
1

Compiler Construction
Lent Term 2015

Lectures 13 --- 16 (of 16)

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

1.  Return to lexical analysis :
application of Theory of Regular
Languages and Finite Automata

2.  Generating Recursive descent
parsers

3.  Beyond Recursive Descent Parsing I
4.  Beyond Recursive Descent Parsing II

2

Concrete vs. Abstract Syntax Trees

S
S + E
E

(S)
5

S + E
S + E (S)

S + E E

E 1
2

3
4

+
5 +

+ +

3 4 1 2

parse tree =
derivation tree =
concrete syntax
tree Abstract Syntax Tree (AST)

An AST contains only the
information needed to generate an
intermediate representation

Normally a compiler constructs the concrete syntax tree only implicitly
(in the parsing process) and explicitly constructs an AST.

3

On to Context Free Grammars (CFGs)

E ::= ID

E ::= NUM

E ::= E * E

E ::= E / E

E ::= E + E

E ::= E – E

E ::= (E)

E ::= ID | NUM | E * E | E / E | E + E | E – E | (E)

Usually will write this way

E is a non-terminal symbol

ID and NUM are lexical classes

*, (,), +, and – are terminal symbols.

E ::= E + E is called a production rule.

4

CFG Derivations
(G1) E ::= ID | NUM | ID | E * E | E / E | E + E | E – E | (E)

E à E * E
 à (E) * E
 à (E + E) * E
 à (17 + E) * E
 à (17 + 4) * E
 à (17 + 4) * (E)
 à (17 + 4) * (E – E)
 à (17 + 4) * (2 – E)
 à (17 + 4) * (2 – 10)

E

E E

E

*
()

17 4 2 10

E ()

E E E E + -

E à E * E
 à E * (E)
 à E * (E – E)
 à E * (E – 10)
 à E * (2 – 10)
 à (E) * (2 – 10)
 à (E + E) * (2 – 10)
 à (E + 4) * (2 – E)
 à (17 + 4) * (2 – 10)

The Derivation Tree for
 (17 + 4) * (2 – 10)

 Rightmost
derivation

 Leftmost
derivation

5

More formally, …

•  A CFG is a quadruple G = (N, T, R, S) where
–  N is the set of non-terminal symbols
–  T is the set of terminal symbols (N and T disjoint)
–  S ∈N is the start symbol
–  R ⊆ N×(N∪T)* is a set of rules

•  Example: The grammar of nested parentheses
G = (N, T, R, S) where
–  N = {S}
–  T ={ (,) }
–  R ={ (S, (S)) , (S, SS), (S,) }

S ::= (S) | SS | We will normally write R as

6

Derivations, more formally…

•  Start from start symbol (S)
•  Productions are used to derive a sequence of tokens from the

start symbol
•  For arbitrary strings α, β and γ comprised of both terminal and

non-terminal symbols,
and a production A → β,
a single step of derivation is
 αAγ ⇒ αβγ
–  i.e., substitute β for an occurrence of A

•  α ⇒* β means that b can be derived from a in 0 or more single
steps

•  α ⇒+ β means that b can be derived from a in 1 or more single
steps

7

L(G) = The Language Generated by Grammar G

}|*{)(wSTwGL +⇒∈=

The language generated by G is the set of all terminal strings
derivable from the start symbol S:

For any subset W of T*, if there exists a CFG G such
that L(G) = W, then W is called a Context-Free
Language (CFL) over T.

8

Ambiguity

E

E E *

1 2

E E + 3

E

E +
1

E

2 3

E E *

Both derivation trees correspond to the string

 1 + 2 * 3

This type of ambiguity will cause problems when we try to
go from strings to derivation trees!

(G1) E ::= ID | NUM | ID | E * E | E / E | E + E | E – E | (E)

9

Problem: Generation vs. Parsing

•  Context-Free Grammars (CFGs)
describe how to to generate

•  Parsing is the inverse of generation,
–  Given an input string, is it in the language

generated by a CFG?
–  If so, construct a derivation tree (normally

called a parse tree).
–  Ambiguity is a big problem

Note : recent work on Parsing Expression Grammars (PEGs) represents an
attempt to develop a formalism that describes parsing directly. This is beyond
the scope of these lectures …

10

We can often modify the grammar
in order to eliminate ambiguity

(G2)
 S :: = E$

 E ::= E + T
 | E – T
 | T

T ::= T * F
 | T / F
 | F

F ::= NUM
 | ID
 | (E)

E

E +
1

T

2

3

T F *
F

This is the unique derivation
tree for the string

 1 + 2 * 3$ Note: L(G1) = L(G2).

Can you prove it?

(expressions)

(terms)

(factors)

(start, $ = EOF)

S

11

Famously Ambiguous

(G3) S ::= if E then S else S | if E then S | blah-blah

What does

 if e1 then if e2 then s1 else s3

mean?

S

if then E S

if then E S else S

S

if then E S else S

if then E S

OR

12

Rewrite?

(G4)
S ::= WE | NE
WE ::= if E then WE else WE | blah-blah
NE ::= if E then S
 | if E then WE else NE

if then E

if then E S else S

S

NE

S

WE

Now,

 if e1 then if e2 then s1 else s3

has a unique derivation.

Note: L(G3) = L(G4).
Can you prove it?

13

Fun Fun Facts

{ } { }1,1|1,1| ≥≥≥≥= nmnmL dcbadcba nmmnmmnn ∪

See Hopcroft and Ullman, “Introduction to Automata
Theory, Languages, and Computation”

(1) Some context free languages are inherently ambiguous --- every
context-free grammar will be ambiguous. For example:

(2) Checking for ambiguity in an arbitrary context-free
 grammar is not decidable! Ouch!

(3) Given two grammars G1 and G2, checking L(G1) = L(G2) is
 not decidable! Ouch!

14

Generating Lexical Analyzers

Lexical
Analyzer

Source
Program tokens

Scanner
Generator
“LEX”

Lexical specification

DFA Transitions

Parser

The idea : use regular expressions as the basis of a
lexical specification. The core of the lexical analyzer is
then a deterministic finite automata (DFA)

Recall from Regular Languages and Finite
Automata (Part 1A)

16

Traditional Regular Language Problem

Given a regular expression,

and an input string , determine if

.

e
w)(eLw∈

One method: Construct a DFA M from e and test if it accepts w.

17

Something closer to the “lexing
problem”

Given an ordered list of regular expressions,

and an input string , find a list of pairs

such that

.

1e 2e ke…

nwwww ...)1 21=

w

)()2
jij eLw ∈

)(...),,(),,(,2211 nn wiwiwi

rule)(priority)()3 sieLw jsj ≤→∈

match)(longest)(: sj eLuws ∉∀→
ε≠∈∀∀ ++ uwwwuj njj :)(prefix:)4 21 !

18

Define Tokens with Regular Expressions (Finite
Automata)

Keyword: if

1 i 2 f 3

1 i 2 f 3

0

Σ-{f}
Σ-{i} Σ

This FA is really shorthand for:

Σ “dead state”

19

Define Tokens with Regular Expressions (Finite
Automata)

Keyword:
if

1 i 2 f 3 KEY(IF)

Keyword:
then

1 t 2 h 3
KEY(then)

5

e
n

4

Regular Expression Finite Automata Token

Identifier:
[a-zA-Z][a-zA-Z0-9]*

1 2 [a-zA-Z]

[a-zA-Z0-9]

ID(s)

20

Define Tokens with Regular Expressions (Finite
Automata)

Regular Expression Finite Automata Token

number:
[0-9][0-9]*

1 2 [0-9]

[0-9]

NUM(n)

real:
([0-9]+ ‘.’ [0-9]*)
 | ([0-9]* ‘.’ [0-9]+)

1

3

[0-9] NUM(n) 2
[0-9]

[0-9]
.

4

.

[0-9] 5 [0-9]

21

No Tokens for “White-Space”

White-space:
(‘ ‘ | ‘\n’ | ‘\t’)+
| ‘%’ [A-Za-z0-9’ ‘]+’\n’

1

3

% 2
[A-za-z0-9’ ‘]

4

‘ ‘

\n

\t
\n

22

Constructing a Lexer

1e
2e

ke

…

 INPUT:
an ordered
list of regular
expressions

1NFA
2NFA

kNFA

…

Construct all
corresponding
finite automata

use priority NFA DFA

Construct a single
non-deterministic
finite automata

Construct a single
deterministic
finite automata

(1) Keyword : then

(2) Ident : [a-z][a-z]*

(2) White-space: ‘ ‘

1 t
2:ID

h 3:ID

5:THEN

e

n

4:ID

7:W

‘ ‘

6:ID [a-mo-z]

[a-z]

[a-su-z]

23

What about longest match?

1 t
2:ID

h 3:ID

5:THEN

e

n

4:ID

7:W

‘ ‘

6:ID [a-mo-z]

[a-z]

[a-su-z]

|then thenx$ 1 0
t|hen thenx$ 2 2
th|en thenx$ 3 3
the|n thenx$ 4 4
then| thenx$ 5 5
then |thenx$ 0 5 EMIT KEY(THEN)
then| thenx$ 1 0 RESET
then |thenx$ 7 7
then t|henx$ 0 7 EMIT WHITE(‘ ‘)
then |thenx$ 1 0 RESET
then t|henx$ 2 2
then th|enx$ 3 3
then the|nx$ 4 4
then then|x$ 5 5
then thenx|$ 6 6
then thenx$| 0 6 EMIT ID(thenx)

Start in initial state,
Repeat:
 (1) read input until dead state is
 reached. Emit token associated
 with last accepting state.
 (2) reset state to start state

| = current position, $ = EOF

Input
current state

last accepting state

24

Predictive (Recursive Descent) Parsing
Can we automate this?

(G5)

S :: = if E then S else S
 | begin S L
 | print E

E ::= NUM = NUM

L ::= end
 | ; S L

int tok = getToken();

void advance() {tok = getToken();}
void eat (int t) {if (tok == t) advance(); else error();}

void S() {switch(tok) {
 case IF: eat(IF); E(); eat(THEN);
 S(); eat(ELSE); S(); break;
 case BEGIN: eat(BEGIN); S(); L(); break;
 case PRINT: eat(PRINT); E(); break;
 default: error();
 }}

void L() {switch(tok) {
 case END: eat(END); break;
 case SEMI: eat(SEMI); S(); L(); break;
 default: error();
 }}

void E() {eat(NUM) ; eat(EQ); eat(NUM); }

From Andrew Appel, “Modern Compiler Implementation in Java” page 46

Parse corresponds to a left-most derivation
constructed in a “top-down” manner

25

 Eliminate Left-Recursion

A ::= Aα1 | Aα2 | . . . | Aαk |
 β1 | β2 | . . . | βn

Immediate left-recursion

A ::= β1 A’ | β2 A’ | . . . | βn A’

A’ ::= α1 A’ | α2 A’| . . . | αk A’ | ε

For eliminating left-recursion in general, see Aho and Ullman.

A

A

A

β

α

α

A

A’
β
α

α

A’

A’

ε

27

FIRST and FOLLOW

 FIRST[X] = the set of terminal symbols that
 can begin strings derived from X

FOLLOW[X] = the set of terminal symbols that
 can immediately follow X in some
 derivation

 nullable[X] = true of X can derive the empty string,
 false otherwise

For each non-terminal X we need to compute

nullable[Z] = false, for Z in T

nullable[Y1 Y2 … Yk] = nullable[Y1] and … nullable[Yk], for Y(i) in N union T.

FIRST[Z] = {Z}, for Z in T

FIRST[X Y1 Y2 … Yk] = FIRST[X] if not nullable[X]

FIRST[X Y1 Y2 … Yk] =FIRST[X] union FIRST[Y1 … Yk] otherwise

28

Computing First, Follow, and nullable

For each terminal symbol Z
 FIRST[Z] := {Z};
 nullable[Z] := false;

For each non-terminal symbol X
 FIRST[X] := FOLLOW[X] := {};
 nullable[X] := false;

repeat
 for each production X à Y1 Y2 … Yk
 if Y1, … Yk are all nullable, or k = 0
 then nullable[X] := true
 for each i from 1 to k, each j from i + I to k
 if Y1 … Y(i-1) are all nullable or i = 1
 then FIRST[X] := FIRST[X] union FIRST[Y(i)]
 if Y(i+1) … Yk are all nullable or if i = k
 then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FOLLOW[X]
 if Y(i+1) … Y(j-1) are all nullable or i+1 = j
 then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FIRST[Y(j)]
until there is no change

33

But wait! What if there are conflicts in
the predictive parsing table?

(G7)

 S :: = d | X Y S

Y ::= c |

X ::= Y | a

S

Y

X

Nullable FIRST FOLLOW

false

true

true

{ c,d ,a}

{ c }

{ c,a }

{ }

{ c,d,a }

{ c, a,d }

S

Y

X

a c d

{ S ::= X Y S }

{ Y ::= }

{ X ::= a, X ::= Y }

{ S ::= X Y S }

{ Y ::= , Y ::= c}

{ X ::= Y }

{ S ::= X Y S, S ::= d }

{ Y ::= }

{ X ::= Y }

The resulting “predictive” table is not so predictive….

34

LL(1), LL(k), LR(0), LR(1), …

•  LL(k) : (L)eft-to-right parse, (L)eft-most
derivation, k-symbol lookahead. Based on
looking at the next k tokens, an LL(k) parser
must predict the next production. We have been
looking at LL(1).

•  LR(k) : (L)eft-to-right parse, (R)ight-most
derivation, k-symbol lookahead. Postpone
production selection until the entire right-hand-
side has been seen (and as many as k symbols
beyond).

•  LALR(1) : A special subclass of LR(1).

35

Example

(G8)

 S :: = S ; S | ID = E | print (L)

E ::= ID | NUM | E + E | (S, E)

L ::= E | L, E

(G8)

 S :: = S SEMI S | ID EQUAL E | PRINT LPAREN L RPAREN

E ::= ID | NUM | E PLUS E | LPAREN S COMMA E RPAREN

L ::= E | L COMMA E

To be consistent, I should write the following, but I won’t…

36

A right-most derivation …

(G8)

S ::= S ; S
 | ID = E
 | print (L)

E ::= ID
 | NUM
 | E + E
 | (S, E)

L ::= E
 | L, E

 S
 à S ; S
 à S ; ID = E
 à S ; ID = E + E
 à S ; ID = E + (S, E)
 à S ; ID = E + (S, ID)
 à S ; ID = E + (S, d)
 à S ; ID = E + (ID = E, d)
 à S ; ID = E + (ID = E + E, d)
 à S ; ID = E + (ID = E + NUM, d)
 à S ; ID = E + (ID = E + 6, d)
 à S ; ID = E + (ID = NUM + 6, d)
 à S ; ID = E + (ID = 5 + 6, d)
 à S ; ID = E + (d = 5 + 6, d)
 à S ; ID = ID + (d = 5 + 6, d)
 à S ; ID = c + (d = 5 + 6, d)
 à S ; b = c + (d = 5 + 6, d)
 à ID = E ; b = c + (d = 5 + 6, d)
 à ID = NUM ; b = c + (d = 5 + 6, d)
 à ID = 7 ; b = c + (d = 5 + 6, d)
 à a = 7 ; b = c + (d = 5 + 6, d)

37

Now, turn it upside down …
à  a = 7 ; b = c + (d = 5 + 6, d)
à  ID = 7 ; b = c + (d = 5 + 6, d)
à  ID = NUM; b = c + (d = 5 + 6, d)
à ID = E ; b = c + (d = 5 + 6, d)
à S ; b = c + (d = 5 + 6, d)
à  S ; ID = c + (d = 5 + 6, d)
à  S ; ID = ID + (d = 5 + 6, d)
à S ; ID = E + (d = 5 + 6, d)
à  S ; ID = E + (ID = 5 + 6, d)
à  S ; ID = E + (ID = NUM + 6, d)
à  S ; ID = E + (ID = E + 6, d)
à  S ; ID = E + (ID = E + NUM, d)
à S ; ID = E + (ID = E + E, d)
à S ; ID = E + (ID = E, d)
à S ; ID = E + (S, d)
à S ; ID = E + (S, ID)
à S ; ID = E + (S, E)
à S ; ID = E + E
à S ; ID = E
à S ; S
 S

38

Now, slice it down the middle…

ID
ID = NUM
ID = E
S
S ; ID
S ; ID = ID
S ; ID = E
S ; ID = E + (ID
S ; ID = E + (ID = NUM
S ; ID = E + (ID = E
S ; ID = E + (ID = E + NUM
S ; ID = E + (ID = E + E
S ; ID = E + (ID = E
S ; ID = E + (S
S ; ID = E + (S, ID
S ; ID = E + (S, E)
S ; ID = E + E
S ; ID = E
S ; S
S

a = 7 ; b = c + (d = 5 + 6, d)
 = 7 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 = c + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 = 5 + 6, d)
 + 6, d)
 + 6, d)
 , d)
 , d)
 , d)
 , d)
)

A stack of terminals and
non-terminals

The rest of the input string

39

Now, add some actions. s = SHIFT, r = REDUCE

ID
ID = NUM
ID = E
S
S ; ID
S ; ID = ID
S ; ID = E
S ; ID = E + (ID
S ; ID = E + (ID = NUM
S ; ID = E + (ID = E
S ; ID = E + (ID = E + NUM
S ; ID = E + (ID = E + E
S ; ID = E + (ID = E
S ; ID = E + (S
S ; ID = E + (S, ID
S ; ID = E + (S, E)
S ; ID = E + E
S ; ID = E
S ; S
S

a = 7 ; b = c + (d = 5 + 6, d)
 = 7 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 ; b = c + (d = 5 + 6, d)
 = c + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 + (d = 5 + 6, d)
 = 5 + 6, d)
 + 6, d)
 + 6, d)
 , d)
 , d)
 , d)
)
)

s
s, s
r E ::= NUM
r S ::= ID = E
s, s
s, s
r E ::= ID
s, s, s
s, s
r E ::= NUM
s, s
r E ::= NUM
r E ::= E+E, s, s
r S ::= ID = E
R E::= ID
s, r E ::= (S, E)
r E ::= E + E
r S ::= ID = E
r S ::= S ; S

ACTIONS
SHIFT = LEX + move token to stack

40

LL(k) vs. LR(k) reductions

)',)((' *** TwNTwA ∈∪∈⇒→ ββ

)(kLL)(kLR

'w
k token look ahead

Stack

A β (left-most
symbol at
top)

'w
k token look
ahead

Stack

Aβ(right-most
symbol at
top)

A

The language of this
Stack IS REGULAR!

41

Q: How do we know when to shift and
when to reduce? A: Build a FSA from

LR(0) Items!
(G10)

S ::= A $

A ::= (A)
 | ()

 S ::= • A $
S ::= A • $
A ::= • (A)
A ::= (• A)
A ::= (A •)
A ::= (A) •
A ::= • ()
A ::= (•)
A ::= () •

LR(0) items indicate what is on the stack
(to the left of the •) and what is still in
the input stream (to the right of the •)

If

 X ::= αβ	

	

is a production, then

 X ::= α • β	

is an LR(0) item.

42

LR(k) states (non-deterministic)

),(21 kaaaA !βα •→

'w Stack: α

'*
21 waaa k ⇒!β

(right-most
symbol at
top)

The state

should represent this situation:

Input:

with

43

Key idea behind LR(0) items

•  If the “current state” contains the item
A ::= α • c β and the current symbol in the input buffer is c
–  the state prompts parser to perform a shift action
–  next state will contain A ::= α c • β

•  If the “state” contains the item A ::= α •
–  the state prompts parser to perform a reduce action

•  If the “state” contains the item S ::= α • $
and the input buffer is empty
–  the state prompts parser to accept

•  But How about A ::= α • X β where X is a nonterminal?

44

The NFA for LR(0) items

•  The transition of LR(0) items can be represented
by an NFA, in which
–  1. each LR(0) item is a state,
–  2. there is a transition from item A ::= α • c β
 to item A ::= αc • β with label c, where c is a terminal

symbol
–  3. there is an ε-transition from item A ::= α • X β to

X ::= • γ, where X is a non-terminal
–  4. S ::= • A $ is the start state
–  5. A ::= α • is a final state.	

45

Example NFA for Items

 S ::= • A $ S ::= A • $ A ::= • (A)
A ::= (• A) A ::= (A •) A ::= (A) •
A ::= • () A ::= (•) A ::= () •

A ::= (A •)

A ::= (•)

A ::= (A) • S ::= A • $ S ::= • A $

A ::= • () A ::= () •

A ::= (• A) A ::= • (A)

A

A (

(
)

)
ε	

ε	

ε	

46

The DFA from LR(0) items

•  After the NFA for LR(0) is constructed, the resulting DFA
for LR(0) parsing can be obtained by the usual
NFA2DFA construction.

•  we thus require
–  ε-closure (I)
–  move(S, a)

Fixed Point Algorithm for Closure(I)
–  Every item in I is also an item in Closure(I)
–  If A ::= α • B β is in Closure(I) and B ::= • γ is an item,

then add B ::= • γ to Closure(I)
–  Repeat until no more new items can be added to

Closure(I)

47

Examples of Closure

Closure({A ::= (• A)}) =
A ::= (• A)
A ::= • (A)
A ::= • ()

S ::= • A $
A ::= • (A)
A ::= • ()

•  closure({S ::= • A $})

 S ::= • A $
S ::= A • $
A ::= • (A)
A ::= (• A)
A ::= (A •)
A ::= (A) •
A ::= • ()
A ::= (•)
A ::= () •

48

Goto() of a set of items

•  Goto finds the new state after consuming a
grammar symbol while in the current state

•  Algorithm for Goto(I, X)
where I is a set of items
and X is a non-terminal

Goto(I, X) = Closure({ A ::= α X • β | A ::= α • X β in I })

•  goto is the new set obtained by
“moving the dot” over X

49

Examples of Goto

•  Goto ({A ::= •(A)}, ()

A ::= (• A)
A ::= • (A)
A ::= • ()

 •  Goto ({A ::= (• A)}, A)

A ::= (A •)

 S ::= • A $
S ::= A • $
A ::= • (A)
A ::= (• A)
A ::= (A •)
A ::= (A) •
A ::= • ()
A ::= (•)
A ::= () •

50

•  Essentially the usual NFA2DFA construction!!
•  Let A be the start symbol and S a new start

symbol.
•  Create a new rule S ::= A $
•  Create the first state to be Closure({ S ::= • A $})
•  Pick a state I

–  for each item A ::= α • X β in I
•  find Goto(I, X)
•  if Goto(I, X) is not already a state, make one
•  Add an edge X from state I to Goto(I, X) state

•  Repeat until no more additions possible

Building the DFA states

51

DFA Example

S ::= • A$
A ::= • (A)
A ::= • ()

s0 S ::= A • $
s1 A

A ::= (• A)
A ::= (•)
A ::= • (A)
A ::= • ()

s2

(

A ::= (A •)

A

s3
(

A ::= () •

)
s5
A ::= (A) •

)

s4

52

Building Parse Table Example

S ::= • A$
A ::= • (A)
A ::= • ()

s0 S ::= A • $
s1 A

A ::= (• A)
A ::= (•)
A ::= • (A)
A ::= • ()

s2

(

A ::= (A •)

A

s3
(

A ::= () •

)
s5
A ::= (A) •

)

s4

Creating the Parse Table(s)

State () $ A
s0 shift to s2 goto s1
s1 accept
s2 shift to s2 shift to s5 goto s3
s3 shift to s4
s4 reduce (2) reduce (2) reduce (2)
s5 reduce (3) reduce (3) reduce (3)

(G10)
(1)   S ::= A$
(2)   A ::= (A)
(3)   A ::= ()

53

Parsing with an LR Table

Use table and top-of-stack and input symbol to get action:

If action is
 shift sn : advance input one token,
 push sn on stack
 reduce X ::= α : pop stack 2* |α| times (grammar symbols
 are paired with states). In the state
 now on top of stack,
 use goto table to get next
 state sn,
 push it on top of stack
 accept : stop and accept
 error : weep (actually, produce a good error
 message)

54

Building Parse Table Example Parsing, again…
ACTION Goto

State () $ A
s0 shift to s2 goto s1
s1 accept
s2 shift to s2 shift to s5 goto s3
s3 shift to s4
s4 reduce (2) reduce (2) reduce (2)
s5 reduce (3) reduce (3) reduce (3)

s0 (())$ shift s2
s0 (s2 ())$ shift s2
s0 (s2 (s2))$ shift s5
s0 (s2 (s2) s5)$ reduce A ::= ()
s0 (s2 A)$ goto s3
s0 (s2 A s3)$ shift s4
s0 (s2 A s3) s4 $ reduce A::= (A)
s0 A $ goto s1
s0 A s1 $ ACCEPT!

(G10)
(1)   S ::= A$
(2)   A ::= (A)
(3)   A ::= ()

55

LR Parsing Algorithm

sm
Ym
sm-1

Ym-1
 .
 .
s1

Y1
s0

a1 ... ai ... an $

Action Table
 terminals and $
s
t four different
a actions
t
e
s

Goto Table
 non-terminal
s
t each item is
a a state
t number
e
s

LR Parsing
Algorithm

Stack of
states and
grammar symbols

input

output

56

Problem With LR(0) Parsing

• No lookahead
• Vulnerable to unnecessary

conflicts
– Shift/Reduce Conflicts (may reduce

too soon in some cases)
– Reduce/Reduce Conflicts

• Solutions:
– LR(1) parsing - systematic lookahead

57

LR(1) Items

•  An LR(1) item is a pair:
 (X ::= α . β, a)
–  X ::= αβ is a production
–  a is a terminal (the lookahead terminal)
–  LR(1) means 1 lookahead terminal

•  [X ::= α . β, a] describes a context of the parser
–  We are trying to find an X followed by an a, and
–  We have (at least) α already on top of the stack
–  Thus we need to see next a prefix derived from βa

58

The Closure Operation

•  Need to modify closure operation:.

Closure(Items) =
 repeat
 for each [X ::= α . Yβ, a] in Items
 for each production Y ::= γ
 for each b in First(βa)
 add [Y ::= .γ, b] to Items
 until Items is unchanged

59

Constructing the Parsing DFA (2)

•  A DFA state is a closed set of LR(1) items

•  The start state contains (S’ ::= .S$, dummy)

•  A state that contains [X ::= α., b] is labeled
with “reduce with X ::= α on lookahead b”

•  And now the transitions …

60

The DFA Transitions

•  A state s that contains [X ::= α.Yβ, b] has
a transition labeled y to the state obtained
from Transition(s, Y)
– Y can be a terminal or a non-terminal

Transition(s, Y)
 Items = {}
 for each [X ::= α.Yβ, b] in s
 add [X ! αY.β, b] to Items
 return Closure(Items)

61

LR(1)-the parse table

•  Shift and goto as before
•  Reduce

– state I with item (A→α., z) gives a reduce
A→α if z is the next character in the input.

•  LR(1)-parse tables are very big

62

LR(1)-DFA

From Andrew Appel, “Modern Compiler Implementation in Java” page 65

(G11)

S’ ::= S$

S ::= V = E
 | E

E ::= V

V ::= x
 | *E

63

LR(1)-parse table

x * = $ S E V x * = $ S E V

1 s8 s6 g2 g5 g3 8 r4 r4

2 acc 9 r1

3 s4 r3 10 r5 r5

4 s11 s13 g9 g7 11 r4

5 r2 12 r3 r3

6 s8 s6 g10 g12 13 s11 s13 g14 g7

7 r3 14 r5

64

LALR States

•  Consider for example the LR(1) states
 {[X ::= α. , a], [Y ::= β. , c]}
 {[X ::= α. , b], [Y ::= β. , d]}
•  They have the same core and can be

merged to the state
 {[X ::= α. , a/b], [Y ::= β. , c/d]}
•  These are called LALR(1) states

– Stands for LookAhead LR
– Typically 10 times fewer LALR(1) states than

LR(1)

65

For LALR(1), Collapse States ...

Combine states 6 and 13, 7 and 12, 8 and 11, 10 and 14.

66

LALR(1)-parse-table

x * = $ S E V
1 s8 s6 g2 g5 g3
2 acc
3 s4 r3
4 s8 s6 g9 g7
5
6 s8 s6 g10 g7
7 r3 r3
8 r4 r4
9 r1
10 r5 r5

67

LALR vs. LR Parsing

•  LALR languages are not “natural”
–  They are an efficiency hack on LR languages

•  You may see claims that any reasonable programming
language has a LALR(1) grammar, {Arguably this is
done by defining languages without an LALR(1)
grammar as unreasonable J }.

•  In any case, LALR(1) has become a standard for
programming languages and for parser generators, in
spite of its apparent complexity.

