

6.4: Single-Source Shortest Paths

Frank Stajano

Thomas Sauerwald

Lent 2015

Outline

Introduction

Bellman-Ford Algorithm

Shortest Path Problem

Given: directed graph
 G = (V, E) with edge weights,
 pair of vertices s, t ∈ V

Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

 $p = (v_0 = s, v_1, \dots, v_k = t)$ such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.

Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.

Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

How to cope with an **unweighted** graph *G*?

Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

How to cope with an **unweighted** graph *G*?

Two possible answers are:

- 1. Run BFS (computes shortest paths in unweighted graphs)
- 2. Add a weight of 1 to all edges

Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

Applications

 Car Navigation, Traffic Planning, Internet Routing, Arbitrage in Concurrency Exchange, . . .

Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)

- Bellman-Ford Algorithm
- Dijsktra Algorithm

Variants of Shortest Path Problems

Single-source shortest-paths problem (SSSP)

- Bellman-Ford Algorithm
- Dijsktra Algorithm

All-pairs shortest-paths problem (APSP)

- Shortest Paths via Matrix Multiplication
- Johnson's Algorithm

Outline

Introduction

Bellman-Ford Algorithm

Definition

Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far

Definition

Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$

Definition

Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
 - At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Definition

Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Relaxing an edge (u, v)

Definition

Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Relaxing an edge (u, v)

$$v.d \stackrel{?}{>} u.d + w(u, v)$$

Definition

Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Relaxing an edge (u, v)

$$v.d \stackrel{?}{>} u.d + w(u, v)$$

Definition

Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Relaxing an edge (u, v)

$$v.d \stackrel{?}{>} u.d + w(u, v)$$

Definition

Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Relaxing an edge (u, v)

$$v.d \stackrel{?}{>} u.d + w(u, v)$$

Definition

Fix the source vertex $s \in V$

- $v.\delta$ is the length of the shortest path (distance) from s to v
- v.d is the length of the shortest path discovered so far
- At the beginning: $s.d = s.\delta = 0$, $v.d = \infty$ for $v \neq s$
- At the end: $v.d = v.\delta$ for all $v \in V$

Relaxing an edge (u, v)

Given estimates u.d and v.d, can we find a better path from v using the edge (u, v)?

$$v.d \stackrel{?}{>} u.d + w(u, v)$$

After relaxing (u, v), regardless of whether we found a shortcut: $v.d \le u.d + w(u, v)$

Toolkit

Triangle inequality (Lemma 24.10)

■ For any edge $(u, v) \in E$, we have $v.\delta \le u.\delta + w(u, v)$

Upper-bound Property (Lemma 24.11)

• We always have $v.d \ge v.\delta$ for all $v \in V$, and once v.d achieves the value $v.\delta$, it never changes.

Convergence Property (Lemma 24.14)

• If $s \leadsto u \to v$ is a shortest path from s to v, and if $u.d = u.\delta$ prior to relaxing edge (u, v), then $v.d = v.\delta$ at all times afterward.

v.d

Toolkit

Triangle inequality (Lemma 24.10)

■ For any edge $(u, v) \in E$, we have $v.\delta \le u.\delta + w(u, v)$

Upper-bound Property (Lemma 24.11)

• We always have $v.d \ge v.\delta$ for all $v \in V$, and once v.d achieves the value $v.\delta$, it never changes.

Convergence Property (Lemma 24.14)

• If $s \leadsto u \to v$ is a shortest path from s to v, and if $u.d = u.\delta$ prior to relaxing edge (u, v), then $v.d = v.\delta$ at all times afterward.

$$\begin{array}{c}
s \\
\hline
0 \\
\hline
\end{array}$$

$$\begin{array}{c}
u \\
\hline
\end{array}$$

$$\begin{array}{c}
v \\
\hline
\end{array}$$

$$v.d < u.d + w(u, v)$$

Toolkit

Triangle inequality (Lemma 24.10)

■ For any edge $(u, v) \in E$, we have $v.\delta \le u.\delta + w(u, v)$

Upper-bound Property (Lemma 24.11)

• We always have $v.d \ge v.\delta$ for all $v \in V$, and once v.d achieves the value $v.\delta$, it never changes.

Convergence Property (Lemma 24.14)

• If $s \leadsto u \to v$ is a shortest path from s to v, and if $u.d = u.\delta$ prior to relaxing edge (u, v), then $v.d = v.\delta$ at all times afterward.

$$v.d \le u.d + w(u, v)$$

= $u.\delta + w(u, v)$

Toolkit

Triangle inequality (Lemma 24.10)

■ For any edge $(u, v) \in E$, we have $v.\delta \le u.\delta + w(u, v)$

Upper-bound Property (Lemma 24.11)

• We always have $v.d \ge v.\delta$ for all $v \in V$, and once v.d achieves the value $v.\delta$, it never changes.

Convergence Property (Lemma 24.14)

• If $s \leadsto u \to v$ is a shortest path from s to v, and if $u.d = u.\delta$ prior to relaxing edge (u, v), then $v.d = v.\delta$ at all times afterward.

$$v.d \le u.d + w(u, v)$$

$$= u.\delta + w(u, v)$$

$$= v.\delta$$

Toolkit

Triangle inequality (Lemma 24.10)

■ For any edge $(u, v) \in E$, we have $v.\delta \le u.\delta + w(u, v)$

Upper-bound Property (Lemma 24.11)

• We always have $v.d \ge v.\delta$ for all $v \in V$, and once v.d achieves the value $v.\delta$, it never changes.

Convergence Property (Lemma 24.14)

• If $s \leadsto u \to v$ is a shortest path from s to v, and if $u.d = u.\delta$ prior to relaxing edge (u, v), then $v.d = v.\delta$ at all times afterward.

$$v.d \le u.d + w(u, v)$$

$$= u.\delta + w(u, v)$$

$$= v.\delta$$

Since $v.d \ge v.\delta$, we have $v.d = v.\delta$.

Path-Relaxation Property (Lemma 24.15) -

If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k , and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$, then $v_k.d=v_k.\delta$ (regardless of the order of other relaxation steps).

Path-Relaxation Property (Lemma 24.15) -

If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k , and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$, then $v_k.d=v_k.\delta$ (regardless of the order of other relaxation steps).

Proof:

■ By induction on i, $0 \le i \le k$: After the ith edge of p is relaxed, we have $v_i . d = v_i . \delta$.

Path-Relaxation Property (Lemma 24.15)

If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k , and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$, then $v_k.d=v_k.\delta$ (regardless of the order of other relaxation steps).

- By induction on i, $0 \le i \le k$: After the ith edge of p is relaxed, we have $v_i . d = v_i . \delta$.
- For i = 0, by the initialization $s.d = s.\delta = 0$. Upper-bound Property \Rightarrow the value of s.d never changes after that.

Path-Relaxation Property (Lemma 24.15) -

If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k , and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$, then $v_k.d=v_k.\delta$ (regardless of the order of other relaxation steps).

- By induction on i, $0 \le i \le k$: After the ith edge of p is relaxed, we have v_i . $d = v_i$. δ .
- For i = 0, by the initialization $s.d = s.\delta = 0$. Upper-bound Property \Rightarrow the value of s.d never changes after that.
- Inductive Step $(i-1 \rightarrow i)$: Assume $v_{i-1}.d = v_{i-1}.\delta$ and relax (v_{i-1}, v_i) .

Path-Relaxation Property (Lemma 24.15) -

If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k , and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$, then $v_k.d=v_k.\delta$ (regardless of the order of other relaxation steps).

- By induction on i, $0 \le i \le k$: After the ith edge of p is relaxed, we have $v_i . d = v_i . \delta$.
- For i = 0, by the initialization $s.d = s.\delta = 0$. Upper-bound Property \Rightarrow the value of s.d never changes after that.
- Inductive Step $(i-1 \rightarrow i)$: Assume $v_{i-1}.d = v_{i-1}.\delta$ and relax (v_{i-1}, v_i) . Convergence Property $\Rightarrow v_i.d = v_i.\delta$ (now and at all later steps)

"Propagation": By relaxing proper edges, set of vertices with $v.\delta = v.d$ gets larger

Path-Relaxation Property (Lemma 24.15) -

If $p=(v_0,v_1,\ldots,v_k)$ is a shortest path from $s=v_0$ to v_k , and we relax the edges of p in the order $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$, then $v_k.d=v_k.\delta$ (regardless of the order of other relaxation steps).

- By induction on i, $0 \le i \le k$: After the ith edge of p is relaxed, we have $v_i . d = v_i . \delta$.
- For i = 0, by the initialization $s.d = s.\delta = 0$. Upper-bound Property \Rightarrow the value of s.d never changes after that.
- Inductive Step $(i-1 \rightarrow i)$: Assume $v_{i-1}.d = v_{i-1}.\delta$ and relax (v_{i-1}, v_i) . Convergence Property $\Rightarrow v_i.d = v_i.\delta$ (now and at all later steps)


```
BELLMAN-FORD (G, w, s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7:
     for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10:
         e.end.d = e.start.d + e.weight
11:
         e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:</pre>
15:
       return FALSE
16: return TRUE
```



```
BELLMAN-FORD (G, w, s)
0: assert(s in G.vertices())
1: for v in G.vertices()
     v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7:
     for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10:
         e.end.d = e.start.d + e.weight
11:
         e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:</pre>
15: return FALSE
16: return TRUE
```

Time Complexity


```
BELLMAN-FORD (G, w, s)
0: assert(s in G.vertices())
1: for v in G.vertices()
     v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7:
     for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10:
         e.end.d = e.start.d + e.weight
11:
         e.end.predecessor = e.start
12:
13: for e in G.edges()
14:
      if e.start.d + e.weight.d < e.end.d:
15:
        return FALSE
16: return TRUE
```

Time Complexity -

• A single call of line 9-11 costs $\mathcal{O}(1)$


```
BELLMAN-FORD (G, w, s)
0: assert(s in G.vertices())
1: for v in G.vertices()
     v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7:
     for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
         e.end.d = e.start.d + e.weight
10:
11:
         e.end.predecessor = e.start
12:
13: for e in G.edges()
14:
      if e.start.d + e.weight.d < e.end.d:
15:
         return FALSE
16: return TRUE
```

Time Complexity -

- A single call of line 9-11 costs $\mathcal{O}(1)$
- In each pass every edge is relaxed $\Rightarrow \mathcal{O}(E)$ time per pass


```
BELLMAN-FORD (G, w, s)
0: assert(s in G.vertices())
1: for v in G.vertices()
2: v.predecessor = None
3: v.d = Infinity
4: s.d = 0
5:
6: repeat |V|-1 times
7:
     for e in G.edges()
8: Relax edge e=(u,v): Check if u.d + w(u,v) < v.d
9: if e.start.d + e.weight.d < e.end.d:
10:
         e.end.d = e.start.d + e.weight
11:
         e.end.predecessor = e.start
12:
13: for e in G.edges()
14: if e.start.d + e.weight.d < e.end.d:</pre>
15:
     return FALSE
16: return TRUE
```

Time Complexity

- A single call of line 9-11 costs O(1)
- In each pass every edge is relaxed $\Rightarrow \mathcal{O}(E)$ time per pass
- Overall (V-1)+1=V passes $\Rightarrow \mathcal{O}(V\cdot E)$ time

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 1

Pass: 2

Pass: 3

Pass: 3

Pass: 3

Pass: 3

Pass: 3

Pass: 4

Pass: 4

Pass: 4

Pass: 4

Pass: 4

Pass: 4

Pass: 4

Pass: 4

Pass: 4

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,z),(x,t),(y,x),(y,z),(z,x),(z,s),(s,t),(s,y)

- Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

Let v be a vertex reachable from s

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- I et v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- Let v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- I et v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v.d = v.\delta$

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- Let v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v.d = v.\delta$

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- Let v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v.d = v.\delta$

Proof that Bellman-Ford returns TRUE

■ Need to prove: $v.d \le u.d + w(u, v)$ for all edges

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- I et v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v.d = v.\delta$

- Need to prove: $v.d \le u.d + w(u, v)$ for all edges
- Let $(u, v) \in E$ be any edge. After |V| 1 passes:

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- Let v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v.d = v.\delta$

- Need to prove: $v.d \le u.d + w(u, v)$ for all edges
- Let $(u, v) \in E$ be any edge. After |V| 1 passes:

$$v.d = v.\delta$$

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- Let v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v.d = v.\delta$

- Need to prove: v.d < u.d + w(u, v) for all edges
- Let $(u, v) \in E$ be any edge. After |V| 1 passes:

$$v.d = v.\delta \le u.\delta + w(u, v)$$

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- Let v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v.d = v.\delta$

- Need to prove: $v.d \le u.d + w(u, v)$ for all edges
- Let $(u, v) \in E$ be any edge. After |V| 1 passes:

$$v.d = v.\delta \le u.\delta + w(u, v) = u.d + w(u, v)$$

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- Let v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v.d = v.\delta$

- Need to prove: $v.d \le u.d + w(u, v)$ for all edges
- Let $(u, v) \in E$ be any edge. After |V| 1 passes:

$$v.d = v.\delta \le u.\delta + w(u, v) = u.d + w(u, v)$$

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable from s. Then after |V|-1 passes, we have $v.d=v.\delta$ for all vertices $v\in V$ that are reachable and Bellman-Ford returns TRUE.

Proof that $v.d = v.\delta$

- I et v be a vertex reachable from s
- Let $p = (v_0 = s, v_1, \dots, v_k = v)$ be a shortest path from s to v
- p is simple, hence $k \leq |V| 1$
- Path-Relaxation Property \Rightarrow after |V| 1 passes, $v.d = v.\delta$

Proof that Bellman-Ford returns TRUE

- Need to prove: v.d < u.d + w(u, v) for all edges
- Let $(u, v) \in E$ be any edge. After |V| 1 passes:

$$v.d = v.\delta \le u.\delta + w(u, v) = u.d + w(u, v)$$

Triangle inequality (holds even if w(u, v) < 0!)

Theorem 24.3 —

If ${\it G}$ contains a negative-weight cycle reachable from ${\it s}$, then Bellman-Ford returns FALSE.

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-Ford returns FALSE.

Proof:

• Let $c = (v_0, v_1, \dots, v_k = v_0)$ be a negative-weight cycle reachable from s

Theorem 24.3 -

If G contains a negative-weight cycle reachable from s, then Bellman-Ford returns FALSE.

Proof:

- Let $c = (v_0, v_1, \dots, v_k = v_0)$ be a negative-weight cycle reachable from s
- If Bellman-Ford returns TRUE, then for every $1 \le i < k$,

$$v_i.d \leq v_{i-1}.d + w(v_{i-1},v_i)$$

Theorem 24.3 -

If G contains a negative-weight cycle reachable from s, then Bellman-Ford returns FALSE.

Proof:

- Let $c = (v_0, v_1, \dots, v_k = v_0)$ be a negative-weight cycle reachable from s
- If Bellman-Ford returns TRUE, then for every $1 \le i < k$,

$$v_{i}.d \leq v_{i-1}.d + w(v_{i-1}, v_{i})$$

$$\Rightarrow \sum_{i=1}^{k} v_{i}.d \leq \sum_{i=1}^{k} v_{i-1}.d + \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

Theorem 24.3 -

If G contains a negative-weight cycle reachable from s, then Bellman-Ford returns FALSE.

Proof:

- Let $c = (v_0, v_1, \dots, v_k = v_0)$ be a negative-weight cycle reachable from s
- If Bellman-Ford returns TRUE, then for every $1 \le i < k$,

$$v_{i}.d \leq v_{i-1}.d + w(v_{i-1}, v_{i})$$

$$\Rightarrow \sum_{i=1}^{k} v_{i}.d \leq \sum_{i=1}^{k} v_{i-1}.d + \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

$$\Rightarrow 0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

Theorem 24.3 -

If G contains a negative-weight cycle reachable from s, then Bellman-Ford returns FALSE.

Proof:

- Let $c = (v_0, v_1, \dots, v_k = v_0)$ be a negative-weight cycle reachable from s
- If Bellman-Ford returns TRUE, then for every $1 \le i < k$,

$$v_{i}.d \leq v_{i-1}.d + w(v_{i-1}, v_{i})$$

$$\Rightarrow \sum_{i=1}^{k} v_{i}.d \leq \sum_{i=1}^{k} v_{i-1}.d + \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

$$\Rightarrow 0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

This cancellation is only valid if all .d-values are finite!

Theorem 24.3 -

If G contains a negative-weight cycle reachable from s, then Bellman-Ford returns FALSE.

Proof:

- Let $c = (v_0, v_1, \dots, v_k = v_0)$ be a negative-weight cycle reachable from s
- If Bellman-Ford returns TRUE, then for every $1 \le i < k$,

$$v_{i}.d \leq v_{i-1}.d + w(v_{i-1}, v_{i})$$

$$\Rightarrow \sum_{i=1}^{k} v_{i}.d \leq \sum_{i=1}^{k} v_{i-1}.d + \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

$$\Rightarrow 0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_{i})$$

• This contradicts the assumption that *c* is a negative-weight cycle!