"
 - "Tenant Y's traffic is low priority"

<u>Goals</u>

- Extreme bisection bandwidth requirements
- Extreme latency requirements
- Predictable, deterministic performance
- Differentiating between tenants is key
- Scalability (of course)
 - Q: How's Ethernet spanning tree looking?

<u>Goals</u>

- Extreme bisection bandwidth requirements
- Extreme latency requirements
- Predictable, deterministic performance
- Differentiating between tenants is key
- Scalability (of course)
- Cost/efficiency
 - focus on commodity solutions, ease of management
 - some debate over the importance in the network case

Summary

- new characteristics and goals
- some liberating, some constraining
- scalability is the baseline requirement
- more emphasis on performance
- less emphasis on heterogeneity
- less emphasis on interoperability