Compiler Construction
Lecture 05
A Simple Stack Machine

Lent Term, 2015

Lecturer: Timothy G. Griffin

Computer Laboratory
University of Cambridge

Where are we going?

 When we derived the stack machine from the
expression evaluator, we really knew where we
were going --- to a simple stack machine with a
simple compiler for “reverse Polish” notation.
(Well, at least | knew that....)

* Let’s pause to think about what the stack machine
target of our Slang.1 derivation might look like....

+ Today, we will consider only the simple case :
simple functions with NO nesting.




Caller and Callee

fun f (x, y) = el

For this invocation of

fun g(w, v) = the function f, we say
w + f(v, v) that g is the caller

while f is the callee

Recursive functions can play
both roles at the same time ...

A word about “dynamic binding” --- IT IS A VERY BAD IDEA

let val x =1
fun g(y) = x +y
fun h(x) = g(x) + 1
in
h(17)
end
With good old static With insane dynamic
binding we get 19. binding we get 35.

But might there be a place for dynamic binding?
Is there dynamic binding of some kind behind
the raise/handle exception mechanism?




Jargon Virtual Machine

grows
stack sp shrinks
pointer
frame fp _/ Stack
pointer

Four

special-purpose

“registers”
Code CP !
pointer

Instructions

Status sr _p

register

halt

CP = j:stop

CP —»| j:stop halt

sr— o | sr—> 1 |

Status codes
0 = running
1 = stopped (program answer should be on top of stack)
2 = store index out of bounds
3 = call out of bounds
4 = stack overflow
5 = fp offset out of bounds
6 = return cp out of bounds
7 = arith error (div by 0)




Top-of-Stack arithmetic

push value

SP —> | FREE
sp = FREE C value
stack
sp = FREE result = (value 1) op (value 2)

arithop gp *E

IW ﬁ resu It

Opin{+,*-/,<,> <=,>= = &&, ||}

Translation of expressions

code for el

e1 op e2

code for e2

arith op

: push 3
: push 8
: push 17
: arith +
: push 2
: push 6
: arith -
: arith *
: arith *

3% (8 +17) * (2 - 6))

coONOUVIDAhWNREO




goto, skip

goto k

(set status to an error code if k is not in range...)

skip
CP = j:skip j : skip
7 B cooeoeeo cp = U B coomees
9
test
(
- If VALUE
test k cp ¥ i | s TRUE
If VALUE
cp (% B ceooroo is FALSE
\.
sp >
VALUE sp —>| FREE
stack stack

10




Conditionals, Loops

If e then c1 else c2 while e {c}
code for e m: code for e
test k test k
code for c1 code for c
goto m goto m
k: code for c2 k: skip
m: skip

1"

How do we organize the call stack?

let rec ibm =
ifm=0
then 1
elseifm=1
then 1

List.map fib [0; 1; &; 3; 4; 5; 6; 7; 8; 9; 10];;

= [1; 1, 8; 3; B; 8; 13; 21; 34; 55; 89]

else fib(m - 1) + fib (m - 2)

ib(0) _1_\
fib(1) | _1__[_1_|_1_|_2_ fib(1) | _1__
fib(R) | ib(R) | fib(R) | ib(R) | fib(R) [Ab(R) | _*__ | ___ | __2_ | 3_
fib(3) | fib(3) | ib(3) | ib(B) | ib(3) | fib(B) | fib(3) | fib(B) | Aib(3) | fib(3) | fib(3) |_5_‘

What information does the call stack
contain? Does the answer depend
on the language implemented? Yes!

12




First : Assume simple functions with NO
nesting ...

r_’( Stack[sp] = next available slot at
stack sp top of stack

pointer

Callee stack frame
(activation record)

Optional reserved space
Stack[fp + 2] to Stack|[fp + k]

Stack[fp + 1] contains (perhaps for values of local variables)
return address (RA) 9 %

Stack[fp] contains L_Fp —— :

the fp of the ~ fp frame pointer

caller’s frame
Stack|[fp - 1] to Stack[fp - n]

are arguments passed by caller
Caller stack frame <
(activation record) 13

We can now design “high level” VSM commands

This is a VM-level
abstraction. At the level

of the program
implementing the VM
CPp —¥| j:callf j:call f call is implemented
with many instructions.
{7 B cooooeo cp —D‘ U B cooooo
If we are targeting an
Code Code OS/ISA pair (Unix/x86, ...),

then there are many more
options as to who (caller or

call f sp—>| FREE callee) does what when and

where (registers or stack).

This is captured in a
SPp ~»| FREE fp = Calling Convention.
caller's
frame
I — "




Return

Code Code
cp return n return n
a2 ceeennes CP =»ra:......

sp—> FREE
return value

returnn )
ra

fp

Access to argument values

sp—» FREE
sp—> [ FREE_| :arg i > v

fp




Translation of (call-by-value) functions

f(e_1, ..., e_n)

fun f(x_ 1, ..., x_ n) =e

code fore_1

code for e_n

call k

This will leave the values
of each arg on the stack,
with the value of e n at
the top. Here k is the
address for the start of

the code for f.

|

k:

code for e

returnn

k is a location (address)

where code for

function f starts.

In code for e, access to
variable x_i is translated
to arg ((n-1i) + 1).

17

simple expressions

el

Code to leave the
value of e on
top of the stack

constant

)

push c

j=(n-i) +1
where Xx is the i-th formal parameter
(from left to right)

arg j

<=




What if we allow nested functions?

fun g(x) =
fun h(y) = e1
in e2 end

g(17)

an h stack
frame from
calltoh

in e2

How will the code
generated from
e1 find the value
of x?

gs
stack
frame

17

19

Approach 1: Lambda Lifting

fun g(x) = fun h(y, x) = el
fun h(y) = e1
in e2 end fun g(x) = e3
a(17) a(17)

[
»

Construct e3 from e2 by replacing
each call h(e) with h(e, x)

(+) Keeps our VM simple
(+) Low variable access cost
(-) can duplicate many arg values on the stack

20




