
Computer Fundamentals
Modern Computer Components

Dr Robert Harle

Today's Topics

 CPUs in more detail

 Motherboards, buses, peripherals

 Memory hierarchy

 (S)RAM cells

 Spinning HDDs

 Flash and SSDs

 Graphics Cards and GPUs

 RISC and CISC architectures

Our Simple Model So Far

2

Memory

Program &
Data

1

CPU

More on the CPU

Registers

PC

X

Y

Z

ALU

CPU

MAU

1

IB

These units are
the really clever
bits. But how do
they work?

Logic

 All these units ultimately do is to
provide logic operators

 NOT, AND, NAND, OR, etc.

Input/outputs are voltages
Notionally logic '1' is some voltage
 logic '0' something else

Switches!

 The trick is to fashion these gates out
of switches and basic electronics

 E.g. NOT gate:

V

0

Out

R

In

MOSFETs

 Of course, it can't be a push switch
 We use MOSFETs (Metal-Oxide-SemiConductor

Field-Effect-Transistor)

P
N N

Ctrl
Oxide

N
P P

Ctrl
Oxide

Source

Gate

Drain

D

S

G

nMOS pMOS

G Switch

1 Closed

0 Open

G Switch

1 Open

0 Closed

Switches!

 NOT can be done trivially with an nMOS

V

0

Out

R

In

Switches!

 NOT can be done trivially with an nMOS

 But when the transistor is 'closed', a current
flows through the resistor. So it works but is a
very power hungry approach

V

0

Out

R

In

CMOS

 Today's computers use CMOS
(Complementary-MOS)

 i.e. combinations of nMOS and pMOS
 E.g.

V

0

OutIn

Transistor Counts

Transistor Size

Communications

 A useful computer needs peripherals
 Input (mouse, keyboard, etc)
 Output (printer, display)
 Network adapter, etc

 Peripherals connect to buses in order to
communicate with the core system
 A bus is just a set of wires that can be used by

multiple peripherals.

Mouse

Printer

Keyboard

Flash
drive

“Bus” from Power Busbar

Typical Desktop Architecture

USB

The Motherboard

 An evolution of the circuitry between the CPU and
memory to include general purpose buses (and later
to integrate some peripherals directly)

 Internal Buses
 ISA, PCI, PCIe, SATA, AGP

 External buses
 USB,Firewire,

eSATA, PC card

Typical Memories

Registers
CPU Cache Main Memory

System Cache

Caches

 Put frequently-accessed data in a
fast cache to speed things up

Cache
Query

Retrieve

Cache hit: it's in the cache (fast)

Caches

 Put frequently-accessed data in a
fast cache to speed things up

Cache

Main
Memory

Query

Retrieve

Cache miss: get from memory (slower)

Cache the Cache!

L1

L2

L3

Main
Memory

 SRAM

 DRAM

 Flash

 Magnetic

Peripherals

Motherboard

CPU

Memory Hierarchy (Typical)

Registers

CPU cache

Main memory

SD cards, SSDs...

Hard discs, tapes

System cache

Speed Size

Typical Memory Capacities

Registers Cache RAM SSD HDD

1

10

100

1000

10000

100000

1000000

10000000

Ty
p
ic

a
l
S
iz

e
s

(M
B

 –
 L

O
G

 S
C

A
L
E
!)

Register Size Limits Memory

 Each slot in memory
has a unique
address

 The address must fit
inside a register

 32 bits → 232 slots
 232 bytes → 4 GB
 (64 bits → 18

quintillion bytes ~
1019 bytes)

Registers

63

PC

X

Y

Z

ALU

CPU

MAU

2

IB

Register Size Limits Memory

 Each slot in memory
has a unique
address

 The address must fit
inside a register

 32 bits → 232 slots
 232 bytes → 4 GB

Registers

63

PC

X

Y

Z

ALU

CPU

MAU

2

IB

Register Sizes

 Registers are fixed size, super-fast on-chip memory
usually made from SRAM.

 When we build the CPU we have to decide how big to
make them
 Bigger registers

 Allow the CPU to do more per cycle
 Mean we can have more main RAM (longer

addresses can be supported)
 Too big and we might never use the whole length

(waste of electronics)
 Smaller registers

 Less electronics (smaller, cooler CPUs)
 Too small and it takes more cycles to complete

simple operations

Random Access Memory (DRAM)
 Capacitor + transistor = memory cell

 Capacitor charged → 1, discharged → 0

 Matrix of cells → transistors allow us to 'activate' cells

 Hence we can randomly jump around in the data (random
access)

 This is Dynamic RAM (DRAM), cheap and simple

 BUT: capacitors leak charge over time, so a “1” becomes a “0”.
Therefore we must refresh the capacitor regularly and this slows
everything down plus it drains power...

Memory cell
(transistor
+capacitor)

Static RAM (SRAM)

 We can avoid the need to refresh by using Static RAM
(SRAM) cells. These use more electronics (typically 6
transistors per cell) to effectively self-refresh.

 This is 8-16x faster than DRAM

 But each cell costs more and takes more space so it's
also about 8-16x more costly!

 And both DRAM and SRAM are volatile (lose power = lose
data)

SRAM Memory Cell

Magnetic Media (Hard Discs)

 Lots of tiny magnetic
patches on a series of
spinning discs

 Similar to an old cassette
tape only more advanced

 Read and write heads move
above each disc, reading or
writing data as it goes by

 Remarkable pieces of engineering that can store
terabytes (TB, 1,000,000MB) or more.

 Cheap mass storage

 Non-volatile (the data's still there when you next turn it
on)

 But much slower than RAM (→ SAM)

Flash and SSDs

 Toshiba came up with Flash memory in the 1980s as a
non-volatile storage without moving parts

Flash and SSDs

 Toshiba came up with Flash memory in the 1980s as a
non-volatile storage without moving parts

 Floating gate MOSFET

P
N N

Oxide

Oxide

Ctrl

Graphics Cards

 Started life as simple Digital to Analogue Convertors
(DACs) that took in a digital signal and spat out a
voltage that could be used for a cathode ray screen

 Have become powerful computing devices of their
own, transforming the input signal to provide fast, rich
graphics.

 Todays GCs are based around GPUs with lots of tiny
processors (cores) sharing some memory. The notion
is one of SIMD – Single Instruction Multiple Data
 Every instruction is copied to each core, which

applies it to a different (set of) pixel(s)
 Thus we get parallel computation → fast
 Very useful for scientific computing
 CPUs better for serial tasks

GPUs and SIMD

 So called vector processing: apply
one instruction to a vector of data

Add 5 4

2

3

1

4

ALU 1

ALU 2

ALU 3

ALU 4

ALU 5

9

7

8

6

9

RISC

 The simplest way to create a CPU is to
have a small number of simple instructions
that allow you to do very small unit tasks
 E.g. load a value to a register, add two

registers
 If you want more complicated things to

happen (e.g. multiplication) you use just
use multiple instructions

 This is a RISC approach (Reduced
Instruction Set arChitecture) and we see it
in the ARM CPUs

CISC

 Actually, two problems emerged
 People were coding at a low level and got sick

of having to repeatedly write multiple lines for
common tasks

 Programs were large with all the tiny
instructions. But memory was limited...

 Obvious soln: add “composite” instructions to
the CPU that carry out multiple RISC
instructions for us
 This is a CISC (Complex Instruction Set

arChitecture) and we see it in the Intel
chips

 Instructions can even be variable length

RISC vs CISC

 Every
instruction
takes one cycle

 Smaller, simpler
CPUs

 Lower power
consumption

 Fixed length
instructions

 Multiple cycles
per instruction

 Smaller
programs

 Hotter, complex
CPUs

 Variable length
instructions

RISC CISC

RISC vs CISC

 CISC has traditionally dominated (for
backwards compatibility and political
reasons) e.g. Intel PCs

 RISC was the route taken by Acorn,
and resulted in the ARM processors
e.g. smartphones

	Object Oriented Programming Dr Robert Harle
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

