
Computer Fundamentals:
CPUs, Fetch-Execute,

Compilation

Dr Robert Harle

Today's Topics

 Stored Program Models

 The Fetch-Execute Cycle, registers, ALU etc

 Machine code, assembly, higher languages

 Compilers vs. interpreters

A Modern Computer

 A modern computer boils down to
three fundamental things
 Storage/memory – giving the ability to

hold state (programs & data)
 Processing unit (CPU) – giving the ability

to manipulate state.
 A program – giving the ability to instruct

the CPU how to manipulate state in
storage

Simple Model of Memory

 We think of memory abstractly, as
being split into discrete chunks, each
given a unique address

 We can read or write in whole chunks
 Modern memory is big

Memory

0 1 2 3 4 5 6 7 8

Simple Model of a CPU

Registers

PC

X

Y

Z

ALU

CPU

MAU

IB

Simple Programming Language

 A program is just a sequence of instructions.
The instructions available depend on the CPU
manufacturer

 We will make up some very simple instruction
labels
 LIJ: Load value at memory address I into

register J
 AIJK: Add register I to J and put the result

in register K
 SIJ: Store register I in memory address J

Fetch-Execute Cycle I

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

PC

X

Y

Z

ALU

CPU

MAU

1

IB

Fetch-Execute Cycle II

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

63

PC

X

Y

Z

ALU

CPU

MAU

2

IB

Fetch-Execute Cycle III

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

12

63

PC

X

Y

Z

ALU

CPU

MAU

3

IB

Fetch-Execute Cycle IV

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

75

12

63

PC

X

Y

Z

ALU

CPU

MAU

4

IB

Add Functions

 Fx: Jump to address x and run code from there
 RET: Jump back to where we left of

Functions

L9X L7Y F14 L8X F14 49 6

0 1 2 3 4 5 6 7 8

Registers

49

10

PC

X

Y

Z ALU

CPU

MAU

3

IB

10

9

AXYZ SZ18 RET

10 11 12 13 14 15 16 17 18 19

Viruses!

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

 The storage mixes together the program and
the data... this is efficient but dangerous!

20 21 22 23 24 25 26 27 28 29

Storage Models

Memory

Program Data

CPU

Program Memory

Program Data

CPU

Harvard Memory

Von-Neumann Architecture Harvard Architecture

Choosing an Architecture

Von-Neumann Harvard
Same memory for programs and data Separate memories for programs and

data

+ Don't have to specify a partition
so more efficient memory use

- Have to decide in advance how
much to allocate to each

+ Programs can modify
themselves, giving great flexibility

+ Instruction memory can be
declared read only to prevent viruses
etc writing new instructions

- Programs can modify themselves,
leaving us open to malicious
modification (viruses!)

- Can't get instructions and data
simultaneously (therefore slower)

+ Can fetch instructions and data
simultaneously

Instruction Sets

 The list of instructions a CPU supports is its
Instruction Set Architecture (ISA)
 Initially all used diferent instructions but there

is clearly an advantage to using the same
instruction sets

 Intel's x86 set is a de-facto standard for PCs
 ARM's v6 and v7 specifications are used for

lower power applications (phones etc)

Writing Programs

 Computers don't store text instructions like
L6X, but rather a binary code for each
instruction

 Called machine code

Machine Code

 What the CPU 'understands': a series of instructions
that it processes using the the fetch-execute
technique

 E.g. to add registers 1 and 2, putting the result in
register 3 using the MIPS architecture:

00000000001000100001100000100000

Register 1 Register 3 Addition

Register 2 Shift amount (N/A)OP type

Assembly

 Essentially machine code, except we replace binary
sequences with text that is easier for humans

 E.g. add registers 1 and 2, storing in 3:

 Produces small, efficient machine code when
assembled

 Almost as tedious to write as machine code

 Becoming a specialised skill...

 Ends up being architecture-specific if you want the
most efficient results :-(

add $s3, $s1, $s2

Levels of Abstraction for Programming

High Level Languages

Procedural Languages

Assembly

Machine Code

Human friendly

Geek friendly

Computer friendly

 Compile

Compilers

 A compiler is just a software program that
converts high-level code to machine code for a
particular architecture (or some intermediary)

 Writing one is tricky and we require strict rules on
the input (i.e. on the programming language).
Unlike English, ambiguities cannot be tolerated!

Write
(text)

Compile

Machine
code

(binary)
Errors to fix

Compile succeeds
(eventually!)

Handling Architectures

Source Code (e.g. C++)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86

Interpreters

 The final binary is a compiled program that can be run
on one CPU architecture.

 As computers got faster, it became apparent that we
could potentially compile 'on-the-fly'. i.e. translate
high-level code to machine code as we go

 Call programs that do this interpreters

Architecture agnostic –
distribute the code and
have a dedicated
interpreter on each
machine

Have to distribute the code

Easier development loop Errors only appear at runtime

Performance hit – always
compiling

Software Libraries

 Sometimes we package up useful chunks of code
into libraries
 Just a grouping of functions compiled to

machine code
 You can't 'run' a library – it's just a collection of

functions
 The intention is that each library is installed

once per machine and many programs use it

Library 1 Library 2

Program Program Program Program

Library Advantages

 Modern software makes extensive
use of libraries
 Makes the program smaller (references

library functions rather than defining
them itself)

 Established libraries are well tested so
fewer bugs

 Experts in a specific area typically write
the associated libraries so performance
often better

Dependency Hell

 Programs are dependent on the libraries being
present
 They can be deleted
 Or upgraded to incompatible versions

 Libraries can depend on other libraries too

 Can find yourself in a difficult state where you
need multiple versions of libraries!

So what have we Learnt?

 Computers need three things: storage, processing
and programs

 Computers just do a very simple fetch-execute
loop very fast to run through some collection of
machine code instructions one at a time

 The machine code is usually generated for us via
a compilation step that takes in more human-
friendly program descriptions

 We can potentially compile as we run the
program: this is an interpreter

 Computers have software libraries that are
collections of useful function implementations
that can be used by any program

So what have we Learnt?

 Computers need three things: storage, processing
and programs

 Computers just do a very simple fetch-execute
loop very fast to run through some collection of
machine code instructions one at a time

 The machine code is usually generated for us via
a compilation step that takes in more human-
friendly program descriptions

 We can potentially compile as we run the
program: this is an interpreter

 Computers have software libraries that are
collections of useful function implementations
that can be used by any program

