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1.  Return to lexical analysis : 
application of Theory of Regular 
Languages and Finite Automata 

2.  Generating Recursive descent 
parsers  

3.  Beyond Recursive Descent Parsing I 
4.  Beyond Recursive Descent Parsing II 



2 

Concrete vs. Abstract Syntax Trees 
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parse tree =  
derivation tree =  
concrete syntax 
tree Abstract Syntax Tree (AST) 

An AST contains only the 
information needed to generate an 
intermediate representation 

Normally a compiler constructs the concrete syntax tree only implicitly 
(in the parsing process) and explicitly constructs an AST. 
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On to Context Free Grammars (CFGs) 

E ::= ID  
 
E ::= NUM 
  
E ::= E * E  
 
E ::= E / E   
 
E ::= E + E  
  
E ::= E – E   
  
E ::= ( E )  

E ::= ID |  NUM |  E * E |  E / E  |  E + E  |  E – E |  ( E )  

Usually will write this way 

E is a non-terminal symbol  
 
ID and NUM are lexical classes 
 
*, (, ), +, and – are terminal symbols.  
 
E ::= E + E is called a production rule.  
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CFG Derivations 
(G1)   E ::= ID |  NUM |  ID | E * E |  E / E  |  E + E  |  E – E |  ( E )  

E  à E * E  
    à ( E ) * E  
    à ( E + E ) * E 
    à ( 17 + E ) * E 
    à ( 17 + 4 ) * E 
    à ( 17 + 4 ) * ( E )  
    à ( 17 + 4 ) * ( E – E )  
    à ( 17 + 4 ) * ( 2 – E )  
    à ( 17 + 4 ) * ( 2 – 10 ) 
 

E 

E E 

E 

* 
( ) 

17 4 2 10 

E ( ) 

E E E E + - 

E  à E * E  
    à E * ( E )  
    à E * ( E – E ) 
    à E * ( E – 10 )  
    à E * ( 2 – 10 ) 
    à ( E ) * ( 2 – 10 ) 
    à ( E + E ) * (2 – 10 ) 
    à ( E + 4 ) * ( 2 – E )  
    à ( 17 + 4 ) * ( 2 – 10 ) 
 

The Derivation Tree for  
  ( 17 + 4 ) * (2 – 10 ) 

 Rightmost  
derivation 

 Leftmost  
derivation 
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More formally, … 

•  A CFG is a quadruple G = (N, T, R, S) where  
–  N is the set of non-terminal symbols 
–  T  is the set of terminal symbols (N and T disjoint) 
–  S ∈N  is the start symbol 
–  R ⊆ N×(N∪T)*  is a set of rules 

•  Example: The grammar of nested parentheses 
G = (N, T, R, S) where  
–  N = {S} 
–  T ={ (, ) } 
–  R ={ (S, (S)) , (S, SS), (S, ) }  

S ::= (S) | SS |  We will normally write R as 
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Derivations, more formally… 

•  Start from start symbol (S) 
•  Productions are used to derive a sequence of tokens from the 

start symbol 
•  For arbitrary strings α, β and γ comprised of both terminal and 

non-terminal symbols,  
and a production A → β,  
a single step of derivation is  
 αAγ ⇒ αβγ 
–  i.e., substitute β for an occurrence of A 

•  α ⇒* β means that b can be derived from a in 0 or more single 
steps 

•  α ⇒+ β means that b can be derived from a in 1 or more single 
steps 
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L(G) = The Language Generated by Grammar G 

}|*{)( wSTwGL +⇒∈=

The language generated by G is the set of all terminal strings  
derivable from the start symbol S:  

For any subset W of T*, if there exists a CFG G such  
that L(G) = W, then W is called a Context-Free  
Language (CFL) over T. 
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Ambiguity 

E 

E E * 

1 2 

E E + 3 

E 

E + 
1 

E 

2 3 

E E * 

Both derivation trees correspond to the string  
 
                          1 + 2 * 3 

This type of ambiguity will cause problems when we try to  
go from strings to derivation trees! 

(G1)   E ::= ID |  NUM |  ID | E * E |  E / E  |  E + E  |  E – E |  ( E )  
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Problem: Generation vs. Parsing 

•  Context-Free Grammars (CFGs) 
describe how to to generate  

•  Parsing is the inverse of generation,  
–  Given an input string, is it in the language 

generated by a CFG? 
–  If so, construct a derivation tree (normally 

called a parse tree).  
–  Ambiguity is a big problem   
 

Note : recent work on Parsing Expression Grammars (PEGs) represents an  
attempt to develop a formalism that describes parsing directly.  This is beyond  
the scope of these lectures …   
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We can often modify the grammar 
in order to eliminate ambiguity 

(G2)  
 S :: = E$ 
 
 E ::= E + T 
      |  E – T 
      |  T 
 
T ::= T * F 
      |  T / F 
      |  F  
 
F ::= NUM 
      | ID  
      | ( E )  

E 

E + 
1 

T 

2 

3 

T F * 
F 

This is the unique derivation  
tree for the string  
 
             1 + 2 * 3$ Note: L(G1) = L(G2).  

Can you prove it?  

(expressions) 

(terms) 

(factors) 

(start, $ = EOF) 

S 
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Famously Ambiguous 

(G3)  S ::= if E then S else S  |   if E then S |  blah-blah  

What does  
 
          if e1 then if e2 then s1 else s3  
 
mean?  

S 

if  then E S 

if  then E S else S 

S 

if  then E S else S 

if  then E S 

OR 
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Rewrite?  

(G4) 
S ::= WE | NE 
WE ::=  if E then WE else WE | blah-blah  
NE  ::=  if E then S  
          |  if E then WE else NE 

if  then E 

if  then E S else S 

S 

NE 

S 

WE 

Now,   
 
  if e1 then if e2 then s1 else s3  
 
has a unique derivation.  

Note: L(G3) = L(G4).  
Can you prove it?  



13 

Fun Fun Facts 

{ } { }1,1|1,1| ≥≥≥≥= nmnmL dcbadcba nmmnmmnn ∪

See Hopcroft and Ullman, “Introduction to Automata  
Theory, Languages, and Computation” 

(1) Some context free languages are inherently ambiguous --- every  
context-free grammar will be ambiguous.  For example:  

(2) Checking for ambiguity in an arbitrary context-free 
     grammar is not decidable!  Ouch!  

(3) Given two grammars G1 and G2, checking L(G1) = L(G2) is 
      not decidable!  Ouch!  
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Generating Lexical Analyzers  

Lexical  
Analyzer 

Source 
Program tokens 

Scanner  
Generator 
“LEX” 

Lexical specification 

DFA Transitions 

Parser      

The idea : use regular expressions as the basis of a  
lexical specification.  The core of the lexical analyzer is  
then a deterministic finite automata (DFA)   



Recall from Regular Languages and Finite 
Automata (Part 1A)  
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Traditional Regular Language Problem 

Given a regular expression,  
 
 
 
and an input string    ,  determine if   
 
.  

e
w )(eLw∈

One method: Construct a DFA M from e and test if it accepts w. 
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Something closer to the “lexing 
problem” 

Given an ordered list of regular expressions,  
 
 
 
and an input string    , find a list of pairs  
 
  
 
such that  
  
 
 
 
 
.  

1e 2e ke… 

nwwww ...)1 21=

w

)()2
jij eLw ∈

)(...),,(),,( ,2211 nn wiwiwi

rule)(priority )()3 sieLw jsj ≤→∈

match)(longest )(: sj eLuws ∉∀→
ε≠∈∀∀ ++ uwwwuj njj :)(prefix:)4 21 !
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Define Tokens with Regular Expressions (Finite 
Automata) 

Keyword: if 

1 i 2 f 3 

1 i 2 f 3 

0 

Σ-{f} 
Σ-{i} Σ 

This FA is really shorthand for:  

Σ “dead state” 
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Define Tokens with Regular Expressions (Finite 
Automata) 

Keyword:  
if 

1 i 2 f 3 KEY(IF)  

Keyword:  
then 

1 t 2 h 3 
KEY(then)  

5 

e 
n 

4 

Regular Expression Finite Automata Token 

Identifier:   
[a-zA-Z][a-zA-Z0-9]* 

1 2 [a-zA-Z] 

[a-zA-Z0-9] 

ID(s)  
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Define Tokens with Regular Expressions (Finite 
Automata) 

Regular Expression Finite Automata Token 

number:   
[0-9][0-9]* 

1 2 [0-9] 

[0-9] 

NUM(n)  

real:   
([0-9]+ ‘.’ [0-9]*) 
  | ([0-9]* ‘.’ [0-9]+) 

1 

3 

[0-9] NUM(n)  2 
[0-9] 

[0-9] 
. 

4 

. 

[0-9] 5 [0-9] 
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No Tokens for “White-Space”  

White-space:   
(‘ ‘ | ‘\n’ | ‘\t’)+ 
| ‘%’ [A-Za-z0-9’ ‘]+’\n’ 

1 

3 

% 2 
[A-za-z0-9’ ‘] 

4 

‘ ‘ 

\n 

\t 
\n 
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Constructing a Lexer 

1e
2e

ke

…
 

   INPUT:  
an ordered  
list of regular 
expressions 

1NFA
2NFA

kNFA

…
 

Construct all  
corresponding 
finite automata 

use priority NFA DFA

Construct a single  
non-deterministic 
finite automata 

Construct a single  
deterministic 
finite automata 

(1) Keyword : then 
 
(2) Ident : [a-z][a-z]* 
 
(2) White-space: ‘ ‘  

1 t 
2:ID 

h 3:ID 

5:THEN 

e 

n 

4:ID 

7:W 

‘ ‘ 

6:ID [a-mo-z] 

[a-z] 

[a-su-z] 
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What about longest match? 

1 t 
2:ID 

h 3:ID 

5:THEN 

e 

n 

4:ID 

7:W 

‘ ‘ 

6:ID [a-mo-z] 

[a-z] 

[a-su-z] 

|then thenx$   1   0  
t|hen thenx$   2   2 
th|en thenx$   3   3  
the|n thenx$   4   4 
then| thenx$   5   5 
then |thenx$   0   5 EMIT KEY(THEN) 
then| thenx$   1   0 RESET 
then |thenx$   7   7 
then t|henx$   0   7 EMIT WHITE(‘ ‘) 
then |thenx$   1   0 RESET  
then t|henx$   2   2  
then th|enx$   3   3  
then the|nx$   4   4  
then then|x$   5   5  
then thenx|$   6   6  
then thenx$|   0   6 EMIT ID(thenx) 

Start in initial state,  
Repeat: 
   (1) read input until dead state is  
   reached.  Emit token associated 
   with last accepting state.  
   (2) reset state to start state 
 

| = current position,      $ = EOF 

Input         
current state 

last accepting state 
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Predictive (Recursive Descent) Parsing 
Can we automate this?  

(G5)  
  
S :: = if E then S else S 
        | begin S L 
        | print E 
 
E ::= NUM = NUM  
 
L ::= end 
      |  ; S L  

int tok = getToken(); 
 
void advance() {tok = getToken();}  
void eat (int t) {if (tok == t) advance(); else error();} 
 
void S() {switch(tok) { 
      case IF:    eat(IF); E(); eat(THEN);  
                  S(); eat(ELSE); S(); break;  
      case BEGIN: eat(BEGIN); S(); L(); break;  
      case PRINT: eat(PRINT); E(); break;  
      default: error(); 
     }} 
 
void L() {switch(tok) { 
      case END:  eat(END); break; 
      case SEMI: eat(SEMI); S(); L(); break;  
      default: error();  
     }} 
 
void E() {eat(NUM) ; eat(EQ); eat(NUM); } 
 

From Andrew Appel, “Modern Compiler Implementation in Java” page 46 

Parse corresponds to a left-most derivation 
constructed in a “top-down” manner 
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 Eliminate Left-Recursion 

A ::= Aα1 | Aα2 | . . . | Aαk | 
        β1 | β2 | . . . | βn  

Immediate left-recursion  

A ::= β1 A’ | β2 A’ | . . . | βn A’   

A’ ::= α1 A’ | α2 A’| . . . | αk A’ | ε 

For eliminating left-recursion in general, see Aho and Ullman. 

A 

A 

A

β 

α 

α 

A 

A’ 
β 
α 

α 

A’ 

A’ 

ε 





27 

FIRST and FOLLOW  

    FIRST[X] = the set of terminal symbols that  
                      can begin strings derived from X 
 
FOLLOW[X] = the set of terminal symbols that  
                        can immediately follow X in some  
                        derivation 
 
   nullable[X] = true of X can derive the empty string,  
                        false otherwise 
                     

For each non-terminal X we need to compute 

nullable[Z] = false, for Z in T 
  
nullable[Y1 Y2 … Yk] = nullable[Y1] and … nullable[Yk], for Y(i) in N union T.  

FIRST[Z] = {Z}, for Z in T 
  
FIRST[ X Y1 Y2 … Yk] = FIRST[X] if not nullable[X] 
 
FIRST[ X Y1 Y2 … Yk] =FIRST[X] union FIRST[Y1 … Yk] otherwise 
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Computing First, Follow, and nullable 

For each terminal symbol Z 
   FIRST[Z] := {Z};  
   nullable[Z] := false;  
 
For each non-terminal symbol X 
  FIRST[X] := FOLLOW[X] := {};  
  nullable[X] := false;  
 
repeat 
   for each production X à Y1 Y2 … Yk 
      if Y1, … Yk are all nullable, or k = 0 
         then nullable[X] := true  
      for each i from 1 to k, each j from i + I to k 
         if Y1 … Y(i-1) are all nullable or i = 1 
            then  FIRST[X] := FIRST[X] union FIRST[Y(i)] 
         if Y(i+1) … Yk are all nullable or if i = k 
            then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FOLLOW[X] 
         if Y(i+1) … Y(j-1) are all nullable or i+1 = j 
            then FOLLOW[Y(i)] := FOLLOW[Y(i)] union FIRST[Y(j)]  
until there is no change 
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But wait! What if there are conflicts in 
the predictive parsing table?  

(G7)  
 
 S :: = d | X Y S 
 
Y ::= c |  
 
X ::= Y | a 
  

S 
 
Y  
 
X 

Nullable          FIRST          FOLLOW 

false 
 
true  
 
true 

{ c,d ,a} 
 
{ c }  
 
{ c,a }  

{  } 
 
{ c,d,a }  
 
{ c, a,d }  

S 
 
Y  
 
X 

a                            c                                    d 

{ S ::= X Y S } 
 
{ Y ::=  }  
 
{ X ::= a,  X ::= Y }  

{ S ::= X Y S } 
 
{ Y ::=  , Y ::= c}  
 
{ X ::= Y }  

{ S ::= X Y S, S ::= d } 
 
{ Y ::=  }  
 
{ X ::= Y }  

The resulting “predictive” table is not so predictive…. 
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LL(1), LL(k), LR(0), LR(1), …  

•  LL(k) : (L)eft-to-right parse, (L)eft-most 
derivation, k-symbol lookahead.  Based on 
looking at the next k tokens, an LL(k) parser 
must predict the next production. We have been 
looking at LL(1).  

•  LR(k) : (L)eft-to-right parse, (R)ight-most 
derivation, k-symbol lookahead. Postpone 
production selection until the entire right-hand-
side has been seen (and as many as k symbols 
beyond).   

•  LALR(1) : A special subclass of LR(1).  
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Example  

(G8)  
 
 S :: = S ; S | ID = E | print (L) 
 
E ::= ID | NUM | E + E | (S, E)  
 
L ::= E | L, E 

(G8)  
 
 S :: = S SEMI S | ID EQUAL E | PRINT LPAREN L RPAREN 
 
E ::= ID | NUM | E PLUS E | LPAREN S COMMA E RPAREN 
 
L ::= E | L COMMA E 

To be consistent, I should write the following, but I won’t… 
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A right-most derivation …  

(G8)  
 
S ::= S ; S  
      | ID = E  
      | print (L) 
 
E ::= ID  
      | NUM  
      | E + E  
      | (S, E)  
 
L ::= E  
      | L, E 

        S 
    à S ; S  
    à S ; ID = E 
    à S ; ID = E + E 
    à S ; ID = E + ( S, E ) 
    à S ; ID = E + ( S, ID ) 
    à S ; ID = E + ( S, d ) 
    à S ; ID = E + ( ID = E, d )  
    à S ; ID = E + ( ID = E + E, d ) 
    à S ; ID = E + ( ID = E + NUM, d ) 
    à S ; ID = E + ( ID = E + 6, d ) 
    à S ; ID = E + ( ID = NUM + 6, d ) 
    à S ; ID = E + ( ID = 5 + 6, d ) 
    à S ; ID = E + ( d = 5 + 6, d ) 
    à S ; ID = ID + (d = 5 + 6, d ) 
    à S ; ID = c + ( d = 5 + 6, d )  
    à S ; b = c + ( d = 5 + 6, d ) 
    à ID = E ; b = c + ( d = 5 + 6, d ) 
    à ID = NUM ; b = c + ( d = 5 + 6, d) 
    à ID = 7 ; b = c + ( d = 5 + 6, d ) 
    à a = 7 ; b = c + ( d = 5 + 6, d ) 
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Now, turn it upside down …  
à  a = 7 ; b = c + ( d = 5 + 6, d ) 
à  ID = 7 ; b = c + ( d = 5 + 6, d ) 
à  ID = NUM; b = c + ( d = 5 + 6, d ) 
à ID = E ; b = c + ( d = 5 + 6, d ) 
à S ; b = c + ( d = 5 + 6, d ) 
à  S ; ID = c + ( d = 5 + 6, d )  
à  S ; ID = ID + ( d = 5 + 6, d) 
à S ; ID = E + ( d = 5 + 6, d ) 
à  S ; ID = E + ( ID = 5 + 6, d ) 
à  S ; ID = E + ( ID = NUM + 6, d ) 
à  S ; ID = E + ( ID = E + 6, d )  
à  S ; ID = E + ( ID = E + NUM, d ) 
à S ; ID = E + ( ID = E + E, d ) 
à S ; ID = E + ( ID = E, d )  
à S ; ID = E + ( S, d ) 
à S ; ID = E + ( S, ID ) 
à S ; ID = E + ( S, E ) 
à S ; ID = E + E 
à S ; ID = E 
à S ; S  
    S 
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Now, slice it down the middle…  
 
ID  
ID = NUM 
ID = E  
S 
S ; ID  
S ; ID = ID 
S ; ID = E 
S ; ID = E + ( ID  
S ; ID = E + ( ID = NUM 
S ; ID = E + ( ID = E 
S ; ID = E + ( ID = E + NUM 
S ; ID = E + ( ID = E + E 
S ; ID = E + ( ID = E 
S ; ID = E + ( S 
S ; ID = E + ( S, ID  
S ; ID = E + ( S, E ) 
S ; ID = E + E 
S ; ID = E 
S ; S  
S 
 

a = 7 ; b = c + ( d = 5 + 6, d ) 
  = 7 ; b = c + ( d = 5 + 6, d )           
      ; b = c + ( d = 5 + 6, d ) 
      ; b = c + ( d = 5 + 6, d ) 
      ; b = c + ( d = 5 + 6, d ) 
          = c + ( d = 5 + 6, d )  
              + ( d = 5 + 6, d ) 
              + ( d = 5 + 6, d ) 
                    = 5 + 6, d ) 
                        + 6, d ) 
                        + 6, d )  
                           , d ) 
                           , d ) 
                           , d )  
                           , d ) 
                               )                                             
 
 
 
 

A stack of terminals and  
non-terminals 

The rest of the input string  
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Now, add some actions. s = SHIFT, r = REDUCE 

 
ID  
ID = NUM 
ID = E  
S 
S ; ID  
S ; ID = ID 
S ; ID = E 
S ; ID = E + ( ID  
S ; ID = E + ( ID = NUM 
S ; ID = E + ( ID = E 
S ; ID = E + ( ID = E + NUM 
S ; ID = E + ( ID = E + E 
S ; ID = E + ( ID = E 
S ; ID = E + ( S 
S ; ID = E + ( S, ID  
S ; ID = E + ( S, E ) 
S ; ID = E + E 
S ; ID = E 
S ; S  
S 
 
 
 
 

a = 7 ; b = c + ( d = 5 + 6, d ) 
   = 7 ; b = c + ( d = 5 + 6, d ) 
         ; b = c + ( d = 5 + 6, d ) 
         ; b = c + ( d = 5 + 6, d ) 
         ; b = c + ( d = 5 + 6, d ) 
              = c + ( d = 5 + 6, d )  
                    + ( d = 5 + 6, d ) 
                    + ( d = 5 + 6, d ) 
                            = 5 + 6, d ) 
                                  + 6, d ) 
                                  + 6, d )  
                                       , d ) 
                                       , d ) 
                                       , d )  
                                            ) 
                                            ) 
 
 
 
 
 
 

s 
s, s 
r E ::= NUM 
r S ::= ID = E 
s, s 
s, s 
r E ::= ID 
s, s, s 
s, s 
r E ::= NUM 
s, s 
r E ::= NUM 
r E ::= E+E, s, s 
r S ::= ID = E 
R E::= ID 
s, r E ::= (S, E) 
r E ::= E + E 
r S ::= ID = E 
r S ::= S ; S  
 
 
 
 
 
 
 

ACTIONS 
SHIFT = LEX + move token to stack 
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LL(k) vs. LR(k) reductions  

)',)((' *** TwNTwA ∈∪∈⇒→ ββ

)(kLL )(kLR

'w
k token look ahead 

Stack 

A β (left-most  
symbol at 
top) 

'w
k token look  
ahead 

Stack 

Aβ(right-most  
symbol at 
top) 

A

The language of this 
Stack IS REGULAR! 
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Q: How do we know when to shift and 
when to reduce? A: Build a FSA from 

LR(0) Items! 
(G10) 
 

S  ::= A $   
 
A ::=  (A )   
      |  (   ) 

    S  ::=  • A $ 
S ::= A •  $ 
A ::=  •  (A) 
A ::= ( • A ) 
A ::= ( A • ) 
A ::= ( A  )  • 
A ::=  •  (   ) 
A ::= (  •  ) 
A ::= (      )  • 

LR(0) items indicate what is on the stack 
(to the left of the • ) and what is still in  
the input stream (to the right of the • ) 

If  
 
   X ::= αβ	


	


is a production, then 
 
   X ::= α • β	


 
is an LR(0) item. 
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LR(k) states (non-deterministic)  

),( 21 kaaaA !βα •→

'w Stack: α

'*
21 waaa k ⇒!β

(right-most  
symbol at 
top) 

The state 

should represent this situation:  

Input: 

with 
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Key idea behind LR(0) items 

•  If the “current state” contains the item  
A ::=  α • c β  and the current symbol in the input buffer is c  
–  the state prompts parser to perform a shift action 
–  next state will contain A ::=  α c • β  

•  If the “state” contains the item A ::=  α • 
–  the state prompts parser to perform a reduce action 

•  If the “state” contains the item S ::= α • $  
and the input buffer is empty 
–  the state prompts parser to accept 

•  But How about  A ::=  α • X β  where X is a nonterminal? 
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The NFA for LR(0) items 

•  The transition of LR(0) items can be represented 
by an NFA, in which 
–  1. each LR(0) item is a state, 
–  2. there is a transition from item A ::= α • c β  
   to item A ::= αc • β with label c, where c is a terminal 

symbol 
–  3. there is an ε-transition from item A ::= α • X β  to 

X ::= • γ,  where X is a non-terminal 
–  4. S ::= • A $ is the start state 
–  5. A ::= α • is a final state.	





45 

Example NFA for Items 

     S ::= • A $  S ::= A • $   A ::= • (A) 
A ::= ( • A )  A ::= (A • )   A ::= (A) • 
A ::= • ( )   A ::= (•)   A ::= ( ) • 

A ::= ( A • ) 

A ::= ( • ) 

A ::= (A) • S ::= A • $ S ::= • A $ 

A ::= • ( )  A ::= (  ) • 

A ::= ( • A ) A ::= • (A ) 

A 

A (


(
 )


)
ε	



ε	



ε	
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The DFA from LR(0) items 

•  After the NFA for LR(0) is constructed, the resulting DFA 
for LR(0) parsing can be obtained by the usual 
NFA2DFA construction. 

•  we thus require  
–   ε-closure (I)   
–   move(S, a)  

Fixed Point Algorithm for Closure(I) 
–  Every item in I is also an item in Closure(I) 
–  If A ::=  α • B β  is in Closure(I) and B ::= • γ is an item,  

then add B ::= • γ to Closure(I) 
–  Repeat until no more new items can be added to 

Closure(I) 
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Examples of Closure 

Closure({A ::= ( • A )}) =  
A ::=      (  • A)  
A  ::=   •  (A) 
A  ::=  •  (   ) 

 

S ::=    • A $  
A ::=   •  (A) 
A ::=  •  (   ) 

 

•  closure({S  ::=  • A $}) 

    S  ::=  • A $ 
S ::= A •  $ 
A ::=  •  (A) 
A ::= ( • A ) 
A ::= ( A • ) 
A ::= ( A  )  • 
A ::=  •  (   ) 
A ::= (  •  ) 
A ::= (      )  • 
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Goto() of a set of items 

•  Goto finds the new state after consuming a 
grammar symbol while in the current state 

•  Algorithm for Goto(I, X) 
where I is a set of items  
and X is a non-terminal  

Goto(I, X) = Closure( { A ::=  α X • β | A ::=  α • X β in I })  

•  goto is the new set obtained by 
“moving the dot” over X 
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Examples of Goto 

•  Goto ({A ::= •(A)}, () 





A ::=      (   • A)  
A ::=   •  (A) 
A ::=  •  (   ) 

 •  Goto ({A ::= ( • A)}, A) 

A ::= (A •   ) 
 

 

    S  ::=  • A $ 
S ::= A •  $ 
A ::=  •  (A) 
A ::= ( • A ) 
A ::= ( A • ) 
A ::= ( A  )  • 
A ::=  •  (   ) 
A ::= (  •  ) 
A ::= (      )  • 
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•  Essentially the usual NFA2DFA construction!! 
•  Let A be the start symbol and S a new start 

symbol.  
•  Create a new rule S ::= A $ 
•  Create the first state to be Closure({ S ::= • A $}) 
•  Pick a state I 

–  for each item A ::= α • X β  in I 
•  find Goto(I, X) 
•  if Goto(I, X) is not already a state, make one 
•  Add an edge X from state I to Goto(I, X) state 

•  Repeat until no more additions possible 

Building the DFA states 
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DFA Example 

S ::= • A$ 
A  ::= • (A) 
A ::= • ( ) 

s0 S ::= A • $ 
s1 A 

A ::= ( • A) 
A ::=  ( • ) 
A ::= • (A) 
A  ::= • ( ) 

s2 

(

A ::= (A • ) 

A 

s3 
(


A ::=  ( ) • 

)
s5 
A ::= (A) • 

)

s4 
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Building Parse Table Example 

S ::= • A$ 
A  ::= • (A) 
A ::= • ( ) 

s0 S ::= A • $ 
s1 A 

A ::= ( • A) 
A ::=  ( • ) 
A ::= • (A) 
A  ::= • ( ) 

s2 

(

A ::= (A • ) 

A 

s3 
(


A ::=  ( ) • 

)
s5 
A ::= (A) • 

)

s4 

Creating the Parse Table(s) 

State ( ) $ A
s0 shift to s2 goto s1
s1 accept  
s2 shift to s2 shift to s5  goto s3
s3 shift to s4  
s4 reduce (2) reduce (2) reduce (2)  
s5 reduce (3) reduce (3) reduce (3)  

(G10) 
(1)   S  ::= A$  
(2)   A ::=  (A ) 
(3)   A ::=  (   ) 
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Parsing with an LR Table 

Use table and top-of-stack and input symbol to get action: 
 
If action is  
            shift sn  : advance input one token,  
                            push sn on stack 
  reduce X ::= α : pop stack 2* |α| times (grammar symbols  
                            are paired with states).  In the state  
                            now on top of stack,  
                            use goto table to get next  
                            state sn,  
                            push it on top of stack 
              accept : stop and accept 
                 error : weep (actually, produce a good error 
                                        message)  
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Building Parse Table Example Parsing, again… 
ACTION Goto

State ( ) $ A
s0 shift to s2 goto s1
s1 accept  
s2 shift to s2 shift to s5  goto s3
s3 shift to s4  
s4 reduce (2) reduce (2) reduce (2)  
s5 reduce (3) reduce (3) reduce (3)  

s0                                   (())$                           shift s2 
s0 ( s2                             ())$                           shift s2 
s0 ( s2 ( s2                        ))$                          shift s5 
s0 ( s2 ( s2 ) s5                  )$                           reduce A ::= () 
s0 ( s2 A                            )$                            goto s3 
s0 ( s2 A s3                       )$                            shift s4 
s0 ( s2 A s3 ) s4                 $                            reduce A::= (A) 
s0 A                                    $                            goto s1 
s0 A s1                               $                            ACCEPT! 
                    

(G10) 
(1)   S  ::= A$  
(2)   A ::=  (A ) 
(3)   A ::=  (   ) 
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LR Parsing Algorithm 

sm 
Ym 
sm-1 

Ym-1 
   . 
   . 
s1 

Y1 
s0 

a1  ... ai  ... an $ 

Action Table 
      terminals and $ 
s 
t         four different  
a         actions 
t 
e 
s 

Goto Table 
       non-terminal 
s 
t            each item is 
a           a state  
t           number 
e 
s 

 
LR Parsing 
Algorithm 

Stack of  
states and  
grammar symbols 

input 

output 
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Problem With LR(0) Parsing 

• No lookahead 
• Vulnerable to unnecessary 

conflicts 
– Shift/Reduce Conflicts (may reduce 

too soon in some cases) 
– Reduce/Reduce Conflicts 

• Solutions: 
– LR(1) parsing - systematic lookahead 



57 

LR(1) Items 

•  An LR(1) item is a pair: 
             (X ::= α . β,  a) 
–  X ::= αβ is a production 
–  a is a terminal (the lookahead terminal) 
–  LR(1) means 1 lookahead terminal 

 

•  [X ::= α . β, a] describes a context of the parser   
–  We are trying to find an X followed by an a, and  
–  We have  (at least) α already on top of the stack 
–  Thus we need to see next a prefix derived from βa 
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The Closure Operation 

•  Need to modify closure operation:. 

Closure(Items) = 
   repeat 
      for each [X ::= α . Yβ, a] in Items 
          for each production Y ::= γ  
               for each b in First(βa) 
                    add [Y ::= .γ, b] to Items 
   until Items is unchanged 
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Constructing the Parsing DFA (2) 

•  A DFA state is a closed set of LR(1) items 

•  The start state contains (S’ ::= .S$, dummy)  

•  A state that contains [X ::= α., b] is labeled 
with “reduce with X ::= α on lookahead b” 

•  And now the transitions … 
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The DFA Transitions 

•  A state s that contains [X ::= α.Yβ, b] has 
a transition labeled y to the state obtained 
from Transition(s, Y) 
– Y can be a terminal or a non-terminal 

 
Transition(s, Y)  
   Items = {} 
   for each [X ::= α.Yβ, b] in s 
        add [X ! αY.β, b] to Items 
   return Closure(Items) 
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LR(1)-the parse table 

•  Shift and goto as before 
•  Reduce 

– state I with item (A→α., z) gives a reduce 
A→α if z is the next character in the input.  

•  LR(1)-parse tables are very big 
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LR(1)-DFA 

From Andrew Appel, “Modern Compiler Implementation in Java” page 65 

(G11)  
 
S’ ::= S$ 
 
S ::= V = E  
      | E 
 
E ::= V 
 
V ::= x 
      | *E 
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LR(1)-parse table 

x * = $ S E V x * = $ S E V 

1 s8 s6 g2 g5 g3 8 r4 r4 

2 acc 9 r1 

3 s4 r3 10 r5 r5 

4 s11 s13 g9 g7 11 r4 

5 r2 12 r3 r3 

6 s8 s6 g10 g12 13 s11 s13 g14 g7 

7 r3 14 r5 
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LALR States 

•  Consider for example the LR(1) states 
             {[X ::= α. , a], [Y ::= β. , c]} 
             {[X ::= α. , b], [Y ::= β. , d]} 
•  They have the same core and can be 

merged to the state  
             {[X ::= α. , a/b], [Y ::= β. , c/d]} 
•  These are called LALR(1) states  

– Stands for LookAhead LR 
– Typically 10 times fewer LALR(1) states than 

LR(1) 
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For LALR(1), Collapse States ... 

Combine states 6 and 13, 7 and 12, 8 and 11, 10 and 14. 



66 

LALR(1)-parse-table 

x * = $ S E V 
1 s8 s6 g2 g5 g3 
2 acc 
3 s4 r3 
4 s8 s6 g9 g7 
5 
6 s8 s6 g10 g7 
7 r3 r3 
8 r4 r4 
9 r1 
10 r5 r5 
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LALR vs. LR Parsing 

•  LALR languages are not “natural” 
–  They are an efficiency hack on LR languages 

•  You may see claims that any reasonable programming 
language has a LALR(1) grammar, {Arguably this is 
done by defining languages without an LALR(1) 
grammar as unreasonable J }. 

•  In any case, LALR(1) has become a standard for 
programming languages and for parser generators, in 
spite of its apparent complexity.  


