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Objectives

I The course focuses on algorithms used in bioinformatics
I The algorithms presented in this course could be also

applied in other data-rich fields.
I At the end of the course the student should be able to

describe the main aspects of the algorithms.
I The student should understand how bioinformatics

combines biology and computing.
I The exam papers will not contain biological questions.
I References and links to additional material at the end of

the lecture notes may help the students to understand
better the applications of the algorithms (this is not
essential to answer exam questions).
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Overview of the course

First we provide an overview of the most important biological
concepts. Then we learn how to compare 2 strings representing
DNA sequences (or different parts of the same string).
Searching a database for nearly exact matches is a key task in
a Bioinformatics lab. The big efforts in sequencing human
genomes and also single cell genomes require new algorithms
to deal with big sequence data. We learn how to build trees to
study sequences relationship and how to cluster biological
data. We use hidden Markov models to predict properties of
sequence parts such as exon/intron arrangements in a gene or
the structure of a membrane protein. Patterns dispersed in
sequences could be identified by iterated techniques. Then we
study how to reconstruct genetic networks from data. A large
set of biochemical reactions could be simulated by using an
algorithm. Material and figure acknowledgements at the end of
this notes and during the lectures.
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Topics and List of algorithms

I Basic concepts in Genetics-Genomics.
I Dynamic programming (Longest Common Subsequence,

Needleman-Wunsch, Smith-Waterman, Hirschberg,
Nussinov RNA folding).

I Homology database search (Blast, Patternhunter).
I Progressive alignment (Clustal).
I Genome Assembly (Burrows-Wheeler transform)
I Next Generation sequencing (De Bruijn graph)
I Phylogeny - parsimony-based - (Fitch, Sankoff).
I Phylogeny - distance based - (UPGMA,Neighbor Joining).
I Clustering (K-means, Markov Clustering)
I Hidden Markov Models applications in Bioinformatics

(Genescan, TMHMM).
I Pattern search in sequence alignment (Gibbs sampling).
I Biological Networks reconstruction (Wagner) and

simulation (Gillespie).
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1 Comparison between system networks and biological systems

from Andrianantoandro et. al. Mol Syst Biol (2006)
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(what is in the previous figure)
from bottom: Molecules (for example genes (strings of bases) and
proteins (strings of amino acids)), reactions (modification of
molecules), pathways (networks of reactions), cells (networks of
pathways), tissues (networks of cells), organs (networks of tissues),
organisms (networks of organs?). The figures below (from
http://bionumbers.hms.harvard.edu/ and Oltvai and Barabasi) make
the point of biological numeracy and that there is plenty of variability
at the ”bottom, i.e. lower scales”.
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Basic concepts in genetics
DNA could be thought as a string of symbols from a 4-letter
(bases) alphabet, A (adenine), T (thymine), C (cytosine) and G
(guanine). In the double helix A pairs with T, C with G (so only
the sequence of one filament is vital to keep). A gene is a string
of DNA that contains information for a specific cell function. The
Genome is the entire DNA in a cell nucleus.
RNA is same as DNA but T is replaced by U (uracil); proteins
are strings of amino acids from an alphabet of 20. The proteins
have a 3D shape that could be described by a graph. The
genetic code is a map between 61 triplets of DNA bases and 20
amino acids.
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Comparing CS and Biological information
from www.nsta.org/publications/news/story.aspx?id=47561
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Useful concepts : Strings, polymers, graphs

Unit: DNA base (A (adenine), T (thymine), C (cytosine) and G
(guanine))
Polymer: DNA molecule
Unit: RNA base (A (adenine), U (uracil), C (cytosine) and G
(guanine)) Polymer: RNA molecule
Unit: amino acid (there are 20 amino acids) Polymer: the
protein (a linear, unbranched chain of amino acids)
Polymers can be thought as strings (the information is the
sequence of symbols) or as graph (the information is the 3
dimensional structure)
the strings undergo modifications of length n-units (mutations
(base or amino acid replacement), insertions (adding more
bases or amino acids), deletions (loss of n bases or amino
acids)); strings algorithms on alignment, tree, searching for
conserved motifs.
The graph topology determines the 3D connectivity with other
graphs (forming networks).
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DNA and chromosomes
In eukaryotes the genetic information is distributed over
different DNA molecules. A human cell contains 24 different
such chromosomes. If all DNA of a human cell would be laid out
end-to-end it would reach approximately 2 meters. The nucleus
however measures only 6µm. Equivalent of packing 40 km of
fine thread into a tennis ball with a compression ratio of 10000.
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DNA is something we can read and write
Sequencing costs have plummeted from 2.7 billion dollars for the first
human genome in 2003 down to 1000 dollars today; Base errors is
now 1 in 10 million. An average size book could be converted into
thousands DNA sequences each encoding data block, an address
specifying the location of the data block in the bit stream, and flanking
common sequences to facilitate wet lab procedures to enable the
reading. This library could be synthesized by ink-jet printed in
high-fidelity DNA microchips.
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The flow of biological information
DNA makes RNA makes proteins (the 3D graph below); given
the pairing rule in a DNA double strands molecule, all the
information is in each single strand. The RNA is termed mRNA
(messenger); triplets of bases of mRNA are copied into a chain
of amino acids (the protein) according to the genetic code.
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One gene (a set of bases with begin and end signals) contains
information for one protein (at least)
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The Genetic code: a mapping function between DNA and Proteins

Figure : The genetic code provides the information for the translation
of codons (triplets of bases, in black) into amino acids (single and
triple letter code in red) that are chained together to form a protein; 61
codons code for 20 amino acids (differences on the right); 3 specific
codons code a “stop” signal; note that C exists in two states.
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Basic concepts in biocircuits

Genes are activated or repressed by regulatory proteins which
are coded the same or other genes.
A chemical reaction converts chemical compounds (analogous
to a production rule)
An enzyme is a protein that accelerates chemical reactions.
Each enzyme is encoded by one or more genes.
A pathway is a linked set of reactions within a cell (analogous to
a chain of rules)
A pathway is a conceptual unit of the metabolism; it represents
an ordered set of interconnected, directed biochemical
reactions
The set of metabolic pathways makes the metabolic network
which makes the cell phenotype.
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The structure of biocircuits
The top figure shows the regulation of genes through proteins
acting as activators (a) and repressors (b); the bottom figure
shows that the regulation of proteins could occur via activation
or inactivation of other proteins or parts of the same protein.
Large scale network of circuits can be designed (see for
instance http://2014.igem.org/)
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Genes form networks

Cells contain large gene and protein networks (left; from
Bolouri). Gene connectivity could be studied (from Barabasi);
some genes could be more important than others (red circles in
the figure in the right)
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Pathways form (metabolic) reaction Networks (from expasy.org)
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Cells make networks (tissues and organs)
A human cell (in average it measures 10µm across); the
stomach tissue (figure below) is a network of cells
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Diseases form networks
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Comparing regulatory networks in genomes and Operating
Systems
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Data repositories (few examples to try):
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Bioinformatics future challenges: integrating data and scales
Often bioinformaticians are specialised in one type of biological
data (for example sequence or gene expression data) or on
biological processes at one specific scale. We can observe
what happens at almost all scales, from the whole organism
down to the molecular level; however, putting things together in
order to obtain real understanding is much more difficult and
less developed.
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Bioinformatics library
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2: Dynamic programming algorithms for sequence alignment
Typical tasks: align genome and protein sequences (below the
results of the analysis of the differences between human and
mouse genome sequences, each of 3 billion DNA bases); the
task is to detect all differences at the single base to block of
bases levels. In the RNA folding problem we want to align a
molecule with itself. Algorithms in this lecture: Longest
common subsequence, Needleman-Wunsch, Smith-Waterman,
Affine gap, Hirschberg, Nussinov RNA folding.
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2 Sequence Alignment: The Biological problem

Figure : Type and frequency of mutations (replacements, insertions,
deletions) in the human genome per generation; mutations change
single DNA bases (SNP polymorphism) or rearrange DNA strings at
different length scales. In sequence alignment we compare
sequences that are different because of mutations.
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Sequence Alignment

Alignment is a way of arranging two DNA or protein sequences
to identify regions of similarity that are conserved among
species. Each aligned sequence appears as a row within a
matrix. Gaps are inserted between the amino acids of each
sequence so that identical or similar bases in different
sequences are aligned in successive positions. Each gap
spans one or more columns within the alignment matrix. Given
two strings x = x1, x2, , xM , y = y1, y2, , yN , an alignment is an
assignment of gaps to positions 0, ,M in x, and 0, ,N in y, so as
to line up each letter in one sequence with either a letter, or a
gap in the other sequence.
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Figure : The Hamming distance is a column by column number of
mismatches; the Edit distance between two strings is the minimum
number of operations (insertions, deletions, and substitutions) to
transform one string into the other.
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Figure : Create a matrix M with one sequence as row header and the
other sequence as column header. Assign a ONE where the column
and row site matches (diagonal segments), a ZERO otherwise
(horizontal or vertical segments); sequence alignment can be viewed
as a Path in the Edit Graph. The edit graph is useful to introduce the
dynamic programming technique. 28 / 235



Dynamic programming, DP

DP is a method for reducing a complex problem to a set of identical
sub-problems. The best solution to one sub-problem is independent
from the best solution to the other sub-problems. Recursion is a
top-down mechanism, we take a problem, split it up, and solve the
smaller problems that are created; DP is a bottom-up mechanism:
we solve all possible small problems and then combine them to
obtain solutions for bigger problems. The reason that this may be
better is that, using recursion, it is possible that we may solve the
same small subproblem many times. Using DP, we solve it once.
Consider the Fibonacci Series: F (n) = F (n − 1) + F (n − 2) where
F (0) = 0 and F (1) = 1. A recursive algorithm will take exponential
time to find F(n) while a DP solution takes only n steps. A recursive
algorithm is likely to be polynomial if the sum of the sizes of the
subproblems is bounded by kn. If, however, the obvious division of a
problem of size n results in n problems of size n-1 then the recursive
algorithm is likely to have exponential growth.
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The Longest Common Subsequence (LCS)

A subsequence of a string v, is a set of characters that appear
in left-to-right order, but not necessarily consecutively. A
common subsequence of two strings is a subsequence that
appears in both strings. Substrings are consecutive parts of a
string, while subsequences need not be.
A longest common subsequence is a common subsequence of
maximal length. Example:
v1 = 〈A,C,B,D,E ,G,C,E ,D,B,G〉 and
v2 = 〈B,E ,G,C,F ,E ,U,B,K 〉
the LCS is 〈B,E ,G,C,E ,B〉.
With respect to DNA sequences:
v1 =AAACCGTGAGTTATTCGTTCTAGAA
v2 =CACCCCTAAGGTACCTTTGGTTC
LCS is ACCTAGTACTTTG
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The Longest Common Subsequence (LCS)

I The LCS problem is the simplest form of sequence
alignment; it allows only insertions and deletions (no
mismatches).

I Given two sequences v = v1 v2 , vm and w = w1 w2 ,wn.
The LCS of v and w is a sequence of positions in v:
1 < i1 < i2 << it < m and a sequence of positions in w:
1 < j1 < j2 << jt < n such that it letter of v equals to
jt -letter of w and t is maximal

I In the LCS problem, we score 1 for matches and 0 for
indels (we will see that in DNA sequence alignment we use
different scores for match, mismatch and gap).
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The Longest Common Subsequence

Figure : It takes O(nm) time to fill in the n by m dynamic
programming matrix. The pseudocode consists of two nested for
loops to build up a n by m matrix.
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Figure : The same sequences could be used in both alignments; we
need to set the match score, the mismatch and gap penalties.
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Needleman-Wunsch algorithm (Global alignment)

34 / 235



Match= 2 (s=2); Gap= -1 (d=1); Mismatch=-1 (s=1)
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Match= 2 (s=2); Gap= -1 (d=1); Mismatch=-1 (s=1)
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Match= 2; Gap= -1; Mismatch=-1
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Match= 2; Gap= -1; Mismatch=-1

38 / 235



Match= 2; Gap= -1; Mismatch=-1
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The choice of scores (match, gap and mismatch) depends on the
data

Figure : Given a m x n matrix, the overall complexity of computing all
sub-values is O(nm). The final optimal score is the value at position
n,m. In this case we align the sequences AGC and AAAC.
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How good is an alignment?

The score of an alignment is calculated by summing the
rewarding scores for match columns that contain the same
bases and the penalty scores for gaps and mismatch columns
that contain different bases. A scoring scheme specifies the
scores for matches and mismatches, which form the scoring
matrix, and the scores for gaps, called the gap cost. There are
two types of alignments for sequence comparison. Given a
scoring scheme, calculating a global alignment is a kind of
global optimization that forces the alignment to span the entire
length of two query sequences, whereas local alignments
identify regions of high similarity between two sequences.
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Example, Local alignment TAATA vs TACTAA
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Affine gap: two penalties for gap insertion
Insertions and deletions often occur in blocks longer than a
single nucleotide. if there are many gaps we do not want to
penalise too much; so we think at due penalties: one for the first
gap (opening) and one, smaller, for the following required gaps.

45 / 235



Affine gap: two penalties for gap insertion
Time complexity - As before O(nm), as we only compute four
matrices instead of one.
Space complexity: there’s a need to save four matrices (for F, G, H
and V respectively) during the computation. Hence, O(nm) space is
needed, for the trivial implementation.
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Space-Efficient Sequence Alignment, Hirschberg algorithm

In comparison of long DNA fragments, the limited resource in
sequence alignment is not time but space. Hirschberg in 1975
proposed a divide-and-conquer approach that performs
alignment in linear space for the expense of just doubling the
computational time. The time complexity of the dynamic
programming algorithm for sequence alignment is roughly the
number of edges in the edit graph, i.e., 0(nm). The space
complexity is roughly the number of vertices in the edit graph,
i.e., 0(nm). However, if we only want to compute the score of
the alignment (rather than the alignment itself), then the space
can be reduced to just twice the number of vertices in a single
column of the edit graph, i.e., O(n).
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Space-Efficient Sequence Alignment, Hirschberg algorithm

Figure : Space complexity of computing just the score itself is O(n);
we only need the previous column to calculate the current column,
and we can then throw away that previous column once we have
done using it
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Space-Efficient Sequence Alignment, Hirschberg algorithm
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Space-Efficient Sequence Alignment Hirschberg algorithm

The reduction comes from observation that the only values needed to
compute the alignment scores s∗j (column j) are the alignment scores
s∗,j−i (column j − 1). Therefore, the alignment scores in the columns
before j − 1 can be discarded while computing alignment scores for
columns j, j + 1,.... The longest path in the edit graph connects the
start vertex (0,0) with the sink vertex (n, m) and passes through an
(unknown) middle vertex (i, m/2 ) (assume for simplicity that m is
even). Let’s try to find its middle vertex instead of trying to find the
entire longest path. This can be done in linear space by computing
the scores s∗,m/2. (lengths of the longest paths from (0,0) to (i, m/2 )
for 0 < i < n) and the scores of the paths from (i, m/2 ) to (n,m). The
latter scores can be computed as the scores of the paths sreverse

∗ from
(n,m) to (i, m/2 ) in the reverse edit graph (i.e., the graph with the
directions of all edges reversed). The value Si,m/2 + Sreverse

i,m/2 is the
length of the longest path from (0,0) to (n, m) passing through the
vertex (i, m/2). Therefore, maxi [Si,m/2 + Sreverse

i,m/2 ] computes the length
of the longest path and identifies a middle vertex.
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Space-Efficient Sequence Alignment, Hirschberg algorithm

Computing these values requires the time equal to the area of
the left rectangle (from column 1 to m/2) plus the area of the
right rectangle (from column m/2 + 1 to m) and the space O(n).
After the middle vertex (i, m/2 ) is found the problem of finding
the longest path from (0,0) to (n, m) can be partitioned into two
subproblems: finding the longest path from (0,0) to the middle
vertex (i, m/2) and finding the longest path from the middle
vertex (i, m/2 ) to (n, m). Instead of trying to find these paths,
we first try to find the middle vertices in the corresponding
rectangles. This can be done in the time equal to the area of
these rectangles, which is two times smaller than the area of
the original rectangle. Computing in this way, we will find the
middle vertices of all rectangles in time = area + area/2 +
area/4 +.. <2 * area and therefore compute the longest path in
time 0(nm) and space O(n).
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Space-Efficient Sequence Alignment, Hirschberg algorithm

1. Path (source, sink)
2. if source and sink are in consecutive columns
3. output the longest path from the source to the sink
4. else
5. middle < middle vertex between source and sink
6. Path (source, middle)
7. Path (middle, sink)
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Hirschberg algorithm: details
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Nussinov Algorithm: The Biological problem

Figure : Examples of RNA molecules in nature; many molecules of
RNA do not translate into proteins; using the pairing rule A-T, C-G,
the molecule could find regions of perfect pairing so to have
intrachain interactions. Therefore, the molecule folds into 2
Dimensional shape (termed secondary structure) and then into 3
Dimensional shape (tertiary structure) and regulates cell processes
by interacting with proteins. On the right, in (a) the prediction of the
contacts of the RNA molecule shown in (b).
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Folding i.e. intra chain alignment of a RNA molecule
The intrachain folding of RNA reveals the RNA Secondary
Structure
This tells us which bases are paired in the subsequence from xi
to xj Every optimal structure can be built by extending optimal
substructures.

Figure : Set of paired positions on interval [i , j]. Suppose we know all
optimal substructures of length less than j − i + 1. The optimal
substructure for [i , j] must be formed in one of four ways: i,j paired; i
unpaired; j unpaired; combining two substructures. Note that each of
these consists of extending or joining substructures of length less
than j − i + 1.
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Nussinov dynamic programming algorithm for RNA folding

1. Let γ(i , j) be the maximum number of base pairs in a
folding of subsequence S[i . . . j].

2. for 1 ≤ i ≤ n and i < j ≤ n:
for i = 1, ...,n : γ(i , i) = 0;
for 2 ≤ i ≤ n : γ(i , i − 1) = 0

γ (i , j) = max


γ (i + 1, j)
γ (i , j − 1)

γ (i + 1, j − 1) + δ (i , j)
maxi<k<j [γ (i , k) + γ (k + 1, j)]

3. Where δ(i , j) = 1 if xi and xj are a complementary base
pair i.e. (A, U) or (C, G), and δ(i , j) = 0, otherwise.

There are O(n2) terms to be computed, each requiring calling
of O(n) already computed terms for the case of bifurcation.
Thus overall complexity is O(n3) time and O(n2) space.
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Nussinov algorithm for RNA folding
Note that only the upper (or lower) half of the matrix needs to
be filled. Therefore, after initialization the recursion runs from
smaller to longer subsequences as follows:

1. for l = 1 to n do
2. for i = 1 to (n + 1− l) do
3. j = i + l
4. compute γ(i , j)
5. end for
6. end for

Figure : Details of matrix filling
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Nussinov algorithm: example

Figure : order: top left, bottom
left, right: a matrix will be filled
along the diagonals and the
solution can be recovered through
a traceback step.
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Challenges in RNA folding

Figure : left: the case of bifurcation; right: from easy to difficult cases
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Challenges in alignment: repeats and inversions

Figure : difficulty when there are repeats of different length and
inverted blocks (also nested)
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3 Approximate Search algorithms
The problem is to find in a database all sequences with
interesting similarities. Below there is an example of output for
the following task: a query (an unknown gene sequence) is
compared with other sequences with known functions in a
database. Perfect hits are red colored. Regions that were
weaker in match are pink, green, or blue; alignment details are
also available. Algorithms considered: Blast, Patternhunter.
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3 Homology search algorithms: The Biological problem

It is common to observe strong sequence similarity between a
protein and its counterpart in another species that diverged
hundreds of millions of years ago. Accordingly, the best method
to identify the function of a new gene or protein is to find its
sequence- related genes or proteins whose functions are
already known. The Basic Local Alignment Search Tool
(BLAST) is a computer program for finding regions of local
similarity between two DNA or protein sequences. It is
designed for comparing a query sequence against a target
database. It is a heuristic that finds short matches between
query and database sequences and then attempts to start
alignments from these seed hits. BLAST is arguably the most
widely used program in bioinformatics. By sacrificing sensitivity
for speed, it makes sequence comparison practical on huge
sequence databases currently available.
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BLAST (Basic Local Alignment Search Tools

While Dynamic Programming (DP) is a nice way to construct
alignments, it will often be too slow. Since the DP is O(n2),
matching two 9x109 length sequences would take about
9x1018 operations. BLAST is an alignment algorithm which
runs in O(n) time. The key to BLAST is that we only actually
care about alignments that are very close to perfect. A match of
70% is worthless; we want something that matches 95% or
99% or more. What this means is that correct (near perfect)
alignments will have long substrings of nucleotides that match
perfectly. Most popular Blast-wise algorithms use a
seed-and-extend approach that operates in two steps: 1. Find
a set of small exact matches (called seeds) 2. Try to extend
each seed match to obtain a long inexact match.
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BLAST (Basic Local Alignment Search Tools)

The steps are as follows:
1. Split query into overlapping words of length W (the

W-mers).
2. Find a neighborhood of similar words for each word (see

the figure next slide).
3. Lookup each word in the neighborhood in a hash table to

find where in the database each word occurs. Call these
the seeds.

4. Extend all seed collections until the score of the alignment
drops off below a threshold.

5. Report matches with overall highest scores.
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BLAST (Basic Local Alignment Search Tools)
BLAST provides a trade off between speed and sensitivity, with
the setting of a ”threshold” parameter T. A higher value of T
yields greater speed, but also an increased probability of
missing weak similarities.
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BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

To speed up the homology search process, BLAST employs a
filtration strategy: It first scans the database for length-w word
matches of alignment score at least T between the query and
target sequences and then extends each match in both ends to
generate local alignments (in the sequences) with score larger
than a threshold x. The matches are called high-scoring
segment pairs (HSPs). BLAST outputs a list of HSPs together
with E-values that measure how frequent such HSPs would
occur by chance. A HSP has the property that it cannot be
extended further to the left or right without the score dropping
significantly below the best score achieved on part of the HSP.
The original BLAST algorithm performs the extension without
gaps. Variants are gapped Blast, psi-blast and others.
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Statistical significance in Blast
I Assume that the length m and n of the query and database

respectively are sufficiently large; a segment-pair (s, t)
consists of two segments, one in m (say the amino acid
string: VALLAR) and one in n (say PAMMAR), of the same
length. We think of s and t as being aligned without gaps
and score this alignment using a substitution score; the
alignment score for (s, t) is denoted by σ(s, t).

I Given a cutoff score x, a segment pair (s, t) is called a
high-scoring segment pair (HSP), if it is locally maximal
and σ(s, t) ≥ x and the goal of BLAST is to compute all
HSPs.

I The BLAST algorithm has three parameters: the word size
W, the word similarity threshold T and the minimum match
score x.

I BLAST outputs a list of HSPs together with E-values that
measure how frequent such HSPs would occur by chance.
This is calculated with respect of a database with similar
size and random data.
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For protein sequences, BLAST operates as follows
The list of all words of length W that have similarity ≥ T to some
word in the query sequence m is generated. The database
sequence n is scanned for all hits t of words s in the list. Each
such seed (s, t) is extended until its score σ(s, t) falls a certain
distance below the best score found for shorter extensions and
then all best extensions are reported that have score ≥ x. In
practice, W is usually 4 (amino acids) for proteins.
The list of all words of length W that have similarity ≥ T to some
word in the query sequence m can be produced in time
proportional to the number of words in the list. These are
placed in a keyword tree and then, for each word in the tree, all
exact locations of the word in the database n are detected in
time linear to the length of n. The original version of BLAST did
not allow indels, making hit extension very fast.
Note that the use of seeds of length W and the termination of
extensions with fading scores are both steps that speed up the
algorithm, but also imply that BLAST is not guaranteed to find
all HSPs.
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For DNA sequences, BLAST operates as follows

I The list of all words of length W in the query sequence m is
generated. The database n is scanned for all hits of words
in this list. Blast uses a two-bit encoding for DNA. This
saves space and also search time, as four bases are
encoded per byte. In practice, W is usually 12 for DNA.

I HSP scores are characterized by two parameters, W and
λ. The expected number of HSPs with score at least Z is
given by the E-value, which is: E(Z ) = Wmne−λZ .

I Essentially, W and λ are scaling-factors for the search
space and for the scoring scheme, respectively.

I As the E-value depends on the choice of the parameters W
and λ, one cannot compare E-values from different BLAST
searches.
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I For a given HSP (s, t) we transform the raw score
Z = σ(s, t) into a bit-score thus: Z ′ = λZ−lnW

ln2 . Such
bit-scores can be compared between different BLAST
searches. To see this, solve for Z in the previous equation
and then plug the result into the original E-value.

I E-values and bit scores are related by E = mn2−Z ′

I The number of random HSPs (s, t) with σ(s, t) ≥ x can be
described by a Poisson distribution. Hence the probability
of finding exactly k HSPs with a score ≥ Z is given by
P(k) = Ek

k! e−E (see also
www.ncbi.nlm.nih.gov/blast/tutorial/Altschul-1.html)

I The probability of finding at least one HSP by chance is
P = 1− P(X = 0) = 1− e−E , called the P-value, where E
is the E-value for Z.

I BLAST reports E-values rather than P-values as it is
easier, for example, to interpret the difference between an
E-value of 5 and 10, than to interpret the difference
between a P-value of 0.993 and 0.99995. For small
E-values < 0.01, the two values are nearly identical.

70 / 235



Example of Blast output

from Altschul: The expected-time computational complexity of BLAST
is approximately aW + bN + cNW/20w , where W is the number of
words generated, N is the number of residues in the database and a,
b and c are constants. The W term accounts for compiling the word
list, the N term covers the database scan, and the NW term is for
extending the hits. Although the number of words generated, W,
increases exponentially with decreasing the threshold, it increases
only linearly with the length of the query, so that doubling the query
length doubles the number of words.
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It is possible to search a protein sequence against a DNA database

Figure : Blast DNA query (top) against a database of proteins will
process all the potential triplets forming codons
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Example of Blast Pitfalls
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Patternhunter

The big problem for BLAST is low sensitivity (and low speed).
Massive parallel machines are built to do Smith Waterman
exhaustive dynamic programming. A spaced seed is formed by
two words, one from each input sequence, that match at
positions specified by a fixed pattern and one don’t care symbol
respectively. For example, the pattern 1101 specifies that the
first, second and fourth positions must match and the third one
contains a mismatch. PatternHunter (PH) was the first method
that used carefully designed spaced seeds to improve the
sensitivity of DNA local alignment. Spaced seeds have been
shown to improve the efficiency of lossless filtration for
approximate pattern matching, namely for the problem of
detecting all matches of a string of length m with q possible
substitution errors.
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Blast vs PH vs PH II
If you want to speed up, you have to use a longer seed.
However, we now face a dilemma: increasing seed size speeds
up, but looses sensitivity; decreasing seed size gains
sensitivity, but looses speed. How do we increase sensitivity
and speed simultaneously? Spaced Seed: nonconsecutive
matches and optimized match positions. Represent BLAST
seed by 11111111111; Spaced seed: 111010010100110111
where 1 means a required match and 0 means dont care
position. This simple change makes a huge difference:
significantly increases hit number to homologous region while
reducing bad hits. Spaced seeds give PH a unique opportunity
of using several optimal seeds to achieve optimal sensitivity,
this was not possible by BLAST technology. PH II uses multiple
optimal seeds; it approaches Smith-Waterman sensitivity while
is 3000 times faster. Example: Smith-Waterman (SSearch): 20
CPU-days, PatternHunter II with 4 seeds: 475 CPU-seconds:
3638 times faster than Smith-Waterman dynamic programming
at the same sensitivity
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Sensitivity: The probability to find a local alignment. Specificity:
In all local alignments, how many alignments are homologous
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In PatternHunter, the spaced model has often weight 11 and
length 18.

78 / 235



The non-consecutive seed is the primary difference and
strength of Patternhunter
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Comparing different seeds number

Figure : sensitivity versus alignment score
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4 Multi sequence alignment: examples of results
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Challenges of extending dynamic programming to n sequences
I For two sequences, there are three ways to extend an

alignment
I for n sequences, a n-dimensional dynamic programming

hypercube has to be computed and for each entry we have
to evaluate (2n − 1) predecessors.

I Given 3 sequences, the figure below shows a
three-dimensional alignment path matrix: there are
= (23 − 1) = 7 ways to extend an alignment.
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Progressive alignment
I Progressive alignment methods are heuristic in nature.

They produce multiple alignments from a number of
pairwise alignments.

I Perhaps the most widely used algorithm of this type is
CLUSTALW.

I Given N sequences, align each sequence against each
other and obtain a similarity matrix; similarity = exact
matches / sequence length (percent identity)

I Create a guide tree using the similarity matrix; the tree is
reconstructed using clustering methods such as UPGMA
or neighbor-joining (explained later).

I Progressive Alignment guided by the tree.
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Progressive alignment
Not all the pairwise alignments build well into multiple sequence
alignment (MSA); the progressive alignment builds a final
alignment by merging sub-alignments with a guide tree.
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Progressive alignment

Figure : Progressive alignment of 4 sequences: 1) distance matrix
from pairwise alignment; 2) pairwise alignment score analysis; tree
showing the best order of progressive alignment, 3) building up the
alignment.
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A matrix to measure amino acid changes
Blosum is a symmetric amino acid replacement matrix used as
scoring matrix in Blast search and in phylogeny. Using only the
conserved regions of protein sequences in a MSA, we compute
pij i.e. for each column of the MSA, the probability of two amino
acids i and j replacing each other, and pi and pj are the
background probabilities of finding the amino acids i and j in
any protein sequence. Finally we compute:
Scoreij = (k−1)log(pij/pipj) where the k is a scaling factor.
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Entropy measure of a multiple alignment

Let’s start from an alignment of four sequences (above the first
three columns); Compute the frequencies for the occurrence of
each letter in each column of multiple alignment pA = 1,
pT=pG=pC=0 (1st column);
pA = 0.75, pT = 0.25, pG=pC=0 (2nd column);
pA = 0.50, pT = 0.25, pC=0.25 pG=0 (3rd column);
Compute entropy of each column: E = −

∑
X=A,C,G,T px log (px)

The entropy for a multiple alignment is the sum of entropies of
each column of the alignment.
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Example of a multiple sequence alignment

Figure : Chemical properties of amino acids are in color code. The
globin proteins from different species could be easily aligned because
they have many similar substrings in common.
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Insight into protein structure (3D graph) from MSA analysis

Figure : Human globin 3D structure. The small amount of changes in
the globin alignment suggests that globin are likely to have very
similar structure (3 D graph). Columns rich of gaps often correspond
to unstructured regions (loops); conserved regions often correspond
to binding sites or regions where one protein interacts with a DNA
sequence or with another protein.
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5 Genome alignments
Genome scaffolding (i.e. the process of ordering and orientating
contigs) of de novo assemblies usually represents the first step in
most genome finishing pipelines (figure below on the right). The
preferred approach to genome scaffolding is currently based on
assembling the sequenced reads into contigs and then using paired
end information to join them into scaffolds. The figure below show the
overlapping reads used to cover assemble the genome and the
problem with repeats. The algorithm presented here is the Burrows-
Wheeler transform.
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Burrows- Wheeler transform: saving memory in NGS alignments

The current sequencing procedures are characterized by highly
parallel operations, much lower cost per base, but they produce
several millions of ”reads”, short stretches of DNA bases
(usually 35-400 bp). In many experiments, e.g., in ChIP-Seq,
the task is now to align these reads to a reference genome.
The main effort is to reduce the memory requirement for
sequence alignment (such as Bowtie, BWA and SOAP2); the
Burrows-Wheeler transform, BWT (1994) is commonly used.
The Burrows and Wheeler transform (BWT) is a block sorting
lossless and reversible data transform. The BWT can permute
a text into a new sequence which is usually more compressible
The transformed text can be better compressed with fast
locally-adaptive algorithms, such as run-length-encoding (or
move-to-front coding) in combination with Huffman coding (or
arithmetic coding). Burrows obtained the Ph.D at the Computer
Laboratory.
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Burrows-Wheeler Transform
INPUT (example): T = “abraca”; then we sort lexicographically
all the cyclic shifts of T
For all i 6= I, the character L[i] is followed in T by F[i]; for any
character ch, the i-th occurrence of ch in F corresponds to the
i-th occurrence of ch in L.
OUTPUT: BWT(T)=caraab and the index I, that denotes the
position of the original word T after the lexicographical sorting.
The Burrows-Wheeler Transform is reversible, in the sense that,
given BWT(T) and an index I, it is possible to recover the
original word T.
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Burrows-Wheeler Transform example
Once BWT(T) is built, all else shown here (i.e. the matrix) is
discarded. Three steps: 1) Form a N*N matrix by cyclically
rotating (left) the given text to form the rows of the matrix. Here
we use ’$’ as a sentinel (lexicographically greatest character in
the alphabet and occurs exactly once in the text but it is not a
must). 2) Sort the matrix according to the alphabetic order.
Note that the cycle and the sort procedures of the
Burrows-Wheeler induces a partial clustering of similar
characters providing the means for compression. 3) The last
column of the matrix is BWT(T) (we need also the row number
where the original string ends up).
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Burrows-Wheeler Transform in alignment: example

Property that makes BWT(T) reversible is LF Mapping: the ith
occurrence of a character in Last column is same text
occurrence as the ith occurrence in the First column (i.e. the
sorting strategy preserves the relative order in both last column
and first column).
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Burrows-Wheeler Transform in alignment: example

To recreate T from BWT(T), repeatedly apply rule: T = BWT[
LF(i) ] + T; i = LF(i) where LF(i) maps row i to row whose first
character corresponds to i”s last per LF Mapping. First step:
S = 2;T = $. Second step: s = LF[2] =6; T = g$. Third step: s
= LF[6] = 5; T = cg$.
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The BWT(T) is more amenable to subsequent compression
algorithms

Figure : in the left,the word ”tatatatata$” undergoes cyclic shift and it
is sorted in the right. Note that the BWT(tatatatata$) is a word
(atttttaaaa$) with good clustering of T’s and A’s and so it can be
written in a more compact way. The DNA is from an alphabet of 4
symbols so the clustering happens very often

.
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6 Next Generation sequencing (NGS): The Biological problem
Instead of considering a DNA sequence, for sake of clarity, let’s
consider a sentence and we trim all spaces.
Copies of the sentence are divided into fragments called reads
which could be converted into k-mers. We would like to
assemble the original sentence using the reads or the k-mers.
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Three methods to reconstruct the original sequence (figure a)
one method (shown in b) uses the reads, the two other
methods use k-mers derived from the reads (shown in c and d);
see Compeau , Pevzner and Tesler Nature Biotechnology 29:
987 2011.
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Graph approaches in alignment (previous figure)

(a) A small circular genome. In (b) reads are represented as
nodes in a graph, and edges represent alignments between
reads. Following the edges in numerical order allows one to
reconstruct the circular genome by combining alignments
between successive reads. In (c) reads are divided into all
possible k-mers (k = 3), ATGGCGT comprises ATG, TGG,
GGC, GCG and CGT. Following a Hamiltonian cycle (indicated
by red edges) allows one to reconstruct the genome by forming
an alignment in which each successive k-mer (from successive
nodes) is shifted by one position. (d) Modern short-read-based
genome assembly algorithms construct a de Bruijn graph by
representing all k-mer prefixes and suffixes as nodes and then
drawing edges that represent k-mers having a particular prefix
and suffix. For example, the k-mer edge ATG has prefix AT and
suffix TG. Finding an Eulerian allows one to reconstruct the
genome by forming an alignment in which each successive
k-mer (from successive edges) is shifted by one position.
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Hamiltonian graph using reads

Figure b (see previous slide): The Hamiltonian graph is a graph
in which each read is represented by a node and overlap
between reads is represented by an arrow (called a directed
edge) joining two reads. For instance, two nodes representing
reads may be connected with a directed edge if the reads
overlap by at least five nucleotides.
The Hamiltonian cycle, is a path that travels to every node
exactly once and ends at the starting node, meaning that
each read will be included once in the assembly.
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Hamiltonian graph using k-mers

Figure c: The Hamiltonian cycle approach can be generalized
to make use of k-mers by constructing a graph as follows. First,
from a set of reads, make a node for every k-mer appearing as
a consecutive substring of one of these reads. Second, given a
k-mer, define its suffix as the string formed by all its nucleotides
except the first one and its prefix as the string formed by all of
its nucleotides except the last one. k-mer to another using a
directed edge if the suffix of the former equals the prefix of
the latter, that is, if the two k-mers completely overlap except
for one nucleotide at each end. Third, look for a Hamiltonian
cycle, which represents a candidate genome because it visits
each detected k-mer. 101 / 235



Hamiltonian graph

Hamilton path is a graph that covers all vertex exactly once.
When this path returns to its starting point than this path is
called Hamilton cycle.
There is no known efficient algorithm for finding a Hamiltonian
cycle in a large graph with millions (let alone billions) of nodes.
The Hamiltonian cycle approach was feasible for sequencing
the first microbial genome in 1995 and the human genome in
2001.
The computational problem of finding a Hamiltonian cycle
belongs to the NP-Complete class of problems.
Next: Euler path is a graph using every edge of the graph
exactly once. Euler cycle is a Euler path that returns to it
starting point after covering all edges.
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Eulerian graph

Figure d: Instead of assigning each k-mer contained in some
read to a node, we will now assign each such k-mer to an edge.
This allows the construction of a de Bruijn graph. First, form a
node for every distinct prefix or suffix of a k-mer, meaning that a
given sequence of length k − 1. Then, connect node x to node
y with a directed edge if some k-mer has prefix x and suffix y,
and label the edge with this k-mer.
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Eulerian graph

We visit all edges of the de Bruijn graph, which represents all
possible k-mers; traveling will result in spelling out a candidate
genome; for each edge that is traversed, one records the first
nucleotide of the k-mer assigned to that edge. Euler considered
graphs for which there exists a path between every two nodes
(called connected graphs). He proved that a connected
graph with undirected edges contains an Eulerian cycle
exactly when every node in the graph has an even number
of edges touching it. The case of directed graphs (that is,
graphs with directed edges) is similar. For any node in a
directed graph, define its indegree as the number of edges
leading into it and its outdegree as the number of edges leaving
it. A graph in which indegrees are equal to outdegrees for
all nodes is called balanced.
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Eulerian graph

Eulers theorem states that a connected directed graph has
an Eulerian cycle if and only if it is balanced. In particular,
Eulers theorem implies that our de Bruijn graph contains an
Eulerian cycle as long as we have located all k-mers present in
the genome. Indeed, in this case, for any node, both its
indegree and outdegree represent the number of times the
k − 1-mer assigned to that node occurs in the genome. To see
why Eulers theorem must be true, first note that a graph that
contains an Eulerian cycle is balanced because every time we
traverse an Eulerian cycle and we need to pass through a
particular vertex, we enter on one edge of the cycle and exits on
the next edge. This pairs up all the edges touching each vertex,
showing that half the edges touching the vertex lead into it and
half lead out from it. It is a bit harder to see the converse: that
every connected balanced graph contains an Eulerian cycle.

105 / 235



De Bruijn graph: representing the data as a graph
A De Bruijn graph for k = 4 and a two character alphabet
composed of the digits 0 and 1. This graph has an Eulerian
cycle because each node has indegree and outdegree equal to
2. Following the blue numbered edges in order from 1 to 16
traces an Eulerian cycle 0000, 0001, 0011, 0110, 1100, 1001,
0010, 0101, 1011, 0111, 1111, 1110, 1101, 1010, 0100, 1000.
Recording the first character of each edge label spells the
cyclic superstring 0000110010111101.
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Hamiltonian and Eulerian graph complexity and software

The time required to run a computer implementation of Euler
algorithm is roughly proportional to the number of edges in the
de Bruijn graph. In the Hamiltonian approach, the time is
potentially a lot larger, because of the large number of pairwise
alignments needed to construct the graph and the
NP-Completeness of finding a Hamiltonian cycle.
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De Bruijn assembler method

Sequencing is cheap, we generate sub-strings (reads) at
random from throughout the genome. In next generation
sequencing we have 10s of millions of reads. The difficult part
is how we put them back together again in the right order. An
intuitive way to do this may be in all versus all comparisons to
search for overlaps. This is how traditional assemblers work.
The solution offered by the De Bruijn approach is to represent
the data as a graph.
The first step of the De Bruijn assembler is to deconstruct the
sequencing reads into its constitutive k-mers. As specified
before a K-mer is a substring of defined length. If we split
reads in k-mers we control the size and the overlapping. To
Kmerize the dataset, we move through our read in one letter
increments from the beginning to the end until we have
recorded all possible 3 letter words. We then do this for all
reads in the dataset. From this point on the algorithm operates
on k-mers rather than on the reads.
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Details of the De Bruijn graph method

The next stage is to represent the stored k-mers in the De
Bruijn graph. This is done by searching for overlaps of k − 1.
The graph has all consecutive k-mers by k − 1 bases. Note
that: 1) Adding k-mers from a second read of an overlapping
region of the genome shows how the graph can be extended. It
also reveals the redundancy in the data which need not be
stored by the computer. This is how memory efficiency is
achieved. 2) Adding a k-mers from a third read that comes from
a similar but non-overlapping part of the genome illustrates the
effect of repeats, i.e. we get a branch in the graph. Long
unbranched stretches represent unique sequence in the
genome, branches and loops are the result of repeats.
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Details of the De Bruijn graph method

A, Kmerize the data; B, Build the graph; C, simplify the graph;
D, get the final assembly.
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Details of the De Bruijn graph method

The final step is to remove redundancy, result in the final De
Bruijn Graph representation of the genome under study.
Strengths and weaknesses of this approach: 1) a strength is
that the information from millions of reads is stored in computer
memory in a graph that is proportional to the genome size.
Another strength is that the overlaps between reads are implicit
in the graph, so all the millions versus millions of comparisons
are not required. On the downside, information is lost as
repetitive sequences are collapsed into a single
representation. While this may be a satisfying solution to a
computer scientist, it is not practically useful to a biologist who
wants to annotate repeats (repeats are often not junk DNA).
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De Bruijn method can only resolve k long repeat. Validation:
look in your assembly for gene that should be there; N50:
Weighted median such as 50% of your assembly is contained
in contig of length >= N50
Software implementation:
Velvet: http://www.ebi.ac.uk/ zerbino/velvet/;
ABySS: http://www.bcgsc.ca/platform/bioinfo/software/abyss;
SOAP-denovo: http://soap.genomics.org.cn/soapdenovo.html;
ALLPATH-LG:
http://www.broadinstitute.org/software/allpaths-lg/blog/;
IDBA-UD: http://i.cs.hku.hk/ alse/hkubrg/projects/idba ud
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7 Relationships among multiple sequences, for example
phylogeny: the inputs are multiple alignments, the outputs are
trees
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Phylogenetic analysis
The reconstruction of the evolutionary history of species
formation could be done by comparing DNA and amino acid
sequences. A phylogeny is a tree where the leaves are existing
species; an internal node is node with degree greater than one.
Internal nodes represent common ancestors. We typically do
not have DNA data for internal nodes (except fossil). Here we
use the terms species and taxa in a synonymous way. We
compute the tree for each column of a multiple alignment.

Figure : tree representation: ((a, (b, c)), (d ,e)); trees could also be
unrooted
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Phylogeny using parsimony (= economy of mutations)
Biological aims: from sequence alignment to phylogeny (a tree) by
minimising the number of changes (mutations, see figure below from
www.bioalgorithms.info). Parsimony means economy; there are two
main algorithms (developed by Fitch and Sankoff); the output trees
are rooted (below the difference between rooted, left, and unrooted
trees, right).
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Fitch parsimony model for DNA sequences
Fitch downpass algorithm

Bottom-up phase: Determine set of possible states for each
internal node; top-down phase: Pick states for each internal
node. If the descendant state sets Sq and Sr overlap, then the
state set of node p will include the states present in the
intersection of Sq and Sr . If the descendant state sets do not
overlap, then the state set of p will include all states that are the
union of Sq and Sr . States that are absent from both
descendants will never be present in the state set of p.

1. Sp ← Sq
⋂

Sr

2. if Sp = 0 then
3. Sp ← Sq

⋃
Sr

4. l ← l + 1
5. end if

Initialization: Ri = [ si ] ; Do a
post-order (from leaves to root)
traversal of tree Determine Ri
of internal node i with children j,
k:
Ri ={

Rj
⋂

Rk if Rj
⋂

Rk 6= 0
Rj
⋃

Rk otherwise
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Assume that we have the final
state set Fa of node a, which is
the immediate ancestor of node
p (Sp) that has two children q
(Sq) and r (Sr ).

1. Fp ← Sp
⋂

Fa

2. if Fp 6= Fa then
3. if Sq

⋂
Sr 6= 0 then

4. Fp ←
((Sq

⋃
Sr )

⋂
Fa)

⋃
Sp

5. else
6. Fp ← Sp

⋃
Fa

7. end if
8. end if

Ri (s) =

{
0 if si = s
∞ otherwise

Ri (s) =
mins′

{
Rj (s′) + S (s′, s)

}
+

mins′ {Rk (s′) + S (s′, s)}
If the downpass state set of p
includes all of the states in the
final set of a, then each optimal
assignment of final state to a
can be combined with the same
state at p to give zero changes
on the branch between a and p
and the minimal number of
changes in the subtree rooted
at p. If the final set of a includes
states that are not present in
the downpass set of p, then
there is a change on the branch
between a and p.
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The figure in the top shows the Fitch two-step procedure. The
tree is the hypothesis you are testing and you choose the tree
that minimises the score. Bottom figure: you can sum the score
for all the column of the alignment for each candidate tree and
then you select the best tree. Choosing the candidate trees:
there are algorithms for exploring the tree space.
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Example of Fitch’s algorithm
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Sankoff general parsimony: each mutation costs differently
Sankoff downpass algorithm

1. for all i do
2. h(q)

i ← minj(cij + g(q)
j )

3. h(r)
i ← minj(cij + g(r)

j )

4. end for
5. for all i do
6. g(p)

i ← h(q)
i + h(r)

i

7. end for

Sankoff parsimony is based on
a cost matrix C = cij , the
elements of which define the
cost cij of moving from a state i
to a state j along any branch in
the tree. The cost matrix is
used to find the minimum cost
of a tree and the set of optimal
states at the interior nodes of
the tree.
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Sankoff: finding optimal state sets (left) and uppass algorithm
(right)

1. Fp ← 0
2. for all i in Fa do
3. m← ci1 + g(p)

1

4. for all j 6= 1 do

5. m← min(cij + g(p)
j ,m)

6. end for
7. for all j do

8. if cij + g(p)
j = m then

9. Fp ← Fp
⋃

j
10. end if
11. end for
12. end for

1. for all j do

2. f (p)j ← mini(f
(a)
i − h(p)

i + cij)

3. end for

Complexity: if we want to
calculate the overall length
(cost) of a tree with m taxa, n
characters, and k states, it is
relatively easy to see that the
Fitch algorithms has complexity
O(mnk) and the Sankoff
algorithm is of complexity
O(mnk2).
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Example of Sankoff’s algorithm
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Sankoff: example of downpass

Figure : If the leaf has the character in question, the score is 0; else,
score is∞ Each mutation a− > b costs the same in Fitch and
differently in Sankoff parsimony algorithm (weighted matrix in A). An
example of a weighted matrix for Sankoff (for proteins) is the Blosum,
presented before in this course
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example of uppass

Figure : Example of Sankoff algorithm. Note that in the parsimony
approaches (Fitch and Sankoff) the tree (i.e. the topology and leaves
order) is the hypothesis you are testing. So you try different trees and
select the one that is most parsimonious for each column of the
alignment, then you select the tree that is the most representative.
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Phylogeny (distance based algorithms)
Algorithms: UPGMA, Neighbor Joining
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8 Phylogeny based on a matrix of distances
Distance methods convert the changes counted in each column of
the alignment, top figure, into a single distance matrix, bottom figure
(dissimilarity matrix= 1 - similarity) to construct a tree and are kin to
clustering methods. We can use the same matrix we use for Blast
search, for example the Blosum matrix or others. The UPGMA
outputs a rooted tree while the neighbour joining outputs an unrooted
tree.
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Additivity: when a distance matrix could be converted into a tree

A matrix D is additive if for every four indices i,j,k,l we can write
the following: Dij + Dkl ≤ Dik + Djl = Dil + Djk . If the distance
matrix is not additive we could find the tree which best fits he
distance matrix.

127 / 235



The additivity property

Top: distance matrix does not turn into a tree; Bottom: the
distance matrix turns into a tree.

128 / 235



UPGMA: Unweighted Pair Group Method with Arithmetic Mean
UPGMA is a sequential clustering algorithm that computes the
distance between clusters using average pairwise distance and
assigns a height to every vertex in the tree, effectively
assuming the presence of a molecular clock and dating every
vertex. The algorithm produces an ultrametric tree : the
distance from the root to any leaf is the same (this corresponds
to a constant molecular clock: the same proportion of mutations
in any pathway root to leaf). Input is a distance matrix of
distances between species; the iteration combines the two
closest species until we reach a single cluster.
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UPGMA is also hierarchical clustering

1. Initialization: Assign each species to its own cluster Ci

2. Each such cluster is a tree leaf
3. Iteration:
4. Determine i and j so that d(Ci ,Cj) is minimal
5. Define a new cluster Ck = Ci

⋃
Cj with a corresponding

node at height d(Ci ,Cj)/2
6. Update distances to Ck using weighted average
7. Remove Ci and Cj

8. Termination: stop when just a single cluster remains
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UPGMA

Example of UPGMA from P. Pevzner; in UPGMA when
choosing the closest pair, we do not take into account the
distance from all the other nodes (as we do in Neighbor
Joining). 131 / 235



Neighbor Joining, NJ

Figure : NJ starts with a star topology (i.e. no neighbors have been
joined) and then uses the smallest distance in the distance matrix to
find the next two pairs to move out of the multifurcation then
recalculate the distance matrix that now contains a tip less.

1. Identify i,j as neighbor if their distance is the shortest.
2. Combine i,j into a new node u.
3. Update the distance matrix.
4. Distance of u from the rest of the tree is calculated
5. If only 3 nodes are left finish.
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The distance between any taxon (=species) pair i and j is
denoted as d(i, j) and can be obtained from the alignment. NJ
iteratively selects a taxon pair, builds a new subtree, and
agglomerates the pair of selected taxa to reduce the taxon set
by one. Pair selection is based on choosing the pair i, j that
minimizes the following Q (matrix) criterion:
Q(i , j) = (r − 2)d(i , j)−

∑r
k=1 d(i , k)−

∑r
k=1 d(j , k)

where r is the current number of taxa and the sums run on the
taxon set. NJ estimates the length of the branch (f, u) using
d(f ,u) = 1

2d(f ,g) + 1
2(r−2) [

∑r
k=1 d(f , k)−

∑r
k=1 d(g, k)]

and d(g, u) is obtained by symmetry. Finally, NJ replaces f and
g by u in the distance matrix, using the reduction formula:
d(u, k) = 1

2 [d(f , k)− d(f ,u)] + 1
2 [d(g, k)− d(g,u)]

NJ still reconstructs the correct tree when the distance matrix is
perturbed by small noise and that NJ is optimal regarding
tolerable noise amplitude.
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One NJ agglomeration step. In the current tree (a), the taxon set
contains a, b, c, d, e, f, and g; some are original taxa, whereas the
others (i.e., a, f, and g) correspond to subtrees built during the
previous steps. Tree (b): after selection of the (f, g) pair, a new
subtree is built, and both f and g are replaced by a unique taxon
denoted as u. NJ terminates when the central node is fully resolved.
Neighbor joining on a set of r taxa requires r-3 iterations. At each step
one has to build and search a Q matrix. Initially the Q matrix is size
r2, then the next step it is (r − 1)2, etc. This leads to a time
complexity of O(r3).
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figure taken from www.evolution-
textbook.org/content/free/tables/Ch 27/T11 EVOW Ch27.jpg
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9 Algorithms for clustering: The Biological problem

We can use microarrays (DNA chips) to measure the activity
(expression level) of the genes in different cells, tissues under
varying conditions (with a drug) and at different time points.
Expression level is estimated by measuring the amount of
mRNA for that particular gene. More mRNA usually indicates
more gene activity. Microarray data are usually transformed into
a set of large matrices. The clustering analysis allows scientists
to identify changes of activity in genes and functional similarity
among genes.
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Overview of generating high throughput gene expression data
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Clustering gene expression data

Figure : The color of the spot indicates activation with respect to
control (red) or repression with respect to the control (green) or
absence of regulation (yellow) of a gene, or error in the technological
process (black). The sample can be all the genes of an organism
(example the 6000 genes of yeast), or a selection of genes of interest
(+ control genes). 138 / 235



Gene expression data: example of output

Figure : Data downloaded from geo omnibus and analised with the
software Limma; the genes are ranked with respect to their p-value.
An observed event is significant if it is unlikely to have occurred by
chance. The significance of the event is also called its p-value, a real
number in the interval [0, 1]. The smaller the p-value, the more
significant the occurrence of the event.
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K-Means Clustering: Lloyd Algorithm

1. Arbitrarily assign the k cluster centers
2. while the cluster centers keep changing
3. Assign each data point to the cluster Ci corresponding to

the closest cluster representative (center) (1 ≤ i ≤ k )
4. After the assignment of all data points, compute new

cluster representatives according to the center of gravity of
each cluster, that is, the new cluster representative is∑

v \ |C| for all v in C for every cluster C .
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Progressive greedy K-means Algorithm

1. Select an arbitrary partition P into k clusters
2. while forever
3. bestChange← 0
4. for every cluster C
5. for every element i not in C
6. if moving i to cluster C reduces its clustering cost
7. if cost(P) − cost(Pi→C) > bestChange
8. bestChange← cost(P) − cost(Pi→C)
9. i

′ ← i
10. C

′ ← C
11. if bestChange > 0
12. Change partition P by moving i

′
to C

′

13. else
14. return P
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Progressive greedy K-means Algorithm

Figure : K-means progression from left to right and top to bottom;
stars are center points (the centers of the cluster).
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Progressive greedy K-means Algorithm

The quality of the cluster results could be assessed by ratio of
the distance to nearest cluster and cluster diameter. A cluster
can be formed even when there is no similarity between
clustered patterns. This occurs because the algorithm forces k
clusters to be created. Linear relationship with the number of
data points; the complexity is O(nKI) where n = number of
points, K = number of clusters, I = number of iterations.
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Results of clustering on microarray data

The aims is clustering gene expression data: it is easy to interpret the
data if they are partitioned into clusters combining similar data points.

Figure : Clustering analysis obtained using Hierarchical clustering
(UPGMA). The clusters are coloured differently.
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Markov Clustering algorithm, MCL, micans.org/mcl/

Unlike most clustering algorithms, the MCL does not require the
number of expected clusters to be specified beforehand. The basic
idea underlying the algorithm is that dense clusters correspond to
regions with a larger number of paths.
ANALOGY: We take a random walk on the graph described by the
similarity matrix, but after each step we weaken the links between
distant nodes and strengthen the links between nearby nodes. A
random walk has a higher probability to stay inside the cluster than to
leave it soon. The crucial point lies in boosting this effect by an
iterative alternation of expansion and inflation steps.
An inflation parameter is responsible for both strengthening and
weakening of current. (Strengthens strong currents, and weakens
already weak currents). An expansion parameter, r, controls the
extent of this strengthening / weakening. In the end, this influences
the granularity of clusters.
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The input of MCL could be an adjacency matrix

The figure shows how to generate the input from a network.
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MCL Algorithm

1. Input is an un-directed graph, with power parameter e
(usually =2), and inflation parameter r (usually =2).

2. Create the associated adjacency matrix

3. Normalize the matrix; M
′
pq =

Mpq∑
i Miq

4. Expand by taking the e-th power of the matrix; for example,
if e = 2 just multiply the matrix by itself.

5. Inflate by taking inflation of the resulting matrix with
parameter r : Mpq =

(Mpq)r∑
i (Miq)r

6. Repeat steps 4 and 5 until a steady state is reached
(convergence).
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MCL Algorithm complexity and entropy analysis

The number of steps to converge is not proven, but
experimentally shown to be 10 to 100 steps, and mostly
consist of sparse matrices after the first few steps. There are
several distinct measures informing on the clustering and its
stability such as the following clustering entropy:
S = −1/L

∑
ij(Pij log2Pij + (1− Pij)log2(1− Pij)) where the sum

is over all edges and the entropy is normalized by the total
number of edges. This might be used to detect the best
clustering obtained after a long series of clusterings with
different granularity parameters each time.
The expansion step of MCL has time complexity O(n3). The
inflation has complexity O(n2). However, the matrices are
generally very sparse, or at least the vast majority of the entries
are near zero. Pruning in MCL involves setting near-zero matrix
entries to zero, and can allow sparse matrix operations to
improve the speed of the algorithm vastly.
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Figure : Top: mcl progression; bottom: example of Tribemcl
(www.ncbi.nlm.nih.gov/pubmed/11917018)
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10 Applications of Hidden Markov models (HMM): recognition of a
human gene

The gene information starts with the promoter, which is followed by a
transcribed (i.e. RNA) but non-coding (i.e. not translated) region
called 5’ untranslated region (5’ UTR). The initial exon contains the
start codon which is usually ATG. There is an alternating series of
introns and exons, followed by the terminating exon, which contains
the stop codon. It is followed by another non-coding region called the
3’ UTR; at the end there is a polyadenylation (polyA) signal, i.e. a
repetition of Adenine. The intron/exon and exon/intron boundaries are
conserved short sequences and called the acceptor and donor sites.
For all these different parts we need to know their probability of
occurrence in a large database.
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Applications of HMM: recognition of the protein structure

Membrane proteins that are important for cell import/export. We
would like to predict the position in the amino acids with respect to the
membrane. The prediction of gene parts and of the membrane
protein topology (i.e. which parts are outside, inside and buried in the
membrane) will require to train the model with a dataset of
experimentally determined genes / transmembrane helices and to
validate the model with another dataset. The figure below describes a
7 helix membrane protein forming a sort of a cylinder (porus) across
the cell membrane.
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Basic of Hidden Markov Models

HMMs form a useful class of probabilistic graphical models
used to find genes, predict protein structure and classify protein
families.
Definition: A hidden Markov model (HMM) has an Alphabet =
b1,b2, ,bM , set of states Q = 1, ..., K , and transition
probabilities between any two states
aij = transition prob from state i to state j
ai1 + + aiK = 1, for all states i = 1,K
Start probabilities a0i
a01 + + a0K = 1
Emission probabilities within each state
ei(b) = P(xi = b|πi = k)
ei(b1) + + ei(bM) = 1, for all states i = 1,K
A Hidden Markov model is memoryless: P(πt+1 = k | whatever
happened so far) = P(πt+1 = k |π1, π2, , πt , x1, x2, , xt) =
P(πt+1 = k |πt) at each time step t, only matters the current
state πt .
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Example of HMM model of using dice

http://ai.stanford.edu/ serafim/
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The dishonest casino: what is known, what we infer

I Known: The structure of the model
I The transition probabilities
I Hidden: What the casino did (ex FFFFFLLLLLLLFFFF)
I Observable: The series of die tosses, ex

3415256664666153...
I What we must infer:
I When was a fair die used?
I When was a loaded one used?
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Given a sequence x = x1xN , a parse of x is a sequence of
states π = π1, , πN .
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The three main questions on HMMs

Evaluation: forward algorithm or the backwards algorithm;
decoding: Viterbi; Learning: Baum Welch = forward-backward
algorithm (not in this course).
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Lets not be confused by notation
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Decoding main idea
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The Viterbi Algorithm
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Complexity of the Viterbi Algorithm
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Generating a sequence by the model
Given a HMM, we can generate a sequence of length n as
follows:

1. Start at state π1 according to prob a0π1

2. Emit letter x1 according to prob eπ1(x1)
3. Go to state π2 according to prob aπ1π2

4. until emitting xn
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Evaluation
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The Forward Algorithm
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The Forward Algorithm derivation
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The Forward Algorithm
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Comparison between Viterbi and Forward
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Motivation for the Backward Algorithm
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The Backward Algorithm derivation
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The Backward Algorithm
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Complexity
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http://genes.mit.edu/GENSCAN.html
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Identifying genes and their parts (exons and introns)
In order to identify genes and their parts (exons and introns) we
need to know their length distribution (see example in figures
below). Human genes comprise about 3% of the human
genome; average length: ∼ 8,000 DNA base pairs (bp); 5-6
exons/gene; average exon length: ∼ 200 bp; average intron
length: ∼ 2,000 bp; ∼ 8% genes have a single exon and some
exons can be as small as 1 or 3 bp. Below the statistics we
could implement into a HMM.
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Identifying genes and their parts (exons and introns)

Figure : The model (left) and the output (right) of Genscan prediction
of a genomic region; the result is a segmentation of a genome
sequence, i.e. the colours map the HMM states with the predicted
functional genomic segments
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Prediction of aminoacid segments included in membrane proteins

Figure : top: the 3D graph previous figure could be represented as a
2D graph; bottom, 3 state prediction: each amino acid could be in the
membrane (h), outside the cell (o) or inside the cell (i)
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Figure : The THMM model: a three state prediction model (h,o,i)
could be then refined adding more states, for example caps, i.e. the
boundary between outside and membrane and inside and membrane.
This refinement improves the prediction of the topology of the protein.
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TMHMM http://www.cbs.dtu.dk/services/TMHMM/

Other important and related application: Use of HMM in
sequence alignment (PFAM: http://pfam.xfam.org/)
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Assessing performances: Sensitivity and specificity

1. be predicted to occur: Predicted Positive (PP)
2. be predicted not to occur: Predicted Negative (PN)
3. actually occur: Actual Positive (AP)
4. actually not occur: Actual Negative (AN)
5. True Positive TP = PP

⋂
AP

6. True Negative TN = PN
⋂

AN
7. False Negative FN = PN

⋂
AP

8. False Positive FP = PP
⋂

AN
9. Sensitivity: probability of correctly predicting a positive

example Sn = TP/(TP + FN)
10. Specificity: probability of correctly predicting a negative

example Sp = TN/(TN + FP) or
11. Probability that positive prediction is correct Sp = TP/(TP +

FP).
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11 Gibbs sampling: the string searching problem

Figure : Inserting a 15-bases motif with 4 mutations: why finding the
motif is difficult? Reason to search for motifs: we know from
microarray analysis that n genes are activated together so there may
be a protein that binds somewhere before the start of each of them.
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Gibbs sampling: the Biological problem
Given a set of sequences, find the motif shared by all or most
sequences; while its starting position in each sequence is
unknown, each motif appears exactly once in one sequence
and it has fixed length.

Figure : The regulation of a gene could be very complex with several
binding proteins (transcription factor) involved (left). Right: several
genes are co-regulated (activated or repressed) by same protein that
binds before the gene start (co-regulated genes could be identified
with microarray).
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Gibbs Sampling is an example of a Markov chain Monte Carlo
algorithm; it is an iterative procedure that discards one l-mer
after each iteration and replaces it with a new one. Gibbs
Sampling proceeds slowly and chooses new l-mers at random
increasing the odds that it will converge to the correct solution.
It could be used to identify short strings, motifs, common to all
co-regulated genes which are not co-aligned. The algorithm in
brief:

1. Randomly choose starting positions s = (s1,...,st ) and form
the set of l-mers associated with these starting positions.

2. Randomly choose one of the t sequences
3. Create a profile p from the other t -1 sequences (or you

can also use all the t sequences).
4. For each position in the removed sequence, calculate the

probability that the l-mer starting at that position was
generated by p.

5. Choose a new starting position for the removed sequence
at random based on the probabilities calculated in step 4.

6. Repeat steps 2-5 until there is no improvement.
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Non Mathematical introduction to Gibbs sampling
Considering a set of unaligned sequences, we choose initial
guess of motifs

Figure : motifs in purple, the rest of the sequences in green; next
figures: theta is the weight matrix i.e. the frequency of each base in
the aligned set of motifs; red the best fitting motif; in y axis the
likelihood of each motif with respect to the current weight matrix.

First Gibbs Sampling implementations: AlignACE
(arep.med.harvard.edu/mrnadata/mrnasoft.html) and
BioProspector (ai.stanford.edu/ xsliu/BioProspector/). See
ccmbweb.ccv.brown.edu 184 / 235



A weight matrix θ has one row for each symbol of the alphabet
and one column for each position in the pattern. It is a position
probability matrix computed from the frequency of each symbol
in each position.
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Doesnt do reinitializations in the middle to get out of local
maxima. Doesnt optimize the width (you have to specify width
explicitly).
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12 Biological Networks: the biological problem
A biological network is a group of genes in which individual
genes can influence the activity of other genes.Let assume that
there are two related genes, B and D neither is expressed
initially, but E causes B to be expressed and this in turn causes
D to be expressed the addition of CX by itself may not affect
expression of either B or D both CX and E will have elevated
levels of mRNAB and low levels of mRNAD

Figure : We have E only; B is a Primary Target of E; Production of
mRNAB is enhanced by E; D is a Secondary Target of E; Production
of mRNAD is enhanced by B; mRNAB and mRNAD quantified by
microarray.
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A genetic perturbation is an experimental manipulation of gene
activity by manipulating either a gene itself or its product.
Such perturbations include point mutations, gene deletions,
overexpression, inhibition of translation, or any other
interference with the activity of the product.

Figure : E and CX both present; B is a Primary Target; Production of
RNAB is enhanced by E; Production of RNAD is decreased
(prevented)
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Network reconstruction: direct and indirect effects

When manipulating a gene and finding that this manipulation
affects the activity of other genes, the question often arises as
to whether this is caused by a direct or indirect interaction?
An algorithm to reconstruct a genetic network from perturbation
data should be able to distinguish direct from indirect regulatory
effects.
Consider a series of experiments in which the activity of every
single gene in an organism is manipulated. (for instance,
non-essential genes can be deleted, and for essential genes
one might construct conditional mutants). The effect on mRNA
expression of all other genes is measured separately for each
mutant.
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I How to reconstruct a large genetic network from n gene
perturbations in fewer than n2 steps?

I Motivation: perturb a gene network one gene at a time and
use the effected genes in order to discriminate direct vs.
indirect gene-gene relationships

I Perturbations: gene knockouts, over-expression, etc.
I Method: For each gene gi , compare the control

experiment to perturbed experiment and identify the
differentially expressed genes Use the most parsimonious
graph that yields the graph as its reachable graph.
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The nodes of the graph correspond to genes, and two genes
are connected by a directed edge if one gene influences the
activity of the other.

Figure : (a) gene network; (b) adjacency list; (c) accessibility list;
Goal: (c) -¿ (a)
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Figure : The figure illustrates three graphs (Figs. B,C,D) with the
same accessibility list Acc (Fig. A). There is one graph (Fig. D) that
has Acc as its accessibility list and is simpler than all other graphs, in
the sense that it has fewer edges. Lets call Gpars the most
parsimonious network compatible with Acc.
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Figure A shows a graph representation of a hypothetical
genetic network of 21 genes. Figure B shows an alternative
representation of the network shown in A. For each gene i, it
simply shows which genes activity state the gene influences
directly. In graph theory, a list like that shown in Fig. B is called
the adjacency list of the graph. We will denote it as Adj(G), and
will refer to Adj(i) as the set of nodes (genes) adjacent to
(directly influenced by) node i. One might also call it the list of
nearest neighbors in the gene network, or the list of direct
regulatory interactions.
When perturbing each gene in the network shown in Figure A,
one would get the list of influences on the activities of other
genes shown in Figure C.
Starting from a graph representation of the network in Figure A,
one arrives at the list of direct and indirect causal interactions in
Figure C by following all paths leaving a gene. That is, one
follows all arrows emanating from the gene until one can go no
further.
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The adjacency list completely defines the structure of a gene
network

In graph theory, the list Acc(G) is called the accessibility list of
the graph G, because it shows all nodes (genes) that can be
accessed (influenced in their activity state) from a given gene
by following paths of direct interactions.
In the context of a genetic network one might also call it the list
of perturbation effects or the list of regulatory effects.
Acc(i) is the set of nodes that can be reached from node i by
following all paths of directed edges leaving i. Acc(G) then
simply consists of the accessibility list for all nodes i
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The adjacency matrix of a graph G, A(G) = (aij) is an n by n
square matrix, where n is the number of nodes (genes) in the
graph. An element (aij) of this matrix is equal to one if and only
if a directed edge exists from node i to node j. All other
elements of the adjacency matrix are zero.
The accessibility matrix P(G) = pij is also an n by n square
matrix. An element pij is equal to one if and only if a path
following directed edges exists from node i to node j . otherwise
pij equals zero.
Adjacency and accessibility matrices are the matrix equivalents
of adjacency and accessibility lists.
Lets first consider only graphs without cycles, where cycles are
paths starting at a node and leading back to the same node.
Graphs without cycles are called acyclic graphs.
Later generalize to graphs with cycles.
An acyclic directed graph defines its accessibility list, but the
converse is not true.
In general, if Acc is the accessibility list of a graph, there is
more than one graph G with the same accessibility list.
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Figure : A shortcut is an edge connecting two nodes, i and j that are
also connected via a longer path of edges. The shortcut e is a
shortcut range k+1. That is, when eliminating e, I and j are still
connected by a path of length k+1.
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Wagner Algorithm
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Theorem

I Let Acc be the accessibility list of an acyclic digraph. Then
there exists exactly one graph Gpars that has Acc as its
accessibility list and that has fewer edges than any other
graph G with Acc as its accessibility list.

I This means that for any list of perturbation effects there
exists exactly one genetic network G with fewer edges than
any other network with the same list of perturbation effects.

I Definition: An accessibility list Acc and a digraph G are
compatible if G has Acc as its accessibility list. Acc is the
accessibility list induced by G.

I Definition: Consider two nodes i and j of a digraph that are
connected by an edge e. The range r of the edge e is the
length of the shortest path between i and j in the absence
of e. If there is no other path connecting i and j, then r: =
∞.
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Theorem

Let Acc(G) be the accessibility list of an acyclic directed graph,
Gpars its most parsimonious graph, and V(Gpars ) the set of all
nodes of Gpars . We have the following equation (1):
∀i ∈ V (Gpars) . . .Adj (i) = Acc (i) \ ∪j∈Acc(i)Acc (j)
In words, for each node i the adjacency list Adj(i) of the most
parsimonious genetic network is equal to the accessibility list
Acc(i) after removal of all nodes that are accessible from any
node in Acc(i).
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Example

Figure : Adj(1) = Acc(1) –
(Acc(2) + Acc(3) + Acc(4) + Acc(5) + Acc(6)) = (2,3,4,5,6) -
(3 ∪ (5,6) ∪ 6) = (2,4)
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Proof: I will first prove that every node in Adj(i) is also contained
in the set defined by the right hand side of (1).
Let x be a node in Adj(i). This node is also in Acc(i). Now take,
without loss of generality any node j ∈ Acc(i). Could x be in
Acc(j)? If x could be in Acc(j) then we could construct a path
from i to j to x. But because x is also in Adj(i), there is also an
edge from i to x. This is a contradiction to Gpars being
shortcut-free. Thus, for no j ∈ Acc(i) can x be in Acc(j). x is
therefore also not an element of the union of all Acc(j) shown
on the right-hand side of (1). Thus, subtracting this union from
Acc(i) will not lead to the difference operator in (1) eliminating x
from Acc(i). Thus x is contained in the set defined by the
right-hand side of (1).
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Next to prove: Every node in the set of the right-hand side of (1)
is also in Adj(i).
Let x be a node in the set of the right-hand side of (1). Because
x is in the right hand side of (1), x must a fortiori also be in
Acc(i). That is, x is accessible from i. But x can not be
accessible from any j that is accessible from i.
For if it were, then x would also be in the union of all Acc(j).
Then taking the complement of Acc(i) and this union would
eliminate x from the set in the right hand side of (1). In sum, x is
accessible from i but not from any j accessible from i. Thus x
must be adjacent to i.
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Let i, j, and k be any three pairwise different nodes of an acyclic
directed shortcut-free graph G. If j is accessible from i, then no
node k accessible from j is adjacent to i.
Proof: Let j be a node accessible from node i. Assume that
there is a node k accessible from j, such that k is adjacent to i.
That is, j ∈ Acc(i), k ∈ Acc(j) and k ∈ Adj(i). That k is accessible
from j implies that there is a path of length at least one from j to
k. For the same reason, there exists a path of length at least
one connecting i to j. In sum, there must exist a path of length
at least two from i to k. However, by assumption, there also
exists a directed edge from i to k. Thus, the graph G can not be
short-cut free.
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Step 2: How about graphs with cycles?
Two different cycles have the same accessibility list
Perturbations of any gene in the cycle influences the activity of
all
other genes in the same cycle
Cant decide a unique graph if cycle happens
Not an algorithmic but an experimental limitation
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Figure : Basic idea: Shrink each cycles (strongly connected
components) into one node and apply the algorithm of step 1. A
graph after shrinking all the cycles into nodes is called a
condensation graph
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How good is this algorithm?

1. Unable to resolve cycled graphs
2. Require more data than conventional methods using gene

expression correlations.
3. There are many networks consistent with the given

accessibility list. The algorithm construct the most
parsimonious one.

4. The same problem was proposed around 1980 which is
called transitive reduction.

5. The transitive reduction of a directed graph G is the
directed graph G’ with the smallest number of edges such
for every path between vertices in G, G’ has a path
between those vertices.

6. An O(V) algorithm for computing transitive reduction of a
planar acyclic digraph was proposed by Sukhamay Kundu.
(V is the number of nodes in G)
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Complexity

I Measures of algorithmic complexity are influenced by the
average number of entries in a nodes accessibility list. Let
k < n − 1 be that number.

I For all practical purposes, there will be many fewer entries than
that, not only because accessibility lists with nearly n entries are
not accessibility lists of acyclic digraphs, but also because most
real-world graphs are sparse.

I During execution, each node accessible from a node j induces
one recursive call of PRUNEACC, after which the node
accessed from j is declared as visited. Thus, each entry of the
accessibility list of a node is explored no more than once.

I However, line 15 of the algorithm loops over all nodes k adjacent
to j. If a = |Adj(j)|, on average, then overall computational
complexity becomes O(nka).

I For practical matters, large scale experimental gene
perturbations in the yeast Saccharomyces cerevisiae (n = 6300)
suggests that k < 50, a < 1 and thus that nka < n2 in that case.
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Comments on the code
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Gillespie algorithm: The Biological problem
Many studies have reported occurrence of stochastic fluctuations and
noise in living systems. Observation of gene expression in individual
cells has clearly established the stochastic nature of transcription and
translation. When using deterministic modeling approaches, for
examples differential equations, we assume that the biological system
evolves along a fixed path from its initial state. Such an approach
cannot be taken for modeling stochastic processes such as gene
networks. Using deterministic methods, it is not possible to capture
emergent phenomena that arise from inherent randomness. The
below figure shows an example of biochemical pathway (you can find
it in Kegg database) that could be simulated using Gillespie.
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Gillespie algorithm

Consider a system of N molecular species S1, ,SN interacting
through M elemental chemical reactions R1, ,RM .
We assume that the system is confined to a constant volume W
and is well stirred and at a constant temperature. Under these
assumptions, the state of the system can be represented by the
populations of the species involved.
We denote these populations by X (t) = X1(t), ,XN(t), where
Xi(t) is the number of molecules of species Si in the system at
time t. The well stirred condition is crucial. For each reaction
Rj , we define a propensity function aj , such that aj(x)dt is the
probability, given X (t) = x , that one Rj reaction will occur in
time interval [t , t + dt). State change vector vj , whose ith
component is defined by vj,i the change in the number of Si
molecules produced by one Rj reaction.
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The most important method to simulate a network of
biochemical reactions is the Gillespies stochastic simulation
algorithm (SSA)

I The Gillespie algorithm is widely used to simulate the
behavior of a system of chemical reactions in a well stirred
container

I The key aspects of the algorithm is the drawing of two
random numbers at each time step, one to determine after
how much time the next reaction will take place, the second
one to choose which one of the reactions will occur.

I Each execution of the Gillespie algorithm will produce a
calculation of the evolution of the system. However, any
one execution is only a probabilistic simulation, and the
chances of being the same as a particular reaction is
vanishingly small.

I Therefore it should be run many times in order to calculate
a stochastic mean and variance that tells us about the
behaviour of the system.

I the complexity of the Gillespie algorithm is O(M) where M
is the number of reactions. 220 / 235



Gillespie Algorithm

1. Initialise: set the initial molecule numbers, set time t = 0.
2. Calculate the propensity function ai for each reaction, and

the total propensity according to equation
a0 (x) ≡

∑M
j=1 aj (x) , j = 1,...,M.

3. Generate two uniformly distributed random numbers r1 and
r2 from the range (0, 1).

4. Compute the time τ to the next reaction using equation
τ = 1

a0(x)
ln
(

1
r1

)
.

5. Decide which reaction Rµ occurs at the new time using
equation r2 >

∑µ−1
k=1 ak . . . and . . . r2 <

1
a0

∑µ
k=1 ak .

6. Update the state vector v (molecules quantity) by adding
the update vector : v(t + τ) = v(t) + (ν)µ

7. Set t = t + τ . Return to step 2 until t reaches some
specified limit tMAX .
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In each step, the SSA starts from a current state x(t) = x and
asks two questions: When will the next reaction occur? We
denote this time interval by t . When the next reaction occurs,
which reaction will it be? We denote the chosen reaction by the
index j. To answer the above questions, one needs to study the
joint probability density function p (τ, j | x , t) that is the
probability, given X (t) = x , that the next reaction will occur in
the infinitesimal time interval [t + τ, t + τ + dt ]. The theoretical
foundation of SSA is given by
p (τ, j | x , t) = aj (x)exp (−a0 (x) τ),
where a0 (x) ≡

∑M
j=1 aj (x). It implies that the time t to the next

occurring reaction is an exponentially distributed random
variable with mean 1/a0 (x) , and that the index j of that
reaction is the integer random variable with point probability
aj (x) /a0 (x). The τ is τ = 1

a0(x)
ln
(

1
r1

)
.

The system state is then updated according to
X (t + τ) = x + νj and this process is repeated until the
simulation final time or until some other terminating condition is
reached.
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Example: ODE (top) versus Gillespie (bottom)

Examples of software: Copasi, www.copasi.org; stochkit,
stochkit.sourceforge.net
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Example of Gillespie algorithm
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Examples of Exam Questions
I Align the two strings: ACGCTG and CATGT, with match

score =1 and mismatch, gap penalty equal -1
I Describe with one example the difference between

Hamming and Edit distances
I Discuss the complexity of an algorithm to reconstruct a

genetic network from microarray perturbation data
I Discuss the properties of the Markov clustering algorithm

and the difference with respect to the k-means and
hierarchical clustering algorithms
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Examples of Answers Align the two strings: ACGCTG and
CATGT, with match score =1 and mismatch, gap penalty equal
-1

Describe with one example the difference between Hamming
and Edit distances TGCATAT → ATCCGAT in 4 steps;
TGCATAT (insert A at front); ATGCATAT (delete 6th T);
ATGCATA (substitute G for 5th A); ATGCGTA (substitute C for
3rd G); ATCCGAT (Done).
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Examples of Answers
Discuss the complexity of an algorithm to reconstruct a genetic
network from microarray perturbation data
Reconstruction: O(nka) where n is the number of genes, k is
the average number of entries in the accession list; a is the
average number of entries in adjacency list. Large scale
experimental gene perturbations in the yeast Saccharomyces
cerevisiae (n=6300) suggests that k < 50, a < 1, and thus that
nka << n2.
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Discuss the properties of the Markov clustering algorithm and
the difference with respect to the k-means and hierarchical
clustering algorithms
MCL algorithm: We take a random walk on the graph described
by the similarity matrix and after each step we weaken the links
between distant nodes and strengthen the links between
nearby nodes.
The k-means algorithm is composed of the following steps: 1)
Place K points into the space represented by the objects that
are being clustered. These points represent initial group
centroids. 2) Assign each object to the group that has the
closest centroid. 3) When all objects have been assigned,
recalculate the positions of the K centroids. 4) Repeat Steps 2
and 3 until the centroids no longer move. This produces a
separation of the objects into groups from which the metric to
be minimized can be calculated.
Hierarchical clustering: Start with each point its own cluster. At
each iteration, merge the two clusters; with the smallest
distance. Eventually all points will be linked into a single cluster.
The sequence of mergers can be represented with a rooted
tree.
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Bioinformatics and computational medicine
Understanding disease complexity is the definite scientific
challenge of the twenty-first century medicine. The future
foreseen is that computers will assist our health and disease
conditions in a more effective way than nowadays: a medical
check up will be supported by well-tuned artificial intelligence
and patient-based modeling . At the clinical level,
computer-aided therapies and treatments will develop into
intervention strategies undertaken under acute disease
conditions or due to external factors (infections) to contrast
cascade effects.

Figure : The virtual patient: a person simulator
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