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Today's Topics

 CPUs in more detail

 Motherboards, buses, peripherals

 Memory hierarchy

 (S)RAM cells

 Spinning HDDs

 Flash and SSDs

 Graphics Cards and GPUs

 RISC and CISC architectures 
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More on the CPU
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These units are 
the really clever 
bits. But how do 
they work?



Logic

 All these units ultimately do is to 
provide logic operators

 NOT, AND, NAND, OR, etc.

Input/outputs are voltages
Notionally logic '1' is some voltage
                 logic '0' something else



Switches!

 The trick is to fashion these gates out 
of switches and basic electronics

 E.g. NOT gate:
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MOSFETs

 Of course, it can't be a push switch
 We use MOSFETs (Metal-Oxide-SemiConductor 

Field-Effect-Transistor)
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Switches!

 NOT can be done trivially with an nMOS
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Switches!

 NOT can be done trivially with an nMOS

 But when the transistor is 'closed', a current 
flows through the resistor. So it works but is a 
very power hungry approach
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CMOS

 Today's computers use CMOS 
(Complementary-MOS)

 i.e. combinations of nMOS and pMOS
 E.g.
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Transistor Counts



Transistor Size



Communications

 A useful computer needs peripherals
 Input (mouse, keyboard, etc)
 Output (printer, display)
 Network adapter, etc

 Peripherals connect to buses in order to 
communicate with the core system 
 A bus is just a set of wires that can be used by 

multiple peripherals. 

Mouse

Printer

Keyboard

Flash
drive



“Bus” from Power Busbar



Typical Desktop Architecture

USB



The Motherboard

 An evolution of the circuitry between the CPU and 
memory to include general purpose buses (and later 
to integrate some peripherals directly)

 Internal Buses
 ISA, PCI, PCIe, SATA, AGP

 External buses
 USB,Firewire, 

eSATA, PC card



Typical Memories

Registers
CPU Cache Main Memory

System Cache



Caches

 Put frequently-accessed data in a 
fast cache to speed things up

Cache
Query

Retrieve

Cache hit: it's in the cache (fast)



Caches

 Put frequently-accessed data in a 
fast cache to speed things up
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Cache miss: get from memory (slower)



Cache the Cache!
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Typical Memory Capacities
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Register Size Limits Memory

 Each slot in memory 
has a unique 
address

 The address must fit 
inside a register

 32 bits → 232 slots
 232 bytes → 4 GB
 (64 bits → 18 

quintillion bytes ~ 
1019 bytes)
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Register Sizes

 Registers are fixed size, super-fast on-chip memory 
usually made from SRAM.

 When we build the CPU we have to decide how big to 
make them
 Bigger registers

 Allow the CPU to do more per cycle
 Mean we can have more main RAM (longer 

addresses can be supported)
 Too big and we might never use the whole length 

(waste of electronics)
 Smaller registers

 Less electronics (smaller, cooler CPUs)
 Too small and it takes more cycles to complete 

simple operations



Random Access Memory (DRAM)
 Capacitor + transistor = memory cell

 Capacitor charged → 1, discharged → 0

 Matrix of cells → transistors allow us to 'activate' cells

 Hence we can randomly jump around in the data (random 
access)

 This is Dynamic RAM (DRAM), cheap and simple

 BUT: capacitors leak charge over time, so a “1” becomes a “0”. 
Therefore we must refresh the capacitor regularly and this slows 
everything down plus it drains power... 

Memory cell
(transistor
+capacitor)



Static RAM (SRAM)

 We can avoid the need to refresh by using Static RAM 
(SRAM) cells. These use more electronics (typically 6 
transistors per cell) to effectively self-refresh.

 This is 8-16x faster than DRAM

 But each cell costs more and takes more space so it's 
also about 8-16x more costly!

 And both DRAM and SRAM are volatile (lose power = lose 
data)

SRAM Memory Cell



Magnetic Media (Hard Discs)

 Lots of tiny magnetic 
patches on a series of 
spinning discs

 Similar to an old cassette 
tape only more advanced

 Read and write heads move 
above each disc, reading or 
writing data as it goes by

 Remarkable pieces of engineering that can store 
terabytes (TB, 1,000,000MB) or more.

 Cheap mass storage

 Non-volatile (the data's still there when you next turn it 
on)

 But much slower than RAM (→ SAM)



Flash and SSDs

 Toshiba came up with Flash memory in the 1980s as a 
non-volatile storage without moving parts



Flash and SSDs

 Toshiba came up with Flash memory in the 1980s as a 
non-volatile storage without moving parts

 Floating gate MOSFET
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Graphics Cards

 Started life as simple Digital to Analogue Convertors 
(DACs) that took in a digital signal and spat out a 
voltage that could be used for a cathode ray screen

 Have become powerful computing devices of their 
own, transforming the input signal to provide fast, rich 
graphics.

 Todays GCs are based around GPUs with lots of tiny 
processors (cores) sharing some memory. The notion 
is one of SIMD – Single Instruction Multiple Data
 Every instruction is copied to each core, which 

applies it to a different (set of) pixel(s)
 Thus we get parallel computation → fast
 Very useful for scientific computing
 CPUs better for serial tasks 



GPUs and SIMD

 So called vector processing: apply 
one instruction to a vector of data
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RISC

 The simplest way to create a CPU is to 
have a small number of simple instructions 
that allow you to do very small unit tasks
 E.g. load a value to a register, add two 

registers
 If you want more complicated things to 

happen (e.g. multiplication) you use just 
use multiple instructions

 This is a RISC approach (Reduced 
Instruction Set arChitecture) and we see it 
in the ARM CPUs



CISC

 Actually, two problems emerged
 People were coding at a low level and got sick 

of having to repeatedly write multiple lines for 
common tasks

 Programs were large with all the tiny 
instructions. But memory was limited...

 Obvious soln: add “composite” instructions to 
the CPU that carry out multiple RISC 
instructions for us
 This is a CISC (Complex Instruction Set 

arChitecture) and we see it in the Intel 
chips

 Instructions can even be variable length



RISC vs CISC

 Every 
instruction 
takes one cycle

 Smaller, simpler 
CPUs

 Lower power 
consumption

 Fixed length 
instructions

 Multiple cycles 
per instruction

 Smaller 
programs

 Hotter, complex 
CPUs

 Variable length 
instructions

RISC CISC



RISC vs CISC

 CISC has traditionally dominated (for 
backwards compatibility and political 
reasons) e.g. Intel PCs

 RISC was the route taken by Acorn, 
and resulted in the ARM processors 
e.g. smartphones
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