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= Goal: Find a subgraph C E of
minimum totalflweight that links
all vertices A
I 1
[Must be necessarily a tree!]
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Minimum Spanning Tree Problem

~——— Minimum Spanning Tree Problem —
= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights
= Goal: Find a subgraph C E of
minimum total weight that links
all vertices

Applications
= Street Networks, Wiring Electronic Components, Laying Pipes

= Weights may represent distances, costs, travel times, capacities,
resistance etc.

.-,,!.-, 6.3: Minimum Spanning Tree TS. 2



Generic Algorithm

def minimum spanningTree (G)
A = empty set of edges
while A does not span all vertices yet:
add a safe edge to A

Ww N B O
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Generic Algorithm

def minimum spanningTree (G)
A = empty set of edges
while A does not span all vertices yet:
add a safe edge to A

Ww N B O

Definition
An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.
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Generic Algorithm

0: def minimum spanningTree (G)
iLg A = empty set of edges
2: while A does not span all vertices yet:
3: add a safe edge to A
— Definition N

An edge of G is safe if by adding the edge to A, the resulting subgraph
is still a subset of a minimum spanning tree.

\ J

How to find a safe edge?
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Finding safe edges

Definitions

* a cutis a partition of V into at least
two disjoint sets
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Finding safe edges

Definitions

* a cutis a partition of V into at least
two disjoint sets

= acut respects A C E if no edge of
A goes across the cut

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.
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Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
//>\\
-~
’ N l.\.}
/ \ \\ //
/ \ -
/./. \
! \
| \ o
! 1 // \\
| /. I ’ o
| 1 / ° \
\ I ! |
\ / ! /
\ / N ’
\ / ~ Phd
\ ’ T
Sl

J‘I% 6.3: Minimum Spanning Tree TS. 5



Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
* Let T be a MST containing A
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Proof of Theorem

Theorem
Let A C E be a subset of a MST of G. Then for any cut that respects A,

the lightest edge of G that goes across the cut is safe.

Proof:
* Let T be a MST containing A
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Proof of Theorem

Theorem
Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
* Let T be a MST containing A
» Let e, be the lightest edge across the cut
= |[f e, € T, then we are done
» If e, ¢ T, then adding e, to T introduces cycle
» This cycle crosses the cut through e, and
another edge ex

= Consider now the tree T U e, \ ex:

= This tree must be a spanning tree
= If w(e¢) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
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Proof of Theorem

Theorem
Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Proof:
* Let T be a MST containing A
» Let e, be the lightest edge across the cut
If e, € T, then we are done
» If e, ¢ T, then adding e, to T introduces cycle

» This cycle crosses the cut through e, and
another edge ex
= Consider now the tree T U e, \ ex:
= This tree must be a spanning tree
= If w(e¢) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
= If w(ey) = w(ex),then TUe; \ exisa
MST. O
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Glimpse at Kruskal’s Algorithm

Basic Strategy
= Let A C E be a forest, intially empty

= At every step, given A, perform:

Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track
of connected components!
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

83

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:
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5: D = DisjointSet ()
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8: E = G.edges()
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10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity
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Details of Kruskal’s Algorithm
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11:
12:
13:
14:
15:
16:
17:

: def kruskal (G)

A Set ()

D DisjointSet ()

for v in G.vertices():
D.makeSet (v)

E = G.edges()

E.sort (key=weight, direction=ascending)

for edge in E:
startSet = D.findSet (edge.start)
endSet = D.findSet (edge.end)
if startSet != endSet:
A.append (edge)
D.union (startSet, endSet)
return A

Time Complexity
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

33

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= Initialisation (I. 4-9): O(V + Elog E)
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Details of Kruskal’s Algorithm
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1:
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Time Complexity

Initialisation (1. 4-9): O(V + E log E)
Main Loop (I. 11-16): O(E - «(n))
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0: def kruskal (G)

1:

2:

33

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= Initialisation (I. 4-9): O(V + Elog E)
= Main Loop (I. 11-16): O(E - «(n))
= Overall: O(Elog E) = O(Elog V)
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

83

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity
= |nitialisation (I. 4-9): O(V + Elog E)
= Main Loop (I. 11-16): O(E - a(n))

= Overall: O(Elog E) = O(Elog V)

If edges are already sorted, runtime becomes O(E - «(n))! ]
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

83

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:
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17: return A

Correctness
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

33

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Correctness
= Consider the cut of all connected components (disjoint sets)

= L. 14 ensures that we extend A by an edge that goes across the cut
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Details of Kruskal’s Algorithm

0: def kruskal (G)

1:

2:

33

4: A = Set()

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeSet (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findSet (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Correctness
= Consider the cut of all connected components (disjoint sets)

= L. 14 ensures that we extend A by an edge that goes across the cut

= This edge is also the lightest edge crossing the cut (otherwise, we
would have included a lighter edge before)
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= At each step, add lightest edge linked to A that does not yield cycle

11 8

an

6.3: Minimum Spanning Tree TS. 9

6




Prim’s Algorithm

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

o

[ Implementation will be based on vertices! ]
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Prim’s Algorithm

—— Basic Strategy
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o

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge connecting to A
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Prim’s Algorithm

—— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

o

Assign every vertex not in A a key which is at all stages
equal to the smallest weight of an edge &Jnnecting to A

[ Use a Priority Queue! ]
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Prim’s Algorithm

Implementation

= Every vertex in Q has key and pointer of least-weight edge to V' \ @Q
= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q
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= Every vertex in Q has key and pointer of least-weight edge to V' \ @Q

= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Final MST is given
(implicitly) by the pointers!
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Prim’s Algorithm

Implementation
= Every vertex in Q has key and pointer of least-weight edge to V' \ @Q

= At each step:
1. extract vertex from Q with smallest key < safe edge of cut (V \ Q, Q)
2. update keys and pointers of its neighbors in Q

Final MST is given
(implicitly) by the pointers!

We computed same MST as Kruskal,
but in a completely different order!

ggg 6.3: Minimum Spanning Tree TS. 9



Details of Prim’s Algorithm

0: def prim(G,r)

iz

2:

38

4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

78 v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

HiSE

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

% 6.3: Minimum Spanning Tree TS.
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~——— Time Complexity
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Details of Prim’s Algorithm

0: def prim(G,r)

ilg Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
BH] MST induced by the .predecessor fields
4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

78 v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)
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= Fibonacci Heaps:
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Details of Prim’s Algorithm

0: def prim(G,r)

iz

2

BH]

4:

5: Q = M:LnPrJ.orJ.tyQueue ()

6: for v in G.vertices():

78 v.predecessor = None

8 if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

HiSE

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():
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18: if Q.hasItem(v) and w < v.key:
f1i0%3 v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V - log V),
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Details of Prim’s Algorithm

0: def prim(G,r)

ilg Apply Prim’s Algorithm to graph G and root r
2: Return result implicitly by modifying G:
BH] MST induced by the .predecessor fields
4:

5: Q = MinPriorityQueue ()

6: for v in G.vertices():

78 v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

HiSE

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent () :

17: w = G.weightOfEdge (u,v)

18: if Q.hasItem(v) and w < v.key:

19: v.predecessor = u

20: Q.decreaseKey (item=v, newKey=w)
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Details of Prim’s Algorithm

©

10:
11:
12:
13:
14:
HISE
16:
17:
18:
HIOE
20:

~——— Time Complexity

®LdOAUAWNKO

o
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for

prim(G, r)

Apply Prim’s Algorithm to graph G and root r
Return result implicitly by modifying G:

MST induced by the .predecessor fields

MinPriorityQueue ()

v in G.vertices():
v.predecessor = None
if v == r:

v.key = 0
else:

v.key = Infinity
Q.insert (v)

while not Q.isEmpty():

= Q.extractMin ()
for v in u.adjacent () :
w = G.weightOfEdge (u,v)
if Q.hasItem(v) and w < v.key:
v.predecessor = u
Q.decreaseKey (item=v, newKey=w)

= Fibonacci Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V -log V), DecreaseKey (16-20): O(E - 1)
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Details of Prim’s Algorithm

0: def prim(G,r)

iz

2:

38

4:

5: Q = M:Lan::Lor:LtyQueue ()

6: for v in G.vertices():

78 v.predecessor = None

8: if v == r:

9: v.key = 0

10: else:

11: v.key = Infinity

12: Q.insert (v)

HiSE

14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

17: w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V -log V), DecreaseKey (16-20): O(E - 1)

Amortized Cost Amortized Cost
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~——— Time Complexity
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Details of Prim’s Algorithm

0: def prim(G,r)

iz

2

BH]

4:

5: Q = M:LnPrJ.orJ.tyQueue ()
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11: v.key = Infinity
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14: while not Q.isEmpty():

HISE u = Q.extractMin()

16: for v in u.adjacent():

aA7e w = G.weightOfEdge (u,v)
18: if Q.hasItem(v) and w < v.key:
f1i0%3 v.predecessor = u
20: Q.decreaseKey (item=v, newKey=w)

~——— Time Complexity

= Fibonacci Heaps:
Init (I. 6-13): O(V), ExtractMin (15): O(V -log V), DecreaseKey (16-20): O(E - 1)
= Overall: O(Vlog V + E)

= Binary/Binomial Heaps:
Init (1. 6-13): O(V), ExtractMin (15): O(V -log V), DecreaseKey (16-20): O(E - log V)
= Overall: O(Vlog V + Elog V)
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Summary (Kruskal and Prim)

Generic Idea

= Add safe edge to the current MST as long as possible
= Theorem: An edge is safe if it is the lightest of a cut respecting A

J‘I% 6.3: Minimum Spanning Tree TS.



Summary (Kruskal and Prim)

——— Generic Idea

= Add safe edge to the current MST as long as possible
= Theorem: An edge is safe if it is the lightest of a cut respecting A

\.

~——— Kruskal’s Algorithm

= Gradually transforms a forest into a MST by merging trees
= invokes disjoint set data structure
= Runtime O(V + Elog V)

6.3: Minimum Spanning Tree TS.
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Summary (Kruskal and Prim)

——— Generic Idea

= Add safe edge to the current MST as long as possible
= Theorem: An edge is safe if it is the lightest of a cut respecting A

\.

~——— Kruskal’s Algorithm

= Gradually transforms a forest into a MST by merging trees
= invokes disjoint set data structure
= Runtime O(V + Elog V)

\

~——— Prim’s Algorithm

= Gradually extends a tree into a MST by adding incident edges
= invokes Fibonacci heaps (priority queue)
= Runtime O(Vlog V + E)

6.3: Minimum Spanning Tree TS.
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Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight

= Remove edge from A as long as all vertices are connected by A

TS. 12
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Reverse-Delete Algorithm

Basic Idea
= Let A be initially the set of all edges

= Consider all edges in decreasing order of their weight
= Remove edge from A as long as all vertices are connected by A

AN

Can be implemented in time
O(Elog V(loglog V)®). [Thorup, 2000]

]
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Current State-of-the-Art

Does a linear-time MST algorithm exist?

Karger, Klein, Tarjan, JACM’1995

= randomised MST algorithm with expected runtime O(E)
= based on Boruvka’s algorithm (from 1926)

——— Chazelle, JACM'2000

= deterministic MST algorithm with runtime O(E - «(n))

Pettie, Ramachandran, JACM'2002

= deterministic MST algorithm with asymptotically optimal runtime
= however, the runtime itself is not known...
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