Computer Networking

Michaelmas/Lent Term
M/W/F 11:00-12:00
LT1 in Gates Building

Slide Set 2
Andrew W. Moore

andrew.moore@cl.cam.ac.uk
2014-2015

Topic 4: Network Layer

Our goals:

¢ understand principles behind network layer
services:

— network layer service models
— forwarding versus routing (versus switching)
— how a router works
— routing (path selection)
—IPv6

* For the most part, the Internet is our
example — again.

Name: a something
Address: Where a something is

Routing: How do | get to the
something

Addressing (at a conceptual level)
* Assume all hosts have unique IDs
* No particular structure to those IDs
* Later in topic | will talk about real IP addressing
* Do | route on location or identifier?

* If a host moves, should its address change?
— If not, how can you build scalable Internet?
— If so, then what good is an address for identification?

Packets (at a conceptual level)

* Assume packet headers contain:
— Source ID, Destination ID, and perhaps other

information Destination :
Identifier Why include
Source this?
Identifier
Payload

Switches/Routers

* Multiple ports (attached to other switches or hosts)

incoming links Switch outgoing links

* Ports are typically duplex (incoming and outgoing)

A Variety of Networks

* |SPs: carriers
— Backbone
— Edge
— Border (to other ISPs)
* Enterprises: companies, universities
— Core
— Edge
— Border (to outside)
* Datacenters: massive collections of machines
— Top-of-Rack
— Aggregation and Core
— Border (to outside)

Switches forward packets
|

—— EDINBURGH

switch# switch#2

Forwarding Table

m

GLASGOW
OXFORD
EDIN

[NV RN

AN

OXFORD%WJ.tch!tS

ucL

UCL

switch#3

Router definitions

| .

N-1 3 R bits/sec

* N = number of external router “ports”
* R = speed (“line rate”) of a port
* Router capacity = N xR

Networks and routers

Examples of routers (core)

Cisco CRS
* R=10/40/100 Gbps
¢ NR =922 Thps
¢ Netflix: 0.7GB per
hour (1.5Mb/s)

¢ ~600 million
concurrent Netflix
users

72 racks, > 1MW

Examples of routers (edge)

Cisco ASR
* R=1/10/40 Gbps
« NR =120 Gbps

Examples of routers (small business)

Cisco 3945E 2
* R=10/100/1000 Mbps
* NR <10 Gbps

What’s inside a ro

Route/Control
processor”_|

2 =

—l]
\. Interconnect

b4 (Switching)
° Fabric
°

What’s inside a router?

Route/Control
Processor

Linecards (input)/

Linecards (output)

AT

r Interconnect
(Switching)
Fabric

What'’s inside a rout

Fabric Y

1
A
A ‘\
:
2 R
\. Interconnect i
[J 1
!
® ° /
°

Forwarding Decisions

When packet arrives..
— Must decide which outgoing port to use
— In single transmission time
— Forwarding decisions must be simple

Routing state dictates where to forward packets
— Assume decisions are deterministic

Global routing state means collection of routing state
in each of the routers

— Will focus on where this routing state comes from

— But first, a few preliminaries....

Forwarding vs Routing

* Forwarding: “data plane”
— Directing a data packet to an outgoing link
— Individual router using routing state

* Routing: “control plane”
— Computing paths the packets will follow
— Routers talking amongst themselves
— Jointly creating the routing state

Two very different timescales....

“Autonomous System (AS)” or “Domain”
Region of a network under a single administrative entity

“End hosts”
“Clients”, “Users”
“End points”

Context and Terminology

are responsible for constructing
and updating the forwarding tables at routers

Routing Protocols

Routing protocols implement the core function of a network
— Establish paths between nodes
— Part of the network’s “control plane”

* Network modeled as a graph
— Routers are graph vertices
— Links are edges
— Edges have an associated “cost”

* e.g., distance, loss

Goal: compute a “good” path from source to destination
— “good” usually means the shortest (least cost) path

Internet Routing

.

Internet Routing works at two levels

Each AS runs an intra-domain routing protocol that
establishes routes within its domain

— (AS -- region of network under a single administrative entity)
— Link State, e.g., Open Shortest Path First (OSPF)

— Distance Vector, e.g., Routing Information Protocol (RIP)

ASes participate in an inter-domain routing protocol that
establishes routes between domains

— Path Vector, e.g., Border Gateway Protocol (BGP)

Addressing (for now)

* Assume each host has a unique ID (address)
* No particular structure to those IDs

* Later in course will talk about real IP
addressing

Outline

 Link State
* Distance Vector

* Routing: goals and metrics (if time)

Link-State

Link State Routing

« Each node maintains its local “link state” (LS)
— i.e., alist of its directly attached links and their costs

(N1,N2)
(N1,N4)
(NL,N5) Host C

Host a 3 -:- Host D

e

N7 =i

Host B

Link State Routing

» Each node floods its local link state

— on receiving a new LS message, a router forwards the message
to all its neighbors other than the one it received the message from

Host C

Link State Routing

* Hence, each node learns the entire network topology
— Can use Dijkstra’s to compute the shortest paths between nodes

N2 >J>\ - /’

N5 ’§?—/ o
Nl)

B>/

Dijkstra’s Shortest Path Algorithm

* INPUT:
— Network topology (graph), with link costs

« OUTPUT:
— Least cost paths from one node to all other nodes

« |terative: after k iterations, a node knows the
least cost path to its k closest neighbors

Example

Notation

c(i,j): link cost from node i
to j; cost is infinite if not
direct neighbors; 2 0

D(v? total cost of the current
least cost path from source
to destination v

* p(Vv): v's predecessor along
path from source to v

* S: set of nodes whose least
cost path definitively known

Dijkstra’ s Algorithm

« ¢(i,j): link cost from node i to j

1 Initialization:

2 S={A} « D(v): current cost source — v

3 for all nodes v * p(v): V's predecessor along path
4 if vadjacentto A from source to v

5 then D(v) = c(A,v); « S: set of nodes whose least cost
6 else D(v) = 0; path definitively known

7

8 Loop

9 find w not in S such that D(w) is a minimum;

10 addwtoS;

11 update D(v) for all v adjacent to w and not in S:
12 if D(w) + c(w,v) < D(v) then
II'w gives us a shorter path to v than we 've found so far
13 D(v)=DW) + cw); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

tep setS D(B),p(B) D(C).p(C) D(D).p(D) D(E).p(E) D(F),p(F)
A 2,A 5A 1, % %

1 Initialization:

2 S={A}

3 forall nodes v

4 if vadjacentto A
5 then D(v) = c(A,v);
6 else D(v) = o0;

Example: Dijkstra’ s Algorithm

Step setS D(B).p(B) D(C).p(C) D(D).p(d) D(E).p(E) D(F),p(F)
0 A 2,A 5A 1A () © ©
- X

2

3

4

5

é) Loop \

9 ind w not in S s.t. D(w) is @ minimum;
10 addwioS;

11 update D(v) for all v adjacent
tow and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D).p(D) D(E),p(E) D(F).p(F)
5A o0 o0

0 A 2,A 1,A
-t AD)

2 N

3

4

5

=~ 8 Loop
\BA nd-w-notin S s.t. D(w) is a minimum;
11 update D(v) for all v adjacent
tow and not in S:
12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F)
0 A 2,A 5,A 1A 0 00
- AD <D 2D >
2
3
4
5

update D(v) for all v adjacent
tow and not in S:
If D(w) + c(w,v) < D(v) then
D(v) = D(w) + c(wW,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D).p(D) D(E)ypég) D(F),%gF)

0 A 2,A 5A 1,A
1 AD 4D 2D
-2 ADE 3,E 4E

3

4

5
8 Loop
9 find wnotin § s.t. D(w) is @ minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = W;

14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step _setS D(B),p(B) D(C),p(C) D(D),p(D) D(E).p(E) D(F).p(F)

0 A 2,A 5A 1,A o o0

1 AD 4D 2D

2 ADE 3,E 4E

-3 ADEB

4

5
8 Loop
9 find wnotin 8 s.t. D(w) is @ minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = W;

14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B).p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F)
A 2.A 5A 1, o %

0
1 AD 4,D 2D
2 ADE 3,E 4E
3 ADEB
4 ADEBC
5

8 Loop
9 find wnotin 8§ s.t. D(w) is @ minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = W;

14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B).p(B) D(C).p(C) D(D).p(D) D(E).p(E) D(F),p(F)
0 A 2,A 5A 1,A ® o0
1 AD 4D 2D
2 ADE 3,E 4E
3 ADEB
4 ADEBC
-5 ADEBCF
8 Loop
9 find wnotin 8§ s.t. D(w) is @ minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B).p(B) D(C),p(C) DD),p(D) D(E),p(E) D(F),p(F)
0 A 2,A 5A (1,A) © Y
1 AD 4D — —(2p)

2 ADE BE) 4E

3 ADEB

4 ADEBC

5 ADEBCF

To determine path A — C (say),
work backward from C via p(v)

The Forwarding Table

* Running Dijkstra at node A gives the shortest
path from A to all destinations

» We then construct the forwarding table

5 Destination Link
B (A,B)
c (AD)
D (AD)
E (AD)
F (AD)

Issue #1: Scalability

* How many messages needed to flood link state messages?
— O(N x E), where N is #nodes; E is #edges in graph

* Processing complexity for Dijkstra’s algorithm?

— O(N2), because we check all nodes w not in S at each
iteration and we have O(N) iterations

— more efficient implementations: O(N log(N))

* How many entries in the LS topology database? O(E)

* How many entries in the forwarding table? O(N)

Issue#2: Transient Disruptions

Inconsistent link-state database

— Some routers know about failure before
others

— The shortest paths are no lonaer consistent

sient forwr

Loop! g
’\/‘

A and D think that this
is the path to C

E thinks that this
is the path to C

Distance Vector

Learn-By-Doing

Let’s try to collectively develop
distance-vector routing from first principles

Experiment

* Your job: find the (route to) the youngest person in the room

* Ground Rules

— You may not leave your seat, nor shout loudly
across the class

— You may talk with your immediate neighbors

(N-S-E-W only)
(hint: “exchange updates” with them)

* At the end of 5 minutes, | will pick a victim and ask:

— who is the youngest person in the room? (date&name)
— which one of your neighbors first told you this info.?

Distance-Vector

Evamnlaof Distributed Computation

| am three hops away

| am two hops away

I am two hops away
4\4)
\

| am three hops away

| am two hops away

Destination
I am three hops away

| am two hops away

Distance Vector Routing

Each router knows the links to its neighbors

— Does not flood this information to the whole network
Each router has provisional “shortest path” to
every other router

— E.g.: Router A: “I can get to router B with cost 11”
Routers .exchan%e this distance vector
information with their neighboring routers

— Vector because one entry per destination

Routers look over the set of options offered by
their neighbors and select the best one

Iterative process converges to set of shortest
paths

A few other inconvenient truths

* What if we use a non-additive metric?
— E.g., maximal capacity

* What if routers don’t use the same metric?
— I want low delay, you want low loss rate?

* What happens if nodes lie?

Can You Use Any Metric?

* | said that we can pick any metric. Really?
* What about maximizing capacity?

What Happens Here?

Problem: “cost” does not change around loop

€

Additive measures avoid this problem!

No agreement on metrics?

¢ If the nodes choose their paths according to
different criteria, then bad things might happen

* Example

— Node A is minimizing latency
— Node B is minimizing loss rate
— Node C is minimizing price

* Any of those goals are fine, if globally adopted

— Only a problem when nodes use different criteria

* Consider a routing algorithm where paths are

described by delay, cost, loss

What Happens Here?

Cares about delay,
then price

Cares about price,

then loss Low price link
Py

w loss link W

Cares about loss,
then delay

Low price link

Must agree on loop-avoiding metric

¢ When all nodes minimize same metric
* And that metric increases around loops

* Then process is guaranteed to converge

What happens when routers lie?

What if a router claims a 1-hop path to
everywhere?

All traffic from nearby routers gets sent there
How can you tell if they are lying?

Can this happen in real life?
— It has, several times....

Link State vs. Distance Vector

* Coreidea
— LS: tell all nodes about your immediate neighbors

— DV: tell your immediate neighbors about (your least
cost distance to) all nodes

Link State vs. Distance Vector

LS: each node learns the complete network map; each node
computes shortest paths independently and in parallel

DV: no node has the complete picture; nodes cooperate to
compute shortest paths in a distributed manner

- LS has higher messaging overhead
- LS has higher processing complexity
LS is less vulnerable to looping

Link State vs. Distance Vector

Message complexity Robustness: what happens if router

* LS: O(NXE) messages; malfunctions?
— Nis#nodes; E is #edges e LS:
* DV: O(#lterations x E) — node can advertise incorrect /ink
— where #lterations is ideally cost
O(network diameter) but varies due — each node computes only its own
to routing loops or the table
count-to-infinity problem
*« DV:
) i — node can advertise incorrect path
Processing complexity cost
* LS:O(N?) — each node’ s table used by others;

* DV: O(#lterations x N) error propagates through network

Routing: Just the Beginning

* Link state and distance-vector are the
deployed routing paradigms for intra-domain
routing

* Inter-domain routing (BGP)
— more Part Il (Principles of Communications)
— A version of DV

What are desirable goals for a routing
solution?

* “Good” paths (least cost)
* Fast convergence after change/failures
— no/rare loops
* Scalable
— #messages
— table size
— processing complexity
* Secure
* Policy
* Rich metrics (more later)

Delivery models

What if a node wants to send to more than
one destination?

— broadcast: send to all

— multicast: send to all members of a group

— anycast: send to any member of a group

What if a node wants to send along more
than one path?

Metrics

* Propagation delay

* Congestion

* Load balance

* Bandwidth (available, capacity, maximal, bbw)
* Price

* Reliability

* Loss rate

* Combinations of the above

In practice, operators set abstract “weights” (much
like our costs); how exactly is a bit of a black art

From Routing back to Forwarding

* Routing: “control plane”
— Computing paths the packets will follow
— Routers talking amongst themselves
— Jointly creating the routing state
* Forwarding: “data plane”
— Directing a data packet to an outgoing link
— Individual router using routing state

* Two very different timescales....

Basic Architectural Components
of an IP Router

Management
& CLI n
o)
Routing =+
Protocols §
Routing @ Control Plane
Table
T
)
Forwarding Switching a Datapath
—ed| Table ——m S —> per-packet
% processing

Per-packet processing in an IP
Router

1. Accept packet arriving on an incoming link.

2. Lookup packet destination address in the
forwarding table, to identify outgoing port(s).

3. Manipulate packet header: e.g., decrement
TTL, update header checksum.

4. Send packet to the outgoing port(s).
5. Buffer packet in the queue.
6. Transmit packet onto outgoing link.

68

Generic Router Architecture

Hdr
Lookup Update Queue
IP Address | Header Packet

v

~1M prefixes | Address Buffer | ~1M packets
Off-chip DRAM Table Memory Off-chip DRAM

Generic Router Architecture

— S Do [

Lookup | Update
° L
Address Buffer
Table Memory

Header Processing Buffer m Hdr
Lookup | Update (¢] @ M

1P Address | Header lanager

Data |afs[d

Header Processing Buffer
Lookup | Update [®)) Manager
IP Address Header 9

Address. Buffer
Table Memory

Forwarding tables
[paddress _]}32 bits wide = ~ 4 billion unique address

Naive approach:
One entry per address

Entry Destination Port
1 0.0.0.0 1

2 0.0.0.1 2 - .
g] : ~ 4 billion entries

P 255.255.255.255 12

Improved approach:
Group entries to reduce table size
Entry Destination Port

i 0.0.0.0 - 127.255.255.255 i
2 128.0.0.1 - 128.255.255.255 2
50 248.0.0.0 — 255.255.255.255 12

IP addresses as a line

Your computer My computer

Cambridge Oxford

USA \ /Europe

Y
All IP addresses

Entry Destination Port
1 Cambridge 1
2 Oxford 2
3 Europe 3
4 USA 4
5 Everywhere (default) 5

Longest Prefix Match (LPM)

Entry Destination Port
1 Cambridge 1 } P
2 Oxford 2 Universities
3 ELICRE 3 } Continents
4 USA 4
5 l/—> Everywhere (default) 5 Planet

Matching entries:

[- Cambridge Most specific]
* Europe
* Everywhere

To:
ICambridge|

Data

Longest Prefix Match (LPM)

Entry Destination Port
1 Cambridge 1 } R
2 Oxford 2 Universities
3 ELfopE 3 } Continents
4 USA 4
5 [/ —> Everywhere (default) 5 Planet
Matching entries:
* Europe Most specific]
* Everywhere
To: France Data

Implementing Longest Prefix Match

Entry Destination Port
1 Cambridge i Searching Most specific
2 Oxtord 2
3 Eurone. a
4 UsA 4 FOUND |
5 Everywhere (default) 5 Least specific

Router Architecture Overview

Two key router functions:
* run routing algorithms/protocol (RIP, OSPF, BGP)
* forwarding datagrams from incoming to outgoing link

input port output port
=0 00
° switching L4
- L]
- L]
input port fabric output port
—
| A |
routing
processor

Input Port Functions

I |00kup,
- data link forwardin, ;
o 25 B A
termination (protocol, I fabric
/'/ decapsulation) queeing

Physical layer:

bit-level reception

Decentralized switching:

« given datagram dest., lookup output port using
forwarding table in input port memory

« goal: complete input port processing at ‘line
speed’

* queuing: if datagrams arrive faster than
forwarding rate into switch fabric

Data link layer:
e.g., Ethernet
see chapter 5

Three examples of switching fabrics
(comparison criteria: speed, contention, complexity)

A X
> Jmm 1
B Y '
- {memory |FIm -2
C 4
~CI > 1>
memory
-~ Jmme
B
L crossbar
C
S 11

FRE

Switching Via Memory

First generation routers:
« traditional computers with switching under direct control of CPU

« packet copied to system’ s memory

+ speed limited by memory bandwidth (2 bus crossings per datagram)

Input Memory Output
Port Port
— > N >

‘ System Bus

Switching Via a Bus

datagram from input port memory
to output port memory via a shared bus

bus contention: switching speed limited by
bus bandwidth

Lots of ports?? speed up the bus
no contention bus speed =
2 x port speed x port count

32 Gbps bus, Cisco 5600: sufficient speed for
access routers

Switching Via An Interconnection Network

* overcome bus bandwidth limitations

* Banyan networks, other interconnection nets initially
developed to connect processors in multiprocessor stages

* advanced design: fragmenting datagram into fixed length
cells, switch cells through the fabric.

* Cisco CRS-1: switches 1.2 Tbps through the
interconnection network

Output Ports

—
SWiSh | euing: data link
fabric buffer [Processing § o ine
management (protocol, termination
decapsulation)

* Buffering required when datagrams arrive from fabric faster than the
transmission rate

* Scheduling discipline chooses among queued datagrams for
transmission
= Who goes next?

— Ok

rabnc /1| L Eggfig;
+=HF P

Output port queueing
- B i Swilch/

-G 0 B

Qutput Port Contention One Packet
al Time f Time loter

* buffering when arrival rate via switch exceeds output line speed
» queueing (delay) and loss due to output port buffer overflow!

Input Port Queuing

* Fabric slower than input ports combined -> queueing may
occur at input queues

* Head-of-the-Line (HOL) blocking: queued datagram at front
of queue prevents others in queue from moving forward

* queueing delay and loss due to input buffer overflow!

) o
D switch. _D_ switch
fabric —D" fabric —D"
output port contention green packet
at time t - only one red experiences HOL blocking

packet can be transferred

Buffers in Routers

* So how large should the buffers be?

Buffer size matters
— End-to-end delay
* Transmission, propagation, and queueing de
* The only variable part is queueing delay
— Router architecture
* Board space, power consumption, and co!
* On chip buffers: higher density, higher
* Optical buffers: all-optical routers

1.4m long spiral
waveguide with input
from HeNe laser

You are now touching the edge of the research zone...... -

Buffer

-

-
=)

2T xC
#of Q »n n
e E 1,000,000 % 10,000 g 20-50
intuition. | 2T TCP m Sawtoqth m Non-pursty
o | Sawtooth = Smoothing > Arrivals
] c
% Single TCP € | Many Flows, =] Paced TCP,
Assume 7 | Flow, 100% @ 100% 85-90%
Utilization Utilization Utilization
Simulations,
Simulation Test-bed and Simulations,
Evidence Emulation’ Real Test-bed
Network Experiments
Experiments ©

Continuous ARQ (TCP) adapting to congestion

Oy W ack Rule for adjusting W
e cutening ~ Ifan ACK is received: W ¢ W+1/W
l — If a packet is lost: W & W/2

util = 0%

time

Rule-of-thumb — Intuition

Rule for adjusting W/
Only W packets . .
may be outstanding o Ifan ACKis received: W & W+1/W
i o If a packet is lost: W & W/2
Source [T Dest

Window size

- I

W W 2T xC
> _

2T xC

Small Buffers — Intuition

Synchronized Flows Many TCP Flows

+ Aggregate window has same » Independent, desynchronized
dynamics + Central limit theorem says the
Therefore buffer occupancy has aggregate becomes Gaussian
same dynamics « Variance (buffer size) decreases

* Rule-of-thumb still holds. as N increases

Buffer Size

The Internet version of a Network layer

Host, router network layer functions:

IP protocol

eaddressing conventions
edatagram format

epacket handling conventions

| Routing protocols
epath selection

Network *RIP, OSPF, BGP
layer kv forwarding
ICMP protocol
I table .
———— | | »error reporting

erouter “signaling”

IPv4 Packet Structure
20 Bytes of Standard Header, then Options

abit | 4bit 8-bit
Version | Header | Type of Service 16-bit Total Length (Bytes)
Length (105)
. — 3-bit .
16-bit Identification Flags | 13-bit Fragment Offset
8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

(Packet) Network Tasks One-by-One

* Read packet correctly

* Get packet to the destination

* Get responses to the packet back to source

* Carry data

* Tell host what to do with packet once arrived

* Specify any special network handling of the
packet

* Deal with problems that arise along the path

Reading Packet
Correctly

* Version number (4 bits)

— Indicates the version of the IP protocol

— Necessary to know what other fields to expect

— Typically “4” (for IPv4), and sometimes “6” (for IPv6)
* Header length (4 bits)

— Number of 32-bit words in the header

— Typically “5” (for a 20-byte IPv4 header)

— Can be more when IP options are used
* Total length (16 bits)

— Number of bytes in the packet

— Maximum size is 65,535 bytes (216 -1)

— ... though underlying links may impose smaller limits
93

Getting Packet to
Destination and Back

Two IP addresses 9
— Source IP address (32 bits) s
— Destination IP address (32 bits)
* Destination address
— Unique identifier/locator for the receiving host
— Allows each node to make forwarding decisions
* Source address
— Unique identifier/locator for the sending host
— Recipient can decide whether to accept packet
— Enables recipient to send a reply back to source

Telling Host How to
Handle Packet

* Protocol (8 bits)
— Identifies the higher-level protocol
— Important for demultiplexing at receiving host

* Most common examples
— E.g., “6” for the Transmission Control Protocol (TCP)
— E.g., “17” for the User Datagram Protocol (UDP)

protocol=6 protocol=17
IP header IP header
TCP header UDP header

95

Special Handling

* Type-of-Service (8 bits)
— Allow packets to be treated differently based on
needs

— E.g., low delay for audio, high bandwidth for bulk
transfer

— Has been redefined several times

* Options

96

Potential Problems

* Header Corrupted: Checksum
* Loop: TTL

* Packet too large: Fragmentation

Header Corruption

* Checksum (16 bits)
— Particular form of checksum over packet header

* If not correct, router discards packets
— So it doesn’t act on bogus information

* Checksum recalculated at every router

Preventing Loops

(aka Internet Zombie plan)

* Forwarding loops cause packets to cycle forever
— As these accumulate, eventually consume all capacity

-—

el

¢ Time-to-Live (TTL) Field (8 bits)
— Decremented at each hop, packet discarded if reaches 0

— ...and “time exceeded” message is sent to the source
9 * Using “ICMP” control message; basis for traceroute

Fragmentation

(some assembly required)

o

Fragmentation: when forwarding a packet, an
Internet router can split it into multiple pieces
(“fragments”) if too big for next hop link

* Must reassemble to recover original packet

— Need fragmentation information (32 bits)
— Packet identifier, flags, and fragment offset

100

IP Fragmentation & Reassembly

network links have MTU
(max.transfer size) - largest
possible link-level frame.
— different link types, different
MTUs
large IP datagram divided
(“fragmented”) within net
— one datagram becomes several
datagrams

fragmentation:
in: one large datagram
out: 3 smaller datagrams

“ ” . reassembly.
— “reassembled” only at final |

destination
— IP header bits used to identify,
order related fragments

IPv6 does things differently...

IP Fragmentation and Reassembly

]

length [ID
=4000 |=

offset
=0

fragflag
=0

Example |
T 4000 byte datagram
7 MTU = 1500 bytes

One large datagram becomes
several smaller datagrams

| Pength ID fragﬂag offset
...... JptT=1500 | =x
1480 bytes in e
data field | length [1D fragﬂag offset
=1500_ |=X...| - "=185
Offset= o\ T
1480/8 | length [1D fragﬂag offset
=1040 |=; =370

Pop quiz question: What happens when a fragment is lost?

Fragmentation
Details

* |dentifier (16 bits): used to tell which fragments
belong together

* Flags (3 bits):
— Reserved (RF): unused bit

— Don’t Fragment (DF): instruct routers to not fragment
the packet even if it won’t fit

* Instead, they drop the packet and send back a “Too Large”
ICMP control message

* Forms the basis for “Path MTU Discovery”
— More (MF): this fragment is not the last one
* Offset (13 bits): what part of datagram this
fragment covers in 8-byte units

Pop quiz question: Why do frags use offset and not a frag number? 103

Options

End of Options List

No Operation (padding between options)
* Record Route

* Strict Source Route

* Loose Source Route

e Timestamp

* Traceroute

* Router Alert

IP Addressing: introduction

* IP address: 32-bit @%ﬂ'“ _@
identifier for host, router 223.1.21

. 223.1.1.2

interface @— 273.1.2.9

* interface: connection 223122
between host/router and 223113 2231327 "@

physical link

— router’ s typically have

multiple interfaces 223.1.3.1 223.1.3.2
— host typically has one

interface
— IP addresses associated
with each interface 223.1.1.1 = 11011111 00000001 00000001 00000001
223 1 1 1

* [P address:
— subnet part (high order bits) 223.1.1.0/24 223.1.2.0/24
— host part (low order bits) 2221.1.1 _@
* What’s a subnet ? @2}_41_1_2 23124
— device interfaces with same 223.1.2.9
subnet part of IP address
. 223.1.2.2
— can physically reach each 223.1.13 223.1.3.27 L@
other without intervening
router subnet
223.1.3.1 223.13.2
subnet host

part part—>
11011111 00000001 00000011 00000000

223.1.3.0/24

223.1.3.0/24
CIDR: Classless InterDomain Routing
— subnet portion of address of arbitrary length

~ address format: a.b.c.d/x, where x s # bits in
subnet portion of address

Subnet mask: /24

network consisting of 3 subnets

IP addresses: how to get one?

Q: How does a host get IP address?

* hard-coded by system admin in a file
— Windows: control-panel->network->configuration->tcp/
ip->properties
— UNIX: /etc/rc.conﬁg (circa 1980’s your mileage will vary)

DHCP: Dynamic Host Configuration Protocol: dynamically get address
from as server

— “plug-and-play”

DHCP client-server scenario

Goal: allow host to dynamically ouce sener:223.125

=< DHCP discover azl‘:':tg
obtain its IP address from network @ 000068 .
ot 258.256,255.255.67
server when it joins network yadr, 0000 —Q
Can renew its lease on address in use .
DDHCP offer

Allows reuse of addresses (only hold
address while connected an “on”)

§rc:223.1.2.5, 67

dest: 255.255.255.255, 68
T | ysddm 223124

Support for mobile users who want to transaction ID: 654
su Lifetime: 3600 secs ~
join network (more shortly) DHCP request
src: 0.0.0.0, 68
dest:: 255.255.255.255, 67
223.1.1.1 DHCP 22t Vadre 229124 L—
St transaction ID: 655
«—1_Lifetime: 3600 secs time
223.1.1.2 paz

< 5 DHCP ACK
T | scasi2567

223.1.22 arriving DHCP dest: 255.255.255.255, 68

223113 2231327 e viaddrr: 223.1.2.4
client needs transaction ID; 655 g

address in this Lifetime: 3600 secs

network

223.1.31 223.13.2

IP addresses: how to get one?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP s
address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23

Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing
information:

Organization 0
200.23.16.0/23
Organization 1

200.23.18.0/23 Send me anything

with addresses

%

Organization 2 beginning
200.23.20.0/23 Fly-By-Night-ISP 20023.16.0/20
Internet
Organization 7
200.23.30.0/23
“Send me anything
ISPs-R-Us with addresses
beginning

199.31.0.0/16”

~

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

Organization 0

200.23.16.0/23
\ “send me anything

with addresses
Organization 2 beginning

200.23.20.0/23 . Fly-By-NightIsP %}

Internet
Organization 7

\

200.23.30.0/23
“Send me anything
— SRS with addresses
Organization 1 / beginning 199.31.0.0/16
200.23.18.0/23 / or 200.23.18.0/23"

IP addressing: the last word...

Q: How does an ISP get a block of addresses?
A ICANN: Internet Corporation for Assigned

Names and Numbers

— allocates addresses

— manages DNS

— assigns domain names, resolves disputes

Cant get more IP addresses? well there is always.....

NAT: Network Address Translation

rest of local network —_—
Internet (e.g., home network)
10.0.0/24 10.0.0.1
10.0.0.4
E @ 10.0.0.2
7
138.76.29.7
10.0.0.3
All datagrams leaving local Datagrams with source or
network have same single source NAT IP destination in this network
address: 138.76.29.7, have 10.0.0/24 address for
different source port numbers source, destination (as usual)

NAT: Network Address Translation

Motivation: local network uses just one IP address as far as
outside world is concerned:

—range of addresses not needed from ISP: just one IP
address for all devices

— can change addresses of devices in local network
without notifying outside world

— can change ISP without changing addresses of
devices in local network

— devices inside local net not explicitly addressable,
visible by outside world (a security plus).

NAT: Network Address Translation

Implementation: NAT router must:

— outgoing datagrams: replace (source IP address, port #)
g{ every outgoing datagram to (NAT IP address, new port

... remote clients/servers will respond using (NAT IP address,
new port #) as destination addr.

— remember (in NAT translation table) every (source IP
address, port #) to (NAT IP address, new port #)
translation pair

— incoming datagrams: replace (NAT IP address, new port
#) in dest fields of every incoming datagram with
cogll'esponding (source IP address, port #) stored in NAT
table

NAT: Network Address Translation

NAT translation table
2: NAT router WAN side addr LAN side addr

changes datagram 138.76.29.7, 5001 |10.0.0.1, 3345
source addr from | —

10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

1: host 10.0.0.1
sends datagram to
128.119.40.186, 80

e/
5:10.0.0.1,3345
D: 128.119.40.186, 80

N 10.0.0.1
B (1)
‘_‘/ \b $:138.76.29.7, 5001 -
\£ /| D:128.119.40.186, 80 10.0.0.4
4 @ 10002
7
138.76.29.7 5:128.119.40.186, 80 T
- 0:10.0.0.1, 3345 &/
5:128.119.40.186, 80 /3\»

D: 138.76.29.7, 5001 2/ 10.0.03

4: NAT router

changes datagram

dest addr from

138.76.29.7, 5001 to 10.0.0.1, 3345

3: Reply arrives
dest. address:
138.76.29.7, 5001

NAT: Network Address Translation

* 16-bit port-number field:
— 60,000 simultaneous connections with a single
LAN-side address!
* NAT is controversial:
— routers should only process up to layer 3
— violates end-to-end argument (?)

* NAT possibility must be taken into account by app
designers, eg, P2P applications

— address shortage should instead be solved by IPv6

NAT traversal problem

* client wants to connect to
server with address 10.0.0.1
10.0.0.1

— server address 10.0.0.1 local to Client
LAN (client can’ t use it as ? @

destination addr)
— only one externally visible NATted W
address: 138.76.29.7
* solution 1: statically configure
NAT to forward incoming
connection requests at given
port to server
— e.g., (138.76.29.7, port 2500)

always forwarded to 10.0.0.1 port
25000

7
138.76.29.7 NAT

router

NAT traversal problem

* solution 2: Universal Plug and Play
(UPnP) Internet Gateway Device

10.0.0.1
(IGD) Protocol. Allows NATted host
to:
«»*learn public IP address
(138.76.29.7) 13876207 NAT
“»add/remove port mappings router

(with lease times)

i.e., automate static NAT port
map configuration

NAT traversal problem

* solution 3: relaying (used in Skype)
— NATed client establishes connection to relay
— External client connects to relay
—relay bridges pacietts between to connections

2. connection to
ciezy relay initiated
by client

1. connection to
relay initiated
by NATted host

3. relaying

Client established

7
138.76.29.7 NAT

router

Remember this? Traceroute at work...

traceroute: rio.cl.cam.ac.uk to munnari.oz.au
(tracepath on pwf is similar)

%Three delay measurements from
traceroute munnari.oz.au rio.cl.cam.ac.uk to gatwick.net.cl.cam.ac.uk

traceroute to munnari.oz.au (202.29.151.3), 30 hops max, 60 byte packets

1 gatwick net.cl.cam.ac.uk (128.232.32.2) 0.416 ms 0.384 ms 0.427 ms .
2 cl-sby.route-nwest.net.cam.ac.uk (193.60.89.9) 0.393 ms 0.440 ms 0.494 ms trans-continent
3 route-nwest.route-mill.net.cam.ac.uk (192.84.5.137) 0.407 ms 0.448 ms 0.501 ms link

4 route-mill.route-enct.net.cam.ac.uk (192.84.5.94) 1.006 ms 1.091 ms 1.163 ms

5 xe-11-3-0.camb-tbrl castern ja.net (146.97.130.1) 0.300 ms 0.313 ms 0.350 ms

6 ae24.lowdss-sbrl janet (146.97.37.185) 2.679 ms 2.664 ms 2.712 ms

7 ae28.londhx-sbrl ja.net (146.97.33.17) 5.955 ms 5.953 ms 5.901 ms

8 janet.mx1.lon.uk geantnet (62.40.124.197) 6.059 ms 6.066 ms 6.052 ms

9 ac0.mx]1.par.f.geant.net (62.40.98.77) 11.742ms 11.779 ms 11.724 ms

10 ael.mx1.mad.es.geant.net (62.40.98.64) 27.751 ms 27.734 ms 27.704 ms

11 mib-30-03-v4.bb.tein3.net (202.179.249.117) 138296 ms 138314 ms 138283 s

12 sg-50-04-v4.bb.tein3.net (202.179.249.53) 196303 ms 196.293 ms 196.264 ms

13 th-pr-v4.bb.tein3.net (202.179.249.66) 225.153 ms 225.178 ms 225.196 ms

14 pyt-thairen-to-02-bdr-pyt.uni.net.th (202.29.12.10) 225.163 ms 223.343 ms 223363 ms

15 202.28.227.126 (202.28.227.126) 241.038 ms 240.941 ms 240.834 ms

16 202.28.221.46 (202.28.221.46) 287.252 ms 287.306 ms 287.282 ms

17 kA w

18*** % means no response (probe lost, router not replying)
19 * %%

20 coe-gw.psu.ac.th (202.29.149.70) 241.681 ms 241.715 ms 241.680 ms
21 munnari.0Z.AU (202.29.151.3) 241.610 ms 241.636 ms 241.537 ms

Traceroute and ICMP

Source sends series of UDP
segments to dest

— First has TTL=1

— Second has TTL=2, etc.

— Unlikely port number
When nth datagram arrives to nth
router:

— Router discards datagram

— And sends to source an ICMP

message (type 11, code 0)

— Message includes name of
router& IP address

When ICMP message arrives,
source calculates RTT

Traceroute does this 3 times

Stopping criterion

UDP segment eventually arrives
at destination host

Destination returns ICMP “host
unreachable” packet (type 3,
code 3)

When source gets this ICMP,
stops.

ICMP: Internet Control Message Protocol

« used by hosts & routers to
communicate network-level
information

— error reporting: unreachable
host, network, port, protocol

— echo request/reply (used by
ping)

« network-layer “above” IP:

— ICMP msgs carried in IP
datagrams

* ICMP message: type, code plus first 8
bytes of IP datagram causing error

O

ode description

echo reply (ping)

dest. network unreachable
dest host unreachable
dest protocol unreachable
dest port unreachable
dest network unknown
dest host unknown

source quench (congestion
control - not used)

echo request (ping)

route advertisement
router discovery

TTL expired

bad IP header

© o bwwwwwwog
1]

=
o

=
[
oocoooo O\lmwNHOD‘

-
~

IPve

Motivated (prematurely) by address exhaustion
— Address field four times as long

Steve Deering focused on simplifying IP

— Got rid of all fields that were not absolutely necessary

— “Spring Cleaning” for IP

Result is an elegant, if unambitious, protocol

IPv4 and IPv6 Header Comparison

IPv4
Version ML Typeof Service Total Length
Identification Flags Fragment Offset
Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

IPv6

Version Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Field name kept from IPv4 to IPv6
Fields not kept in IPv6

Name & position changed in IPv6
New field in IPv6

a0

126

Summary of Changes

Eliminated fragmentation (why?)

Eliminated header length (why?)

Eliminated checksum (why?)

New options mechanism (next header) (why?)

Expanded addresses (why?)

Added Flow Label (why?)

IPv4 and IPv6 Header Comparison

IPv4
Version ML Typeof Service Total Length
Identification Flags Fragment Offset
Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

IPv6

Version Flow Label

Payload Length Next Header Hop Limit

Source Address

Field name kept from IPv4 to IPv6

Fields not kept in IPv6
Name & position changed in IPv6
New field in IPv6

a0

Destination Address

Philosophy of Changes

* Don’t deal with problems: leave to ends
— Eliminated fragmentation
— Eliminated checksum
— Why retain TTL?
* Simplify handling:
— New options mechanism (uses next header approach)
— Eliminated header length
* Provide general flow label for packet
— Not tied to semantics

Comparison of Design Philosophy

IPv4 IPv6

Identification Flags Fragment Offset

Source Address

Source Address

Destination Address

To Destination and Back (expanded)

(e
— Provides great flexibility [Deal with Problems (greatly reduced) Destination Address
B Read Correctly (reduced)
128 ™ Special Handling (similar) —
Transition From IPv4 To IPv6 Tunneling
N . A B tunnel £ 5
Logical view:
* Not all routers can be upgraded simultaneous IPv6 IPv6 P61y
—no “flag days” A B £ F
g \ Physical view: (=}
— How will the network operate with mixed IPv4 and IPv6 IPv6 IPva Pva 1Pv6 1Pv6

IPv6 routers?

* Tunneling: IPv6 carried as payload in IPv4
datagram among IPv4 routers

Tunneling
A 8 3 F
Logical view: - - tunnel
1Pv6 1Pv6 1PV6 1Pv6
A 3

Physical view:

1Pv6 IPva 1PV6

5_ IPvé__Jl —

Flow: X Flow: X

Src: A Src: A

Dest: F Dest: F

data data

Arro®: B-to-C: Boc. SoF
IPV6 inside IPV6 inside v

IPv4 IPv4

Improving on IPv4 and IPv6?

Why include unverifiable source address?

— Would like accountability and anonymity (now neither)
— Return address can be communicated at higher layer
Why packet header used at edge same as core?

— Edge: host tells network what service it wants

— Core: packet tells switch how to handle it

* One is local to host, one is global to network

Some kind of payment/responsibility field?

— Who is responsible for paying for packet delivery?

— Source, destination, other?
Other ideas?

Gluing it together:
How does my Network (address) interact
with my Data-Link (address) ?

Switches vs. Routers Summary

* both store-and-forward devices
— routers: network layer devices (examine network layer headers)
— switches are link layer devices

* routers maintain routing tables, implement routing algorithms
* switches maintain switch tables, implement filtering, learning

algorithms

5 5
4 4
3 3 3
2 (Y] 2] 2
1 g ——— 1
Host Bridge Router Host

MAC Addresses (and IPv4 ARP)

or How do | glue my network to my data-link?

* 32-bit IP address:
— network-layer address
— used to get datagram to destination IP subnet
* MAC (or LAN or physical or Ethernet) address:

— function: get frame from one interface to another
physically-connected interface (same network)

— 48 bit MAC address (for most LANs)
* burned in NIC ROM, also (commonly) software settable

136

LAN Addresses and ARP

Each adapter on LAN has unique LAN address

[+ 1A-2F-BB-709-AD Ethernet
Broadcast address =
FF-FF-FF-FF-FF-FF

LAN
(wired or [= adapter
wireless)

71-6F7-2B-08-53
58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

137

Address Resolution Protocol

* Every node maintains an ARP table
— <IP address, MAC address> pair

* Consult the table when sending a packet
— Map destination IP address to destination MAC address
— Encapsulate and transmit the data packet

* But: what if IP address not in the table?
— Sender broadcasts: “Who has IP address 1.2.3.156?”
— Receiver responds: “MAC address 58-23-D7-FA-20-B0”
— Sender caches result in its ARP table

138

Example: A Sending a Packet to B

How does host A send an IP packet to host B?

74-28-9C-E8-FF-55 88-B2-2F-54-1A-0F
E6-E9-00-17-B8-48
SR 14-23-F9-CD-06-98 222.222.222.221
222.222.222.222
1114111111 222.222.222.2% e
111.111.111.110 m
R 40-BD-D2-C7-56-2A
CC-48-DE-D0-AB-7D B

139

Example: A Sending a Packet to B

How does host A send an IP packet to host B?

L PO N e 88-B2-2F-54-1A-0F
E6-E9-00-17-BB-4B -

| 23-F9-CD-06-08
111.411.111.1 e ebing

I ROUTE —I‘

111.411.111.4 222.222.222.2%

222.222.222.221

222.222.222.222

R 49-BD-D2-C7-56-2A

B

111.411.111.110

CC-49-DE-D0-AB-7D

1. A sends packet to R.
2. R sends packet to B.
140

Host A Decides to Send Through R

* Host A constructs an IP packet to send to B

— Source 111.111.111.111, destination 222.222.222.222
Host A has a gateway router R

— Used to reach destinations outside of 111.111.111.0/24
— Address 111.111.111.110 for R learned via DHCP/config

S SR EE e 88-B2-2F-54-1A-0F

EG6-E9-00-17-B8-4B

111.111.111.1 Cagiasals

222.222.222.221

222.222.222.222

R 49-BD-D2-C7-56-2A

B

111.411.111.1 222.222.222.23

111.411.111.110

CC-49-DE-D0-AB-7D

Host A Sends Packet Through R
* Host A learns the MAC address of R’s interface
— ARP request: broadcast request for 111.111.111.110
— ARP response: R responds with E6-E9-00-17-BB-4B
* Host A encapsulates the packet and sends to R

74-28-8C-E8-FF-55 88-B2-2F-54-1A-0F

E6-E9-00-17-BB-4B

| T
111.411.111.1 1A-23-F9-CD-08-9

222.222.222.221

A I ROUTE
222.222.222.222
A 222.222.222.2%

111.411.111.110

R 49-BD-D2-C7-56-2A

B

CC-49-DE-D0-AB-7D

R Decides how to Forward Packet
* Router R’s adaptor receives the packet
— R extracts the IP packet from the Ethernet frame
— R sees the IP packet is destined to 222.222.222.222
* Router R consults its forwarding table
— Packet matches 222.222.222.0/24 via other adaptor

74-29-8C-E8-FF-55 88-B2-2F-54-1A-0F

EG6-E9-00-17-B8-4B

111.111.111.1 Cagiasals

222.222.222.221

222.222.222.222
R 49-BD-D2-C7-56-2A

B

111.411.111.1 222.222.222.23

111.411.111.110

CC-49-DE-D0-AB-7D

R Sends Packet to B

 Router R’ s learns the MAC address of host B
— ARP request: broadcast request for 222.222.222.222
— ARP response: B responds with 49-BD-D2-C7-52A

* Router R encapsulates the packet and sends to B

74-28-8C-E8-FF-55 88-B2-2F-54-1A-0F

E6-E9-00-17-BB-4B I

| T
111.411.111.1 1A-23-F9-CD-08-9

222.222.222.221

222.222.222.222

R 49-BD-D2-C7-56-2A

B

AT 222.222.222.2%

111.411.111.110

CC-49-DE-D0-AB-7D

Security Analysis of ARP

* Impersonation

— Any node that hears request can answer ...
— ... and can say whatever they want

* Actual legit receiver never sees a problem

— Because even though later packets carry its IP

address, its NIC doesn’t capture them since not its
MAC address

145

Key ldeas in Both ARP and DHCP

* Broadcasting: Can use broadcast to make contact
— Scalable because of limited size

* Caching: remember the past for a while
— Store the information you learn to reduce overhead
— Remember your own address & other host’s addresses

* Soft state: eventually forget the past
— Associate a time-to-live field with the information
— ... and either refresh or discard the information
— Key for robustness in the face of unpredictable change

146

Why Not Use DNS-Like Tables?

* When host arrives:
— Assign it an IP address that will last as long it is
present
— Add an entry into a table in DNS-server that maps
MAC to IP addresses

* Answer:
— Names: explicit creation, and are plentiful
— Hosts: come and go without informing network
* Must do mapping on demand
— Addresses: not plentiful, need to reuse and remap
* Soft-state enables dynamic reuse

Summary Network Layer

* understand principles behind network layer
services:
— network layer service models
— forwarding versus routing (versus switching)
— how a router works
— routing (path selection)
— IPv6
* Algorthims
— Two routing approaches (LS vs DV)
— One of these in detail (LS)
— ARP

Topic 5 — Transport

Our goals:

* understand principles * learn about transport layer
behind transport layer protocols in the Internet:
services: — UDP: connectionless transport

— multiplexing/ — TCP: connection-oriented
demultiplexing transport

— reliable data transfer — TCP congestion control
— flow control

— congestion control

Transport Layer

* Commonly a layer at end-hosts, between the
application and network layer

_ |- Appiicatior- - /—‘ppl‘it':ﬁtwm .
(\ Transport /) (\ Transport ')
~~Network | Platwork “[vetwork—"
Datalink |Datalink| Datalink
Physical I|-uysica|I Physical
O = [
= Router =

Host A Host B

3

Why a transport layer?

* |IP packets are addressed to a host but end-to-
end communication is between application
processes at hosts

— Need a way to decide which packets go to which
applications (more multiplexing)

Why a transport layer?

Application Application
Transport Transport
Network Network
Datalink Datalink
Physical Physical
[] []
I LN
Host A Host B s

Why a transport layer?

many application
processes

Application
Transport
Network
Datalink
Physical

bavers Datalink
+NIC physical l!]
LN

Host A Host B .

Why a transport layer?

many application
processes

Communication
between processes
at hosts

P

Datalink J \¥ Datalink
Physical Communication Physical
between hosts
(128.4.5.6 €->162.99.7.56)
Host A Host B ;

Why a transport layer?

* |P provides a weak service model (best-effort)
— Packets can be corrupted, delayed, dropped,
reordered, duplicated
— No guidance on how much traffic to send and when

— Dealing with this is tedious for application developers
8

Role of the Transport Layer

* Communication between application processes
— Multiplexing between application processes

— Implemented using ports

Role of the Transport Layer

* Provide common end-to-end services for app
layer [optional]
— Reliable, in-order data delivery
— Paced data delivery: flow and congestion-control
* too fast may overwhelm the network
* too slow is not efficient

Role of the Transport Layer

Communication between processes

Provide common end-to-end services for app
layer [optional]

TCP and UDP are the common transport
protocols

— also SCTP, MTCP, SST, RDP, DCCP, ...

11

Role of the Transport Layer

* Communication between processes

* Provide common end-to-end services for app
layer [optional]

* TCP and UDP are the common transport
protocols

* UDP is a minimalist, no-frills transport protocol
— only provides mux/demux capabilities

Role of the Transport Layer

Communication between processes

Provide common end-to-end services for app layer
[optional]

TCP and UDP are the common transport protocols
UDP is a minimalist, no-frills transport protocol
TCP is the totus porcus protocol

— offers apps a reliable, in-order, byte-stream abstraction
— with congestion control

— but no performance (delay, bandwidth, ...) guarantees

13

Role of the Transport Layer

* Communication between processes
— mux/demux from and to application processes
— implemented using ports

Context: Applications and Sockets

Socket: software abstraction by which an application process
exchanges network messages with the (transport layer in the)
operating system

— socketID = socket(..., socket.TYPE)

— socketID.sendto(message, ...)

— socketID.recvfrom(...)

Two important types of sockets
— UDP socket: TYPE is SOCK_DGRAM
— TCP socket: TYPE is SOCK_STREAM

15

Ports

* Problem: deciding which app (socket) gets which packets

— Solution: port as a transport layer identifier
* 16 bit identifier
— OS stores mapping between sockets and ports

— a packet carries a source and destination port number in its
transport layer header

* For UDP ports (SOCK_DGRAM)
— OS stores (local port, local IP address) €= socket

* For TCP ports (SOCK_STREAM)
— OS stores (local port, local IP, remote port, remote IP) €-> socket

32-bit Destination IP Address

17

A-bit 4-bit 8-bit) 8-bit .
Version | Header | Type of Service | 16-bit Total Length (Bytes) 4 | 5 |1ypeorSenice | 16-bit Total Length (Bytes)
Length (TOS) (TOS)
" T 3-bit : ' - 3-bit ’
16-bit Identification Flags | 13-bit Fragment Offset 16-bit Identification Flags | 13-bit Fragment Offset
it Ti . -bit Ti '
%_?",'s ('1'"-re|_‘)° 8-bit Protocol 16-bit Header Checksum 8,_?"; ('1'"-re|_t)° 8-bit Protocol 16-bit Header Checksum
32-bit Source IP Address

32-bit Source IP Address

32-bit Destination IP Address

8-bit 8-bit
4 5 | Typeof Service | 16-bit Total Length (Bytes) 4 5 | Typeof Service | 16-bit Total Length (Bytes)
(TOS)
; . 3-bit : : - 3-bit .
16-bit Identification Flags | 13-bit Fragment Offset 16-bit Identification Flags | 13-bit Fragment Offset
8bitTmeto | 6=TCP ; 8-bitTimeto | 6 = TCP §
Live (TTL) \l 17 = UDP 16-bit Header Checksum = 17 = UDP 16-bit Header Checksum
/ 32-bit Source IP Address 32-bit Source IP Address
/— 32-bit Destination IP Address
]

19

32-bit Destination IP Address

Recap: Multiplexing and Demultiplexing

* Host receives IP packets

— Each IP header has source and destination IP
address

— Each Transport Layer header has source and
destination port number

* Host uses IP addresses and port numbers to direct the
message to appropriate socket

21

More on Ports

Separate 16-bit port address space for UDP and TCP

“Well known” ports (0-1023): everyone agrees which
services run on these ports

— e.g., ssh:22, http:80

— helps client know server’s port

* Ephemeral ports (most 1024-65535): dynamically selected: as the
source port for a client process

UDP: User Datagram Protocol

« Lightweight communication between processes
— Avoid overhead and delays of ordered, reliable delivery

« UDP described in RFC 768 — (1980!)
— Destination IP address and port to support demultiplexing
— Optional error checking on the packet contents
* (checksum field of 0 means “don’t verify checksum”)

SRC port DST port

checksum length

DATA »

Why a transport layer?

IP provides a weak service model (best-effort)

— Packets can be corrupted, delayed, dropped,
reordered, duplicated

Principles of Reliable data transfer

« important in app., transport, link layers
* top-10 list of important networking topics!

e In a perfect world, reliable
transport is easy

receiver
process
(Jreliable channel

application
layer

But the Internet default is best-effort

e All the bad things best-effort can
do
e apacket is corrupted (bit errors)
e apacket is lost
e apacket is delayed (why?)

(@) provided service o packets are reordered (why?)

e apacket is duplicated (why?)

transport
layer

25

Principles of Reliable data transfer

* important in app., transport, link layers
* top-10 list of important networking topics!

senlng receiver
rocess rocess

(Jrelioble channel)

application
layer

fransport
layer

tb’ unreliable channel J

(@) provided service (b) service implementation

characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Principles of Reliable data transfer

« important in app., transport, link layers
* top-10 list of important networking topics!

c
o
E=RN
3e
9 [sending receiver
e
s
dt. d
= reloble channal)l ~retend) rdt. rev0
8_ 5 reliable data relicble data
@ > transfer protocoll transfer protocol
5 o (sending side) (receiving side)
= uat_sena()} [packel] [packel 1 udt_rev0)
LQ unrelicble channel J

(a) provided service (b) service implementation

characteristics of liable channel will determin ity of reliable data transfer protocol (rdt)

27

Reliable data transfer: getting started

rdt_send() : called from above,
(e.g., by app.). Passed data to

rdt_rcv() : called by rdt to
deliver data to upper

deliver to receiver upper layer

rdt_send ()

rdt_rcv()

send [reliable data reliable data receive
id fransfer protocol transfer protocol -
side [sending side) (receiving side) side

udt_send ()] [poctel] 1 udt rev0

/ L‘ iunrelioble channel)J

udt_send () : called by rdt,

udt_rcv () : called when packet
to transfer packet over

arrives on rcv-side of channel

unreliable channel to receiver

Reliable data transfer: getting started

we’ ll:

* incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

* consider only unidirectional data transfer
— but control info will flow on both directions!

* use finite state machines (FSM) to specify sender,

receiver
event causing state transition

actions taken on state transition

state: when in this “state”
next state uniquely
determined by next
event

event
actions)

KR state machines — a note.

Beware
Kurose and Ross has a confusing/confused attitude to
state-machines.

I've attempted to normalise the representation.
UPSHOT: these slides have differing information to the
KR book (from which the RDT example is taken.)

in KR “actions taken” appear wide-ranging, my

interpretation is more specific/relevant.
Relevant event causing state transition

state: when in this “state”
next state uniquely
determined by next

event

Relevant action taken on state transition

State
name

Rdt1.0: reliable transfer over a reliable channel

* underlying channel perfectly reliable
— no bit errors
— no loss of packets
* separate FSMs for sender, receiver:
— sender sends data into underlying channel
— receiver read data from underlying channel

rdt_rcv(data)
\ Action /

sender receiver

/ Event

T rdt_send(data) "y udt_rcv(packet)
udt_send(packet)

31

Rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
— checksum to detect bit errors
* the question: how to recover from errors:

— acknowledgements (ACKs): receiver explicitly tells sender that
packet received is OK
— negative acknowledgements (NAKs): receiver explicitly tells sender
that packet had errors
— sender retransmits packet on receipt of NAK
* new mechanisms in rdt2. 0 (beyond rdt1.0):

— error detection
— receiver feedback: control msgs (ACK,NAK) receiver->sender

Dealing with Packet Corruption

[

. ‘£
ack
2 ’
Sender Receiver
Time

33

rdt2.0: FSM specification

rdt_send(data)
udt_send(packet) receiver

udt_rcv(reply) &&
isNAK(reply)

—_ udt_rcv(packet) &&
udt_send(packet) corrupt(packet)

udt_send(NAK)

Waiting
for reply

udt_rcv(reply) && isACK(reply) Sa
A
sender
udt_rcv(packet) &&
Note: the sender holds a copy notcorrupt(packet)
of the packet being sent until rdt_rcv(data)
the delivery is acknowledged. udt_send(ACK)

rdt2.0: operation with no errors

rdt_send(data)
udt_send(packet)

udt_rcv(reply) &&

isNAK(reply)
‘ —_ udt_rcv(packet) &&
‘ dt_send(packet) corrupt(packet)

udt_send(NAK)

Waiting
for reply

udt_rcv(reply) && isACK(reply)
A

notcorrupt(packet)
rdt_rcv(data)
udt_send(ACK)

rdt2.0: error scenario

rdt_send(data)
udt_send(packet)

udt_rcv(packet) &&

corrupt(packet)
udt_send(NAK)

Waiting
for reply

udt_send(packet)

udt_rcv(reply) && isACK(reply) Sa
A

J_udt_rcv(packet) &&
notcorrupt(packet)
rdt_rcv(data)
udt_send(ACK)

35 36
rdt2.0 has a fatal flaw! Dealing with Packet Corruption
What happens if ACK/NAK Handling duplicates:
corrupted? sender retransmits current 1 P(1)
 sender doesn’ t know what packet if ACK/NAK garbled s
happened at receiver! * sender adds sequence number ack(})
e can’tjust retransmit: possible to each packet ‘ _
duplicate * receiver discards (doesn’t P(1
deliver) duplicate packet .o
ack(1)
stop and wait 2 P>
Sender sends one packet, \L\
then waits for receiver
response
37
rdt2.1: sender, handles garbled ACK/NAKs rdt2.1: receiver, handles garbled ACK/NAKs
rdt_send(data) udt_rcv(packet) && not corrupt(packet)
W &8& has_seq0(packet)
udt_send(packet) udt_rev(reply) && ;Jt:'lt—rscir(‘ddg:acil()
S (corrupt(reply) | | -

Wafﬁﬂg isNAK(reply)) .

For reply u—dt_send(packet) receive(packet) && corrupt(packet) udt_rev(packet) && corrupt(packet)
udt_rev(reply) udt_send(NAK) udt_send(NAK)
&&;otcorrupt(reply) udt_rev(reply)

&& isACK(reply) && notcorrupt(reply) Q
—_— && isACK(reply) receive(packet) && receive(packet) &8&
A —_— not corrupt(packet) && (not corrupt(packet) &&
A has_seq1(packet) has_seq0(packet)
fﬂ/,a:gi/ udt_send(ACK) udt_send(ACK)
2"?;;:5‘;(:(?:2%)&I&I(udt_rev(packet) && not corrupt(packet)
isNAKGrepy]) rdt_send(data) && has_seql(packet)
=1 udt_send(ACK)
udt_send(packet) i;‘:fse::j(packet) it ev(data)
39 40

rdt2.1: discussion

Sender: Receiver:
¢ seq # added to pkt ¢ must check if received
+ twoseq. # s (0,1) will packet is duplicate
suffice. Why? — state indicates whether O or 1
. . is expected pkt seq #
* must check if received ACK/ e) prtseq
NAK corrupted note: receiver can not know

if its last ACK/NAK received

¢ twice as many states OK at sender

— state must “remember”
whether “current” pkt has a

0 or 1 sequence number

41

rdt2.2: a NAK-free protocol

* same functionality as rdt2.1, using ACKs only
* instead of NAK, receiver sends ACK for last pkt received OK
— receiver must explicitly include seq # of pkt being ACKed

* duplicate ACK at sender results in same action as NAK:
retransmit current pkt

42

rdt2.2: sender, receiver fragments

rdt_send(data)
sequence=0
udt_send(packet)

rdt_rcv(reply) &&
(corrupt(reply) ||

Wait for

rdt3.0: channels with errors and loss

New assumption: underlying ~ Approach: sender waits
channel can also lose “reasonable” amount of

\ udt_send(packet) isACK(reply,1))

udt_rcv(reply) A

timeout
udt_send(packet)
udt_rev(reply)
&& notcorrupt(reply)
88& isACK(reply,1)

A

udt_rev(reply)

&& notcorrupt(reply)
&& isACK(reply,0)

A

timeout

udt_send(packet) C:Q/

udt_rcv(reply)

A
udt_r Iy rdt_send(data)
(corrupt(packet) | | sequence=1
isACK(reply,0)) udt_send(packet)
A

45

ACK isACKi(reply)) packets (data or ACKs) time for ACK
0
sender FSM udt_send(packet) — checksum, seq. #, ACKs, * retransmits if no ACK received in
retransmissions will be of this time
fragment udt_rcv(reply)
. && not corrupt(reply) help, but not enough * if pkt (or ACK) just delayed (not
udt_rcv(packet) && T && isACKO(reply) lost):

(corrupt(packet) | | A — retransmission will be
__has_seql(packet) receiver FSM duplicate, but use of seq. #'s
udt_send(ACK1) fragment already handles this

receive(packet) && not corrupt(packet) — receiver must specify seq # of
8&& has_seql(packet) pkt being ACKed
send(ACK1) . . .
et rev{data) requires countdown timer
43 a4
rdt3.0 sender ; ;
Dealing with Packet Loss
rdt_send(data) udt_revireply) &&
\ sequence=0 (corrupt(reply) ||

P(1)
Timeout

Timer-driven loss detection

Set timer when packet is sent; retransmit on timeout

Dealing with Packet Loss

1
P(1)
Timeout
= —
1
P

Sender Receiver
Time

ack(1)

47

Dealing with Packet Loss

P(1)
Timeout

1 P(1 ack(1)

Timer-driven retx. can lead to duplicates

ack(1)

Performance of rdt3.0

* rdt3.0 works, but performance stinks
* ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits .
s = = 5~ = dmicroseconds
R 10"bps
D U gonger utilization — fraction of time sender busy sending
L/R 08

= 0.00027

U =
sender RTT+L/R 30008

> 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
> network protocol limits use of physical resources!

49

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —psgz-------=====-===ssmmoeeeeaee t<<RTT
last packet bit transmitted, t =L /R

first packet bit arrives

ACK arrives, send nexi
packet, t=RTT+L/R

L/R 008

U = =
sender RTT+L/R 30008

0.00027

Inefficient if

last packet bit arrives, send ACK

Pipelined (Packet-Window) protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
— range of sequence numbers must be increased
— buffering at sender and/or receiver

| swaitld

<+— ACK packets

data packet—s

(@) @ stop-and-wait protocol in operation

(b) a pipelined profocol in operation

51

A Sliding Packet Window

* window = set of adjacent sequence numbers
— The size of the set is the window size; assume window size is n

* General idea: send up to n packets at a time
— Sender can send packets in its window
— Receiver can accept packets in its window
— Window of acceptable packets “slides” on successful reception/
acknowledgement

A Sliding Packet Window

* Let A be the last ack’d packet of sender without gap;
then window of sender = {A+1, A+2, ..., A+n}

n I Already ACK'd

A(—X—\ [] sent but not Ack'd
|||iDD||DD|DDDDDDD [] cannot be sent

sequence number 2>

¢ Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,..., B+n}

n I Received and ACK'd

(—)\—\ D Acceptable but not

yet received

IIIIIiDDIIDDIDDDDD [] cannot bereceived

Acknowledgements w/ Sliding Window

* Two common options

— cumulative ACKs: ACK carries next in-order
sequence number that the receiver expects

Cumulative Acknowledgements (1)

* At receiver
n I Received and ACK'd

/—}\—\ Acceptable but not

yet received

IIIIIiDDDDDDDDDDDD [] ot be received

e After receiving B+1, B+2

B, = B+2 n

IIIIIIIi 000000ooo

e Receiver sends ACK(B,,,*1) .

Cumulative Acknowledgements (2)

* At receiver
n I Received and ACK'd

/—)‘—\ Acceptable but not

yet received

IIIIIiDDDDDDDDDDDD [] cannot be received

e After receiving B+4, B+5

n

’ (—A—\
IIIIIiDDDIIDDDDDDD

e Receiver sends ACK(B+1)

How do we
recover?

Go-Back-N (GBN)
* Sender transmits up to n unacknowledged packets
* Receiver only accepts packets in order
— discards out-of-order packets (i.e., packets other than B+1)
* Receiver uses cumulative acknowledgements
— i.e., sequence# in ACK = next expected in-order sequence#
* Sender sets timer for 1t outstanding ack (A+1)

* If timeout, retransmit A+1, ..., A+n

57

Sliding Window with GBN

* Let A be the last ack’d packet of sender without gap;

then window of sender = {A+1, A+2, ..., A+n}

n I Already ACK'd

A/—A—\ [] sent but not Ack'd
IIIiDDDDDDDDDDDDDD [] cannot be sent

sequence number 2>

* Let B be the last received packet without gap by receiver,

then window of receiver = {B+1,..., B+n}

n I Received and ACK'd

(—)\—\ D Acceptable but not

yet received

IIIIIiDDDDDDDDDDDD [] canot be receiveds

GBN Example w/o Errors

Sender Window ‘ Window size = 3 packets ‘ Receiver Window

W —]

{1, 2}
{1,2,3}
{2,3,4}
{3,4,5}
{4, 5, 6}

s WNBE

Sender Receiver

Time s

GBN Example with Errors

‘ Window size = 3 packets ‘

Timeout

Packet 4 *

Sender Receiver

ol b WNE

([0, -8

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
udt_send(packet[nextseqnum])
nextseqnum++

else
refuse_data(data) Block?

‘ C 7 timeout
udt_send(packet[base])
O udt_send(packet[base+1])

A
base=1
nextseqnum=1

udt_rcv(reply)
& corrupt{reply)

A

udt_send(packet[nextseqnum-1])
udt_rcv(reply) &&
notcorrupt(reply)

base = getacknum(reply)+1

61

GBN: receiver extended FSM

A
udt_send(reply) udt_rev(packet)
~—e_ && notcurrupt(packet)

A =~ && hasseqnum(rcvpkt,expectedsegnum)
expectedseqnum=1 Qrdtﬁrcv(data)
udt_send(ACK)

expectedseqnum++

ACK-only: always send an ACK for correctly-received packet with
the highest in-order seq #
— may generate duplicate ACKs
— need only remember expectedsegnum
* out-of-order packet:
— discard (don’t buffer) -> no receiver buffering!

— Re-ACK packet with highest in-order seq #

Acknowledgements w/ Sliding Window

* Two common options

— cumulative ACKs: ACK carries next in-order sequence
number the receiver expects

— selective ACKs: ACK individually acknowledges
correctly received packets

* Selective ACKs offer more precise information but
require more complicated book-keeping

* Many variants that differ in implementation
details

63

Selective Repeat (SR)

* Sender: transmit up to n unacknowledged packets
* Assume packet k is lost, k+1 is not
* Receiver: indicates packet k+1 correctly received

* Sender: retransmit only packet k on timeout

« Efficient in retransmissions but complex book-keeping
— need a timer per packet

SR Example with Errors

‘ Window size = 3 packets ‘

{1 1
{1,2} 2
{1,2,3} 3 —
{2,344)
Timeout " 2 S q/
Packet 4
ACK=5
{41516} 4 ACK=6
@ser T —— |
Time
/M
{7,8,9 7 —_—
Sender Receiver

Observations

* With sliding windows, it is possible to fully utilize a
link, provided the window size is large enough.
Throughput is ~ (n/RTT)

— Stop & Wait is like n = 1.

* Sender has to buffer all unacknowledged packets,
because they may require retransmission

* Receiver may be able to accept out-of-order
packets, but only up to its buffer limits

* Implementation complexity depends on protocol
details (GBN vs. SR)

Recap: components of a solution

* Checksums (for error detection)
* Timers (for loss detection)
* Acknowledgments
— cumulative
— selective
* Sequence numbers (duplicates, windows)
* Sliding Windows (for efficiency)

* Reliability protocols use the above to decide
when and what to retransmit or acknowledge

67

What does TCP do?

Most of our previous tricks + a few differences
* Sequence numbers are byte offsets

* Sender and receiver maintain a sliding window

* Receiver sends cumulative acknowledgements (like GBN)

¢ Sender maintains a single retx. timer

* Receivers do not drop out-of-sequence packets (like SR)

* Introduces fast retransmit : optimization that uses duplicate
ACKs to trigger early retx (next time)

* Introduces timeout estimation algorithms (next time)

More in Topic 5b

Automatic Repeat Request (ARQ)

+ Self-clocking (Automatic) Next lets move from
the generic to the
+ Adaptive specific....
+ Flexible TCP arguably the most
successful protocol in the

- Slow to start / adapt Internet.....

consider high Bandwidth/Delay product

its an ARQ protocol

TCP Header

Source port ‘ Destination port
Used to mux Sequence number
and demux
Acknowledgment

Heren‘ 0 ‘ Flags | Advertised window

Checksum Urgent pointer

Options (variable)

Data

70

Last time: Components of a solution
for reliable transport

Checksums (for error detection)

Timers (for loss detection)
Acknowledgments

— cumulative

— selective

Sequence numbers (duplicates, windows)
Sliding Windows (for efficiency)

— Go-Back-N (GBN)

— Selective Replay (SR)

What does TCP do?

Many of our previous ideas, but some key
differences
e Checksum

TCP Header

Source port ‘ Destination port

Sequence number

Acknowledgment

Computed
over header Heren‘ 0 ‘ Flags | Advertised window
and data Checksum Urgent pointer

Options (variable)

Data

73

What does TCP do?

Many of our previous ideas, but some key
differences

* Sequence numbers are byte offsets

TCP: Segments and
Sequence Numbers

TCP “Stream of Bytes” Service...

Application @ Host A

&

21

AN

&

a:m

w
m

Application @ Host B

... Provided Using TCP “Segments”

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out

TCP Segment

IP Data

IP Hdr

TCP Data (segment) ‘TCP Hdr

* |IP packet
— No bigger than Maximum Transmission Unit (MTU)
— E.g., up to 1500 bytes with Ethernet

* TCP packet
— IP packet with a TCP header and data inside
— TCP header = 20 bytes long

* TCP segment
— No more than Maximum Segment Size (MSS) bytes
— E.g., up to 1460 consecutive bytes from the stream
— MSS = MTU — (IP header) — (TCP header)

Sequence Numbers

ISN (initial sequence number)
k bytes

k——>
vosta [T

Sequence number
= 1t byte in segment =
ISN + k

Sequence Numbers

ISN (initial sequence number)

Host A

I
]

Sequence number TCP Data

= 15t byte in segment =

ISN + k ACK sequence number

= next expected byte

e {[[[[[]11TT]]

TCP Header

Starting byte Source port ‘ Destination port
offset of data = i

carried in this
segment Acknowledgment

Heren‘ 0

Sequence number

Flags | Advertised window

Checksum Urgent pointer

Options (variable)

Data

¢ What does TCP do?

=seqno + length(data)

What does TCP do?

Most of our previous tricks, but a few differences

* Receiver sends cumulative acknowledgements (like GBN)

ACKing and Sequence Numbers

Sender sends packet
- Data starts with sequence number X
- Packet contains B bytes [X, X+1, X+2, ... X+B-1]

Upon receipt of packet, receiver sends an ACK
- If all data prior to X already received:

- ACK acknowledges X+B (because that is next expected byte)
- If highest in-order byte received is Y s.t. (Y+1) < X

« ACK acknowledges Y+1

- Even if this has been ACKed before

Normal Pattern

¢ Sender: seqno=X, length=B

* Receiver: ACK=X+B

* Sender: seqno=X+B, length=B
* Receiver: ACK=X+2B

¢ Sender: seqno=X+2B, length=B

* Seqno of next packet is same as last ACK field

TCP Header

Acknowledgment
gives segno just
beyond highest
seqno received in

Source port ‘ Destination port

Sequence number

order Acknowledgment
(“What Byte Heren‘ 0 ‘ Flags | Advertised window
is Next”)
Checksum Urgent pointer

Options (variable)

Data

86

What does TCP do?

Most of our previous tricks, but a few differences

* Receivers can buffer out-of-sequence packets (like SR)

Loss with cumulative ACKs

* Sender sends packets with 100B and seqnos.:
— 100, 200, 300, 400, 500, 600, 700, 800, 900, ...

* Assume the fifth packet (seqno 500) is lost,
but no others

e Stream of ACKs will be:
— 200, 300, 400, 500, 500, 500, 500,...

What does TCP do?

Most of our previous tricks, but a few differences

* Introduces fast retransmit: optimization that uses duplicate
ACKs to trigger early retransmission

Loss with cumulative ACKs

* “Duplicate ACKs” are a sign of an isolated loss
— The lack of ACK progress means 500 hasn’t been delivered
— Stream of ACKs means some packets are being delivered

* Therefore, could trigger resend upon receiving k

duplicate ACKs
¢ TCP uses k=3

* But response to loss is trickier....

Loss with cumulative ACKs

* Two choices:
— Send missing packet and increase W by the
number of dup ACKs
— Send missing packet, and wait for ACK to increase
w

* Which should TCP do?

What does TCP do?

Most of our previous tricks, but a few differences

* Sender maintains a single retransmission timer (like GBN) and
retransmits on timeout

Retransmission Timeout
* If the sender hasn’t received an ACK by

timeout, retransmit the first packet in the
window

* How do we pick a timeout value?

Timing lllustration

1 =1
R'ITI' \X TTimec’ut‘L
| T

Timeout

1

\.

Timeout too long = inefficient

Timeout too short >
duplicate packets

4

Retransmission Timeout

* How to set timeout?

— Too long: connection has low throughput

— Too short: retransmit packet that was just delayed
* Solution: make timeout proportional to RTT
* But how do we measure RTT?

RTT Estimation

* Use exponential averaging of RTT samples

SampleRTT= AckRcvdTime — SendPacketTime
EstimatedRTT = a x EstimatedRTT + (1 - a) x SampleRTT
O<a=l

SampleRTT

IRTT

Time

Exponential Averaging Example

EstimatedRTT = a*EstimatedRTT + (1 — a)*SampleRTT
Assume RTT is constant = SampleRTT = RTT

RTT EstimatedRTT (0.= 0.5)
'/“/4;/‘ EstimatedRTT (0. = 0.8)
1
0 1 2 3 4 5 6 7 8 9 time

Problem: Ambiguous Measurements

How do we differentiate between the real ACK, and ACK of
the retransmitted packet?

Sender Receiver Sender

SampleRTT

SampleRTT

Karn/Partridge Algorithm

* Measure SampleRTT only for original transmissions
— Once a segment has been retransmitted, do not use it for any
further measurements

« Computes EstimatedRTT using a = 0.875

* Timeout value (RTO) =2 x EstimatedRTT
« Employs exponential backoff
— Every time RTO timer expires, set RTO < 2-RTO
— (Up to maximum = 60 sec)

— Every time new measurement comes in (= successful original
transmission), collapse RTO back to 2 x EstimatedRTT

Karn/Partridge in action

Figure 5: Performance of an RFC793 retransmit timer

from Jacobson and Karels, SIGCOMM 1988

Jacobson/Karels Algorithm

* Problem: need to better capture variability in
RTT

—Directly measure deviation

 Deviation = | SampleRTT — EstimatedRTT |
EstimatedDeviation: exponential average of Deviation

.

RTO = EstimatedRTT + 4 x EstimatedDeviation

With Jacobson/Karels

Figure 5: Performance of an RFC793 retransmit timer Figure 6: Performance of a Mean+Variance retransmit timer

What does TCP do?

Most of our previous ideas, but some key
differences

Checksum

Sequence numbers are byte offsets

Receiver sends cumulative acknowledgements (like GBN)
Receivers do not drop out-of-sequence packets (like SR)
Introduces fast retransmit: optimization that uses duplicate
ACKs to trigger early retransmission

Sender maintains a single retransmission timer (like GBN) and
retransmits on timeout

TCP Header: What'’s left?

Source port ‘ Destination port

Sequence number

“Must Be Zero”

6 bits reserved acknowledgment

/Heren 0| Flags | Advertised window

Number of 4-byte
words in TCP

header,; Options (variable)
5 = no options

Checksum Urgent pointer

Data

TCP Header: What's left?

Source port ‘ Destination port

Sequence number

Used V‘_/ith_ URG Acknowledgment
flag to indicate
urgent data (not \Mm@‘ Flags | Advertised window
discussed further)
Checksum\‘<Urgent pointer

Options (variable)

Data

TCP Header: What'’s left?

Source port ‘ Destination port

Sequence number

Acknowledgment

0 ‘(Flags |) Advertised window

HdrLen

Checksum Urgent pointer

Options (variable)

Data

TCP Connection Establishment and
Initial Sequence Numbers

Initial Sequence Number (ISN)

+ Sequence number for the very first byte

* Why not just use ISN = 0?
+ Practical issue

— IP addresses and port #s uniquely identify a connection

— Eventually, though, these port #s do get used again

— ... small chance an old packet is still in flight
TCP therefore requires changing ISN

Hosts exchange ISNs when they establish a connection

Establishing a TCP Connection

A B
SYN

Each host tells
its ISN to the

Ack other host.
}%A
D,

=

« Three-way handshake to establish connection

— Host A sends a SYN (open; “synchronize sequence numbers”) to

host B
— Host B returns a SYN acknowledgment (SYN ACK)
— Host A sends an ACK to acknowledge the SYN ACK

TCP Header

Source port ‘ Destination port
Sequence number
Flags: syN
ACK : ‘Acknowledgment
FIN HdrLen| 0 } Flags |) Advertised window
RST
PSH Checksum Urgent pointer
URG

Options (variable)

Data

Step 1: A’ s Initial SYN Packet

‘ A’s port ‘ B’s port ‘

A's Initial Sequence Number

Flags:@\)
(Irrelevant since ACK not set)

ACK

FIN 5) Flags |) Advertised window
RST

PSH /Checksum Urgent pointer
URG

A tells B it wants to open a connection...

Step 2: B’ s SYN-ACK Packet

‘ B’ s port

A’s port ‘

‘ B’ s Initial Sequence Number
ACK =A’s ISN plus 1

FIN W Advertised window
RST
PSH Checksum Urgent pointer
URG

Flags:

B tells A it accepts, and is ready to hear the next byte...

... upon receiving this packet, A can start sending data

Step 3: A’ s ACK of the SYN-ACK

‘ A’s port

B’ s port ‘
A’ s Initial Sequence Number
Flags: SYN . B’s ISN plus 1
FIN 20B | o Flags | Advertised window
RST
PSH Checksum Urgent pointer
URG

Atells B it’ s likewise okay to start sending

.. upon receiving this packet, B can start sending data

113

Timing Diagram: 3-Way Handshaking

Passive
Open
Active
Open Server

Client (initiator)

listen()
connect ()

SYN + ACK, Seahumm

What if the SYN Packet Gets Lost?

» Suppose the SYN packet gets lost
— Packet is lost inside the network, or:
— Server discards the packet (e.g., it's too busy)

« Eventually, no SYN-ACK arrives

— Sender sets a timer and waits for the SYN-ACK
— ... and retransmits the SYN if needed

» How should the TCP sender set the timer?
— Sender has no idea how far away the receiver is
— Hard to guess a reasonable length of time to wait
— SHOULD (RFCs 1122 & 2988) use default of 3 seconds
« Some implementations instead use 6 seconds

SYN Loss and Web Downloads

» User clicks on a hypertext link
— Browser creates a socket and does a “connect”
— The “connect” triggers the OS to transmit a SYN
+ Ifthe SYNis lost...
— 3-6 seconds of delay: can be very long
— User may become impatient
— ... and click the hyperlink again, or click “reload”
 User triggers an “abort” of the “connect”
— Browser creates a new socket and another “connect”
— Essentially, forces a faster send of a new SYN packet!
— Sometimes very effective, and the page comes quickly

Tearing Down the Connection

Normal Termination, One Side At A Time

B
A
z 9 > > \z \=
= N o g 2
ﬁ LN]
A

time —— > AV

oV NAS
Dala
P
ACK

<

Finish (FIN) to close and receive remaining bytes | Connection

i i w closed
— FIN occupies one byte in the sequence space _ ~ now close

Other host acks the byte to confirm now half-closed

Closes A’s side of the connection, but not B’s time_warr
— Until B likewise sends a FIN
— Which Athen acks

Avoid reincarnation

B will retransmit FIN
if ACK is lost 118

Normal Termination, Both Together

B Les)
z[\2 § >z Ly
5 g RS

’ﬂ LN] ‘ﬁ

A

time ——> /

TIME_WAIT

Avoid reincarnation

Can retransmit

FIN ACK if ACK lost

atg

D,

Connection
now closed

« Same as before, but B sets FIN with their ack of A’'s FIN

Abrupt Termination

B
A
Z Y < \m= &
Q‘&
A s 2 g
ﬂ LN J
A

time —— >

OV NAS
wed
RST

Asends a RESET (RST) to B

— E.g., because application process on A crashed
That's it

— B does not ack the RST

— Thus, RST is not delivered reliably

— And: any data in flight is lost

— But: if B sends anything more, will elicit another RST

TCP Header

TCP State Transitions

cLosep [

Source port ‘ Destination port "\ Active open /SYN
Sequence number \
Flags: syN \
ACK Acknowledgment SYN/SYN + ACK ///S Sleneam
FIN HdrLen Flags |) Advertised window e AN /SN ACK/ACK e —
RST V| 2
PSH Checksum Urgent pointer Cose/FN | orchamees
are in here
\
URG Options (variable) AT paiics
A G, \ Close/FiN
[Fnowar2] % [Ccrosne | [(tasT_ack]
Data l R
121 122
An Simpler View of the Client Side TCP Header
SYN (Send) Source port ‘ Destination port

Rcev. FIN,
Send ACK Rev. SYN+ACK,

Send ACK

Rev. ACK,
Send Nothing

Sequence number

Used to negotiate

use of additional Acknowledgment
features) RdrLen| o ‘ Flags | Advertised window
(details in section)

Msum Urgent pointer

Y
Options (variable)

TCP Header

Source port ‘ Destination port

Sequence number

Acknowledgment

HdrLen| o | Flags [CAdvertised window

Checksum Urgent pointer

Options (variable)

* What does TCP do?
— ARQ windowing, set-up, tear-down
* Flow Control in TCP

Recap: Sliding Window (so far)
+ Both sender & receiver maintain a window

* Left edge of window:
— Sender: beginning of unacknowledged data
— Receiver: beginning of undelivered data

» Right edge: Left edge + constant

— constant only limited by buffer size in the
transport layer

Sliding Window at Sender (so far)

Sending process

TCP

Buffer size

. byte written
Previously
ACKed bytes | |

First unACKed byte

Last byte
can send

Sliding Window at Receiver (so far)

Receiving process

Last byte read

Buffer size (B)

Received and/j/7 ’/’ ‘ U |

ACKed M Sender might overrun
Next byte needed the receiver’s buffer
(1%t byte not received)
129

Last byte received

Solution: Advertised Window (Flow
Control)

- Receiver uses an “Advertised Window” (W)

to prevent sender from overflowing its
window
- Receiver indicates value of W in ACKs

- Sender limits number of bytes it can have in
flight <= W

Sliding Window at Receiver

W= B - (LastByteReceived - LastByteRead)

Last byte read Buffer size (8)

|

Next byte needed
(13t byte not received)

Last byte received

Sliding Window at Sender (so far)

Sending process

TCP

‘ | ‘ Last.byte written

First unACKed byte

Last byte
can send

Sliding Window w/ Flow Control

» Sender: window advances when new data
ack’d

* Receiver: window advances as receiving
process consumes data

* Receiver advertises to the sender where
the receiver window currently ends
(“righthand edge”)
— Sender agrees not to exceed this amount

Advertised Window Limits Rate

» Sender can send no faster than W/RTT
bytes/sec

* Receiver only advertises more space when it
has consumed old arriving data

* In original TCP design, that was the sole
protocol mechanism controlling sender’ s rate

* What’s missing?

TCP

* The concepts underlying TCP are simple
— acknowledgments (feedback)
—timers
—sliding windows
— buffer management
— sequence numbers

TCP

* But tricky in the details
— How do we set timers?
— What is the seqno for an ACK-only packet?
— What happens if advertised window = 0?
— What if the advertised window is % an MSS?
— Should receiver acknowledge packets right away?
— What if the application generates data in units of 0.1 MSS?

— What happens if | get a duplicate SYN? Or a RST while I'm in
FIN_WAIT, etc., etc., etc.

TCP

* Do the details matter?

Sizing Windows for
Congestion Control
* What are the problems?

* How might we address them?

* What does TCP do?

— ARQ windowing, set-up, tear-down
* Flow Control in TCP

* Congestion Control in TCP

We have seen:
— Flow control: adjusting the sending rate to
keep from overwhelming a slow receiver
Now lets attend...

— Congestion control: adjusting the sending rate
to keep from overloading the network

Statistical Multiplexing = Congestion

+ If two packets arrive at the same time
— Avrouter can only transmit one
— ... and either buffers or drops the other

« If many packets arrive in a short period of time
— The router cannot keep up with the arriving traffic

— ... delays traffic, and the buffer may eventually overflow
« Internet traffic is bursty

gi—>

Congestion is undesirable

Typical queuing system with bursty arrivals

Average Average
Packet delay Packet loss
Load

Load

Must balance utilization versus delay and loss

Who Takes Care of Congestion?

* Network? End hosts? Both?

* TCP’s approach:
— End hosts adjust sending rate
— Based on implicit feedback from network

* Not the only approach
— A consequence of history rather than planning

Some History: TCP in the 1980s

¢ Sending rate only limited by flow control

— Packet drops = senders (repeatedly!) retransmit a full
window’s worth of packets

* Led to “congestion collapse” starting Oct. 1986

— Throughput on the NSF network dropped from
32Kbits/s to 40bits/sec

* “Fixed” by Van Jacobson’s development of TCP’s

congestion control (CC) algorithms

Jacobson’s Approach

* Extend TCP’s existing window-based protocol but adapt the
window size in response to congestion
— required no upgrades to routers or applications!
— patch of a few lines of code to TCP implementations

* A pragmatic and effective solution
— but many other approaches exist

* Extensively improved on since
— topic now sees less activity in ISP contexts
— but is making a comeback in datacenter environments

Three Issues to Consider

* Discovering the available (bottleneck)

bandwidth

* Adjusting to variations in bandwidth

¢ Sharing bandwidth between flows

Abstract View

(I B

Sending Host Buffer in Router Receiving Host

* Ignore internal structure of router and model it as
having a single queue for a particular input-
output pair

Discovering available bandwidth

| [[[}**=—B]

* Pick sending rate to match bottleneck bandwidth
— Without any a priori knowledge
— Could be gigabit link, could be a modem

Adjusting to variations in bandwidth

[[T[+——8|

* Adjust rate to match instantaneous bandwidth
— Assuming you have rough idea of bandwidth

Multiple flows and sharing bandwidth

Two Issues:
* Adjust total sending rate to match bandwidth
* Allocation of bandwidth between flows

Reality

Congestion control is a resource allocation problem involving many flows,

many links, and complicated global dynamics
151

View from a single flow

knee oliff — pTCke‘
* Knee - point after which H 0ss
— Throughput increases slowly ‘Eo
— Delay increases fast [congestion
= collapse
Load
>
K]
« Cliff — point after which 8
— Throughput starts to drop to zero
(congestion collapse)
— Delay approaches infinity

Load

General Approaches

(0) Send without care
— Many packet drops

General Approaches

(0) Send without care

(1) Reservations
— Pre-arrange bandwidth allocations
— Requires negotiation before sending packets
— Low utilization

General Approaches

(0) Send without care

(1) Reservations

(2) Pricing
— Don'’t drop packets for the high-bidders
— Requires payment model

General Approaches

(0) Send without care

(1) Reservations

(2) Pricing

(3) Dynamic Adjustment
— Hosts probe network; infer level of congestion; adjust
— Network reports congestion level to hosts; hosts adjust
— Combinations of the above
— Simple to implement but suboptimal, messy dynamics

General Approaches

(0) Send without care
(1) Reservations

(2) Pricing

(3) Dynamic Adjustment

All three techniques have their place
* Generality of dynamic adjustment has proven powerful

* Doesn’t presume business model, traffic characteristics,
application requirements; does assume good citizenship

TCP’s Approach in a Nutshell

¢ TCP connection has window
— Controls number of packets in flight

* Sending rate: “Window/RTT

* Vary window size to control sending rate

All These Windows...

* Congestion Window: CWND
— How many bytes can be sent without overflowing routers
— Computed by the sender using congestion control algorithm

¢ Flow control window: AdvertisedWindow (RWND)
— How many bytes can be sent without overflowing receiver’s buffers
— Determined by the receiver and reported to the sender

+ Sender-side window = minimum{CWND,RWND}
» Assume for this lecture that RWND >> CWND

Note

¢ This lecture will talk about CWND in units of
MSS

— (Recall MSS: Maximum Segment Size, the amount of
payload data in a TCP packet)

— This is only for pedagogical purposes

* Keep in mind that real implementations
maintain CWND in bytes

Two Basic Questions

* How does the sender detect congestion?

* How does the sender adjust its sending rate?
— To address three issues
* Finding available bottleneck bandwidth
* Adjusting to bandwidth variations
* Sharing bandwidth

Detecting Congestion

» Packet delays
— Tricky: noisy signal (delay often varies considerably)

* Router tell endhosts they're congested

» Packet loss
— Fail-safe signal that TCP already has to detect
— Complication: non-congestive loss (checksum errors)

* Two indicators of packet loss
— No ACK after certain time interval: timeout
— Multiple duplicate ACKs

Not All Losses the Same

» Duplicate ACKs: isolated loss
— Still getting ACKs

» Timeout: much more serious
— Not enough dupacks
— Must have suffered several losses

* Will adjust rate differently for each case

Rate Adjustment

* Basic structure:
— Upon receipt of ACK (of new data): increase rate
— Upon detection of loss: decrease rate

* How we increase/decrease the rate depends on
the phase of congestion control we're in:
— Discovering available bottleneck bandwidth vs.
— Adjusting to bandwidth variations

Bandwidth Discovery with Slow Start

» Goal: estimate available bandwidth
— start slow (for safety)
— but ramp up quickly (for efficiency)

» Consider
— RTT = 100ms, MSS=1000bytes
— Window size to fill 1Mbps of BW = 12.5 packets
— Window size to fill 1Gbps = 12,500 packets
— Either is possible!

“Slow Start” Phase

» Sender starts at a slow rate but increases
exponentially until first loss

« Start with a small congestion window
— Initially, CWND = 1
— So, initial sending rate is MSS/RTT

* Double the CWND for each RTT with no loss

Slow Start in Action

For each RTT: double CWND

Simpler implementation: for each ACK, CWND +=1

Dest

Adjusting to Varying Bandwidth

* Slow start gave an estimate of available bandwidth

* Now, want to track variations in this available
bandwidth, oscillating around its current value

— Repeated probing (rate increase) and backoff (rate
decrease)

* TCP uses: “Additive Increase Multiplicative
Decrease” (AIMD)
— We’ll see why shortly...

AIMD

Additive increase

— Window grows by one MSS for every RTT with no
loss

— For each successful RTT, CWND = CWND + 1

— Simple implementation:
« for each ACK, CWND = CWND+ 1/CWND

Multiplicative decrease
— On loss of packet, divide congestion window in half
— On loss, CWND = CWND/2

Leads to the TCP “Sawtooth”

Window

Loss

o
e

Exponential t
“slow start”

Slow-Start vs. AIMD

* When does a sender stop Slow-Start and start
Additive Increase?

* Introduce a “slow start threshold” (ssthresh)
— Initialized to a large value
— On timeout, ssthresh = CWND/2

* When CWND = ssthresh, sender switches from
slow-start to AIMD-style increase

* What does TCP do?
— ARQ windowing, set-up, tear-down
* Flow Control in TCP

* Congestion Control in TCP
—AIMD

Why AIMD?

Recall: Three Issues

* Discovering the available (bottleneck)
bandwidth

— Slow Start

* Adjusting to variations in bandwidth
— AIMD

* Sharing bandwidth between flows

Goals for bandwidth sharing

* Efficiency: High utilization of link bandwidth
* Fairness: Each flow gets equal share

Why AIMD?

* Some rate adjustment options: Every RTT, we can

— Multiplicative increase or decrease: CWND—
a*CWND

— Additive increase or decrease: CWND— CWND + b

* Four alternatives:
— AIAD: gentle increase, gentle decrease
— AIMD: gentle increase, drastic decrease
— MIAD: drastic increase, gentle decrease
— MIMD: drastic increase and decrease

Simple Model of Congestion Control

1 Efficiency , Fairness
line line
Two users 7

— rates x, and x, /7

Congestion when
X1+X, > 1

Unused capacity
when x;+x, < 1

User 2’s rate (x,)
AN

. _ &
Fair when x, =x, ’ &

User 1’s rate (x,) 1

Example

fairness
line

Efficient: x;+x,=1

User 2: x, R

Inefficient: x,+x,=0.7

s | Efficient: xy+x,=1 efficiency
line

7

AIAD MIMD

fairness fairness
(x-aptay), / line * |ncrease: X*bl / line
* Increase: x + a; Xpaptay)) 7
7 » Decrease: x*by,
* Decrease: x - a,
« Does not ° DoeS nOt
converge to & converge to o
fairness o ; o
5 fairness 5
5 =

efficiency

efficiency
line

line

User 1: x,

User 1: x,

AIMD Why is AIMD fair?

(a pretty animation...)
fainess Two competing sessions:
* Additive increase gives slope of 1, as throughout increases
* multiplicative decrease decreases throughput proportionally

/
* Increase: x+a; 7
* Decrease: x*b,

» Converges to
fairness

equal bandwidth share

User 2: x,

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

efficiency
line

Bandwidth for Connection 2 =

Bandwidth for Connection1 R

182

AIMD Sharing Dynamics AIAD Sharing Dynamics

X1
A
o]

60

= |l Rates equalize > fair share —

40

@
g

WAAMAMAAAAAMAAAAAN,

I
)

1 30

RN RN .

55
82

109
136
163
190
217
244
271
298
325
352
379
406
433
460
487

TCP Congestion Control
Details

Implementation

* State at sender
— CWND (initialized to a small constant)
— ssthresh (initialized to a large constant)
— [Also dupACKcount and timer, as before]

* Events
— ACK (new data)
— dupACK (duplicate ACK for old data)
— Timeout

Event: ACK (new data)

’ lf CWND < SSthreSh * CWND packets per RTT
—CWND +=1 « Hence after one RTT

with no drops:
CWND = 2xCWND

Event: ACK (new data)

* If CWND < ssthresh [
—CWND+=1

—Slow start phase

* Else Ly “Congestion
— CWND = CWND + 1/CWND { Avoidance” phase

— (additive increase)

* CWND packets per RTT
* Hence after one RTT
with no drops:
CWND = CWND + 1

Event: TimeOut

* On Timeout
— ssthresh € CWND/2
—CWND €1

Event: dupACK

e dupACKcount ++

* If dupACKcount = 3 /* fast retransmit */
— ssthresh = CWND/2
— CWND = CWND/2

Example

Window]
Fast Timeout ggThresh
Retransmission Set to Here

Slow start in operation until
it reaches half of previous
CWND, L.e., SSTHRESH

Slow-start restart: Go back to CWND = 1 MSS, but take
advantage of knowing the previous value of CWND

* What does TCP do?

— ARQ windowing, set-up, tear-down
* Flow Control in TCP
* Congestion Control in TCP

— AIMD, Fast-Recovery

One Final Phase: Fast Recovery

* The problem: congestion avoidance too slow
in recovering from an isolated loss

Example (in units of MSS, not bytes)

* Consider a TCP connection with:
— CWND=10 packets

— Last ACK was for packet # 101
* i.e., receiver expecting next packet to have seq. no. 101

* 10 packets [101, 102, 103,..., 110] are in flight
— Packet 101 is dropped
— What ACKs do they generate?
— And how does the sender respond?

Timeline

¢ ACK 101 (due to 102) cwnd=10 dupACK#1 (no xmit)
¢ ACK 101 (due to 103) cwnd=10 dupACK#2 (no xmit)
¢ ACK 101 (due to 104) cwnd=10 dupACK#3 (no xmit)
¢ RETRANSMIT 101 ssthresh=5 cwnd=5

¢ ACK 101 (due to 105) cwnd=5 + 1/5 (no xmit)

¢ ACK 101 (due to 106) cwnd=5 + 2/5 (no xmit)

¢ ACK 101 (due to 107) cwnd=5 + 3/5 (no xmit)

¢ ACK 101 (due to 108) cwnd=5 + 4/5 (no xmit)

¢ ACK 101 (due to 109) cwnd=5 + 5/5 (no xmit)

¢ ACK 101 (due to 110) cwnd=6 + 1/5 (no xmit)

¢ ACK 111 (due to 101) € only now can we transmit new packets

* Plus no packets in flight so ACK “clocking” (to increase CWND) stalls for
another RTT

Solution: Fast Recovery

Idea: Grant the sender temporary “credit” for each dupACK so as
to keep packets in flight

* If dupACKcount =3
— ssthresh = cwnd/2
— cwnd = ssthresh + 3

* While in fast recovery
— cwnd = cwnd + 1 for each additional duplicate ACK

 Exit fast recovery after receiving new ACK
— set cwnd = ssthresh

Example

* Consider a TCP connection with:
— CWND=10 packets
— Last ACK was for packet # 101

* i.e., receiver expecting next packet to have seq. no. 101

* 10 packets [101, 102, 103,..., 110] are in flight
— Packet 101 is dropped

Timeline

ACK 101 (due to 102) cwnd=10 dup#l

ACK 101 (due to 103) cwnd=10 dup#2

ACK 101 (due to 104) cwnd=10 dup#3

REXMIT 101 ssthresh=5 cwnd= 8 (5+3)

ACK 101 (due to 105) cwnd=9 (no xmit)

ACK 101 (due to 106) cwnd=10 (no xmit)

ACK 101 (due to 107) cwnd=11 (xmit 111)

ACK 101 (due to 108) cwnd=12 (xmit 112)

ACK 101 (due to 109) cwnd=13 (xmit 113)

ACK 101 (due to 110) cwnd=14 (xmit 114)

ACK 111 (due to 101) cwnd =5 (xmit 115) € exiting fast recovery
Packets 111-114 already in flight

ACK 112 (due to 111) cwnd =5+ 1/5 € back in congestion avoidance

Putting it all together:
The TCP State Machine (partial)

cwnd > ssthresh

timeout

new ACK

new ACK

dupACK=3

dupACK=3

dupACK

TCP Flavors

TCP-Tahoe

— cwnd =1 on triple dupACK

TCP-Reno

— cwnd =1 on timeout

— cwnd = cwnd/2 on triple dupack
TCP-newReno

— TCP-Reno + improved fast recovery
TCP-SACK

— incorporates selective acknowledgements

* What does TCP do?

— ARQ windowing, set-up, tear-down
* Flow Control in TCP
* Congestion Control in TCP

— AIMD, Fast-Recovery, Throughput

TCP Throughput Equation

A Simple Model for TCP Throughput

cwnd Timeouts

max

> 5
N
/
"(/

A Simple Model for TCP Throughput

cwnd Timeouts

L A
2

Packet drop rate, p =1/ A, where A =§Wm

Throughput, B = A = \/E !

Some implications: (1) Fairness

/3 1
Throughput, B=,|[— —
&ip 2 RTT\/p

* Flows get throughput inversely proportional to
RTT

— Is this fair?

Some Implications:
(2) How does this look at high speed?

* Assume that RTT = 100ms, MSS=1500bytes

* What value of p is required to go 100Gbps?
— Roughly 2 x 1012

* How long between drops?
— Roughly 16.6 hours

* How much data has been sent in this time?
— Roughly 6 petabits

* These are not practical numbers!

Some implications:
(3) Rate-based Congestion Control

1

3
Through ut,B=\/:
£ 2 RTT+/p

¢ One can dispense with TCP and just match eqtn:
— Equation-based congestion control
— Measure drop percentage p, and set rate accordingly
— Useful for streaming applications

Some Implications: (4) Lossy Links

* TCP assumes all losses are due to congestion
* What happens when the link is lossy?
* Throughput ~ 1/sgrt(p) where p is loss prob.

* This applies even for non-congestion losses!

Other Issues: Cheating
* Cheating pays off

* Some favorite approaches to cheating:
— Increasing CWND faster than 1 per RTT
— Using large initial CWND
— Opening many connections

Increasing CWND Faster

X
A
A8

v D

X increases by 2 per RTT

y increases by 1 per RTT

A Closer look at problems
with
TCP Congestion Control

TCP State Machine

timeout

dupAck cwnd > ssthresh

timeout

new ACK

new ACK
dupACK=3

dupACK=3

dupACK

TCP State Machine

timeout

dupAck cwnd > ssthresh

timeout

new ACK

new ACK
dupACK=3

dupACK=3

dupACK

TCP State Machine

timeout

dupack cwnd > ssthresh

timeout

new ACK

new ACK
AupACK=3

dupACK=3

dupACK

TCP State Machine

timeout

dupAck cwnd > ssthresh

new ACK

new ACK
dupACK=3

dupACK=3

dupACK

TCP Flavors
* TCP-Tahoe
— CWND =1 on triple dupACK
* TCP-Reno

— CWND =1 on timeout

— CWND = CWND/2 on triple dupack Our default
* TCP-newReno =T

— TCP-Reno + improved fast recovery

TCP-SACK
— incorporates selective acknowledgements

Interoperability

* How can all these algorithms coexist? Don’t
we need a single, uniform standard?

* What happens if I'm using Reno and you are
using Tahoe, and we try to communicate?

TCP Throughput Equation

A Simple Model for TCP Throughput

cwnd Loss

max

I
5
> 5
{
N
/

I\)‘E

A Simple Model for TCP Throughput

cwnd Loss

max

L A
2

Packet drop rate, p =1/ A, where A =§W"f,dx

A 3 1
Throughput, B = =.|2
roughpu W

Implications (1): Different RTTs

Throughput = 3 !

2 RTT.\[p

* Flows get throughput inversely proportional to RTT
e TCP unfair in the face of heterogeneous RTTs!

@ bor%irlleck @‘

Implications (2): High Speed TCP

Throughput = 31

2 RTT.Jp

Assume RTT = 100ms, MSS=1500bytes

What value of p is required to reach 100Gbps throughput
- ~2x10%2

How long between drops?

— ~16.6 hours

How much data has been sent in this time?
— ~ 6 petabits

These are not practical numbers!

Adapting TCP to High Speed

— Once past a threshold speed, increase CWND faster

— A proposed standard [Floyd’03]: once speed is past some threshold,
change equation to p-8 rather than p*

— Let the additive constant in AIMD depend on CWND

¢ Other approaches?
— Multiple simultaneous connections (hack but works
today)
— Router-assisted approaches (will see shortly)

Implications (3): Rate-based CC

3 1
Throughput =\/:
£ 2 RTT Jp

TCP throughput is “choppy”
— repeated swings between W/2 to W

Some apps would prefer sending at a steady rate

— e.g., streaming apps

A solution: “Equation-Based Congestion Control”
— ditch TCP’s increase/decrease rules and just follow the equation
— measure drop percentage p, and set rate accordingly

Following the TCP equation ensures we’re “TCP friendly”
— i.e., use no more than TCP does in similar setting 24

* What does TCP do?
— ARQ windowing, set-up, tear-down

* Flow Control in TCP

* Congestion Control in TCP
— AIMD, Fast-Recovery, Throughput

* Limitations of TCP Congestion Control

Other Limitations of TCP
Congestion Control

(4) Loss not due to congestion?

TCP will confuse any loss event with congestion
* Flow will cut its rate
— Throughput ~ 1/sqrt(p) where p is loss prob.

— Applies even for non-congestion losses!

* We'll look at proposed solutions shortly...

(5) How do short flows fare?

50% of flows have < 1500B to send; 80% < 100KB

Implication (1): short flows never leave slow start!
— short flows never attain their fair share

Implication (2): too few packets to trigger dupACKs
— Isolated loss may lead to timeouts

— At typical timeout values of ~500ms, might severely impact
flow completion time

(6) TCP fills up queues = long delays

* A flow deliberately overshoots capacity, until it
experiences a drop

* Means that delays are large for everyone

— Consider a flow transferring a 10GB file sharing a
bottleneck link with 10 flows transferring 100B

(7) Cheating

* Three easy ways to cheat
— Increasing CWND faster than +1 MSS per RTT

Increasing CWND Faster

X increases by 2 per RTT
y increases by 1 per RTT

(7) Cheating

* Three easy ways to cheat

— Increasing CWND faster than +1 MSS per RTT
— Opening many connections

Open Many Connections

X
D

Assume

e A starts 10 connections to B

e D starts 1 connection to E

e Each connection gets about the same throughput

Then A gets 10 times more throughput than D

(7) Cheating

* Three easy ways to cheat
— Increasing CWND faster than +1 MSS per RTT
— Opening many connections
— Using large initial CWND

* Why hasn’t the Internet suffered a congestion
collapse yet?

(8) CC intertwined with reliability

Mechanisms for CC and reliability are tightly coupled
e CWND adjusted based on ACKs and timeouts
e Cumulative ACKs and fast retransmit/recovery rules

Complicates evolution
e Consider changing from cumulative to selective ACKs
e Afailure of modularity, not layering

Sometimes we want CC but not reliability
e e.g, real-time applications
Sometimes we want reliability but not CC (?)

Recap: TCP problems

{,"-"Misled by non-congestion losses - -

\-\‘F_il;l§ up queues leading-to hjgh;qglayg_,x"

/
/

|
\

\

"« AIMD impractical for high speed links

N

T

-/,shb’r" flows complete before discogéffngqyailable

* Sawtooth discovery too choppy for some apps)‘

N Unfair under heterogeneous RTTs
ity mechani

[Could fix many of these with some help from routers! J
36

What does TCP do?

— ARQ windowing, set-up, tear-down
Flow Control in TCP

Congestion Control in TCP

— AIMD, Fast-Recovery, Throughput
Limitations of TCP Congestion Control
Router-assisted Congestion Control

Router-Assisted Congestion Control

* Three tasks for CC:
— Isolation/fairness
— Adjustment
— Detecting congestion

How can routers ensure each flow gets its “fair
share”?

Fairness: General Approach

* Routers classify packets into “flows”

— (For now) flows are packets between same source/destination

* Each flow has its own FIFO queue in router

Router services flows in a fair fashion
— When line becomes free, take packet from next flow in a fair order

What does “fair” mean exactly?

Max-Min Fairness

» Given set of bandwidth demands r,and total bandwidth
C, max-min bandwidth allocations are:

a, = min(f, r)
where f is the unique value such that Sum(a)) = C

ry

?
r, C bits/s >’

rs

Example

C=10; r=8,r=6,r,=2;, N=3
Cl3=3.33 —

— Can service all of ry

— Remove r; from the accounting: C=C—-r;=8; N=2
Cl2=4—

— Can't service all of ry orr,

— So hold them to the remaining fair share: f = 4

8 10 4 min(s, 4) = 4
min(©, 4) =
min(2, 4) =

2 2

Max-Min Fairness

* Property:
— If you don’t get full demand, no one gets more than you

» This is what round-robin service gives if all packets are
the same size

How do we deal with packets of
different sizes?

Mental model: Bit-by-bit round robin (“fluid
flow”)

Can you do this in practice?
No, packets cannot be preempted

But we can approximate it
— This is what “fair queuing” routers do

Fair Queuing (FQ)

* For each packet, compute the time at which
the last bit of a packet would have left the
router if flows are served bit-by-bit

* Then serve packets in the increasing order of
their deadlines

Example

o DEEREE
(arrival traffic) time

by |
(arrival traffic)

time
Service [T 2T 3T aTsTe |
in fluid flow ! 2 | 3 I 4] 5] .
time
system
ra 2]2 [[afa] ¢ Jofs] s [o]
Packet time
system

Fair Queuing (FQ)

» Think of it as an implementation of round-robin generalized
to the case where not all packets are equal sized

» Weighted fair queuing (WFQ): assign different flows
different shares

» Today, some form of WFQ implemented in almost all routers
— Not the case in the 1980-90s, when CC was being developed
— Mostly used to isolate traffic at larger granularities (e.g., per-prefix)

FQ vs. FIFO

* FQ advantages:
— Isolation: cheating flows don’t benefit
— Bandwidth share does not depend on RTT

— Flows can pick any rate adjustment scheme they
want

* Disadvantages:

— More complex than FIFO: per flow queue/state,
additional per-packet book-keeping

FQ in the big picture

* FQ does not eliminate congestion = it just
manages the congestion

Will drop an additional
400Mbps from
the green flow

Blue and Green get
0.5Gbps; any excess
will be dropped

If the green flow doesn’t drop its sending rate to
100Mbps, we're wasting 400Mbps that could be
usefully given to the blue flow

FQ in the big picture

* FQ does not eliminate congestion = it just
manages the congestion

— robust to cheating, variations in RTT, details of delay,
reordering, retransmission, etc.

* But congestion (and packet drops) still occurs

* And we still want end-hosts to discover/adapt to
their fair share!

* What would the end-to-end argument say w.r.t.
congestion control?

Fairness is a controversial goal

What if you have 8 flows, and | have 4?
— Why should you get twice the bandwidth

What if your flow goes over 4 congested hops, and mine only
goes over 1?
— Why shouldn’t you be penalized for using more scarce bandwidth?

And what is a flow anyway?
— TCP connection

— Source-Destination pair?

— Source?

Router-Assisted Congestion Control

¢ CC has three different tasks:

— Rate adjustment
— Detecting congestion

Why not just let routers tell endhosts what rate
they should use?
Packets carry “rate field”

Routers insert “fair share” fin packet header
— Calculated as with FQ

End-hosts set sending rate (or window size) to f
— hopefully (still need some policing of endhosts!)

This is the basic idea behind the “Rate Control
Protocol” (RCP) from Dukkipati et al. '07

Flow Completion Time: TCP vs. RCP (Ignore XCP)

Flow Duration (secs) vs. Flow Size # Active Flows vs. time

100 i ‘ ‘ 9000 —
XCP “m- ¥
Tcp 8000 | 1
RCP ™
b
§ 7000 4
-3
10 ¢ X 6000 ¥ 1
5000 5
4000 | 4
3000 | R— 4
2000 |; .
-
/
1000 L
0 50 100 150 200 250 300

0

1 L . . .
0 2000 4000 6000 8000 10000

Flow Size [pkts] Time (secs)

Why the improvement?

g 200 TCP ~— . .
E RCP]
2 150 o)
@
£ 100 "] \
% 50 . - XcCl

0 | - ®

0.2 04 0.6 08 1 12 14 16 1.8
simulation time [sec]

sequence number

Router-Assisted Congestion Control

¢ CC has three different tasks:

— Detecting congestion

Explicit Congestion Notification (ECN)

* Single bit in packet header; set by congested routers
— If data packet has bit set, then ACK has ECN bit set

* Many options for when routers set the bit
— tradeoff between (link) utilization and (packet) delay

« Congestion semantics can be exactly like that of drop
— l.e.,, endhost reacts as though it saw a drop

¢ Advantages:
— Don'’t confuse corruption with congestion; recovery w/ rate adjustment
— Can serve as an early indicator of congestion to avoid delays
— Easy (easier) to incrementally deploy
« defined as extension to TCP/IP in RFC 3168 (uses diffserv bits in the IP header)

One final proposal: Charge people for
congestion!

Use ECN as congestion markers

Whenever | get an ECN bit set, | have to pay $$

Now, there’s no debate over what a flow is, or what fair is...
Idea started by Frank Kelly here in Cambridge

— “optimal” solution, backed by much math

— Great idea: simple, elegant, effective
— Unclear that it will impact practice — although London congestion works

. Some TCP issues outstanding...

Synchronized Flows Many TCP Flows

+ Aggregate window has same » Independent, desynchronized

dynamics

Therefore buffer occupancy has
same dynamics

Rule-of-thumb still holds.

» Central limit theorem says the
aggregate becomes Gaussian
Variance (buffer size) decreases
as N increases

Buffer Size

TCP in detail

What does TCP do?

— ARQ windowing, set-up, tear-down
Flow Control in TCP

Congestion Control in TCP

— AIMD, Fast-Recovery, Throughput
Limitations of TCP Congestion Control
Router-assisted Congestion Control

Recap

TCP:
— somewhat hacky

— but practical/deployable

— good enough to have raised the bar for the
deployment of new, more optimal, approaches

— though the needs of datacenters might change the

status quos

