

Residual Graph $G_t = (V, E_t, c_t)$:

6.3: Maximum Flows

Frank Stajano

Thomas Sauerwald

Lent 2015

Announcements

- Deadline for Microchallenge 7 today!
- There is a list of errata for the slides on the webpage
- There might be a little bit of time in the last lecture to revisit one of the previous topics and briefly discuss some data structure/algorithm/proof etc. which may or may not have been covered in previous lectures.

If you have any suggestion, please send an email today.

Outline

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

Introduction and Line Intersection

Max-Flow Min-Cut Theorem

Theorem

The value of the max-flow is equal to the capacity of the min-cut, that is

$$\max_{f} |f| = \min_{S,T \subset V} \operatorname{cap}(S,T).$$

Analysis of Ford-Fulkerson

```
    0: def FordFulkerson(G)
    1: initialize flow to 0 on all edges
    2: while an augmenting path in G<sub>f</sub> can be found:
    3: push as much extra flow as possible through it
```


Analysis of Ford-Fulkerson

```
0: def FordFulkerson(G)
```

1: initialize flow to 0 on all edges

2: while an augmenting path in G_f can be found:

3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Analysis of Ford-Fulkerson

- 0: def FordFulkerson(G)
- initialize flow to 0 on all edges
- 2: while an augmenting path in G_f can be found:
- 3: push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-Fulkerson is integral.

Theorem

For integral capacities c(u, v), Ford-Fulkerson terminates after $V \cdot C$ iterations, where $C := \max_{u,v} c(u, v)$ and returns the maximum flow.

at the time of termination, no augmenting path ⇒ Ford-Fulkerson returns maxflow (Key Lemma)

Slow Convergence of Ford-Fulkerson (Figure 26.7)

Number of iterations is at least $C := \max_{u,v} c(u,v)!$

Slow Convergence of Ford-Fulkerson (Figure 26.7)

Number of iterations is at least $C := \max_{u,v} c(u,v)!$

For irrational capacities, Ford-Fulkerson may even fail to terminate!

6.3: Maximum Flows T.S. 7

6.3: Maximum Flows T.S.

7

Iteration: 2, $|f| = 1 + \phi$

Iteration: 2, $|f| = 1 + \phi$

Iteration: 3, $|f| = 1 + \phi$

Iteration: 3, $|f| = 1 + \phi$

Iteration: 3, $|f| = 1 + 2 \cdot \phi$

Iteration: 3, $|f| = 1 + 2 \cdot \phi$

Iteration: 4, $|f| = 1 + 2 \cdot \phi$

Iteration: 4, $|f| = 1 + 2 \cdot \phi$

Iteration: 4, $|f| = 1 + 2 \cdot \phi + \phi^2$

Iteration: 4, $|f| = 1 + 2 \cdot \phi + \phi^2$

Iteration: 5, $|f| = 1 + 2 \cdot \phi + \phi^2$

Iteration: 5, $|f| = 1 + 2 \cdot \phi + \phi^2$

Iteration: 5, $|f| = 1 + 2 \cdot \phi + 2 \cdot \phi^2$

Iteration: 5, $|f| = 1 + 2 \cdot \phi + 2 \cdot \phi^2$

In summary:

- After iteration 1: $\stackrel{0}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{0}{\longleftarrow}$, |f| = 1
- After iteration 5: $\stackrel{1-\phi^2}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{\phi-\phi^3}{\longleftarrow}$, $|f|=1+2\phi+2\phi^2$

S

In summary:

- After iteration 1: $\stackrel{0}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{0}{\longleftarrow}$, |f|=1
- After iteration 5: $\stackrel{1-\phi^2}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{\phi-\phi^3}{\longleftarrow}$, $|f|=1+2\phi+2\phi^2$
- After iteration 9: $\stackrel{1-\phi^4}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{\phi-\phi^5}{\longrightarrow}$, $|f|=1+2\phi+2\phi^2+2\phi^3+2\phi^4$

In summary:

- After iteration 1: $\stackrel{0}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{0}{\longleftarrow}$, |f|=1
- After iteration 5: $\stackrel{1-\phi^2}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{\phi-\phi^3}{\longleftarrow}$, $|f|=1+2\phi+2\phi^2$
- After iteration 9: $\xrightarrow{1-\phi^4}$, $\xrightarrow{1}$, $\xrightarrow{\phi-\phi^5}$, $|f| = 1 + 2\phi + 2\phi^2 + 2\phi^3 + 2\phi^4$

In summary:

- After iteration 1: $\stackrel{0}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{0}{\longleftarrow}$, |f|=1
- After iteration 5: $\xrightarrow{1-\phi^2}$, $\xrightarrow{1}$, $\xrightarrow{\phi-\phi^3}$, $|f|=1+2\phi+2\phi^2$
- After iteration 9: $\stackrel{1-\phi^4}{\longrightarrow}$, $\stackrel{\phi}{\longrightarrow}$, $\stackrel{\phi}{\longrightarrow}$, $|f|=1+2\phi+2\phi^2+2\phi^3+2\phi^4$

More generally,

• For every $i = 0, 1, \dots$ after iteration $1 + 4 \cdot i$: $\stackrel{1-\phi^{2i}}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{\phi-\phi^{2i+1}}{\longrightarrow}$

In summary:

- After iteration 1: $\stackrel{0}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{0}{\longleftarrow}$, |f| = 1
- After iteration 5: $\xrightarrow{1-\phi^2}$, $\xrightarrow{1}$, $\xrightarrow{\phi-\phi^3}$, $|f|=1+2\phi+2\phi^2$
- After iteration 9: $\xrightarrow{1-\phi^4}$, $\xrightarrow{1}$, $\xrightarrow{\phi-\phi^5}$ $|f| = 1 + 2\phi + 2\phi^2 + 2\phi^3 + 2\phi^4$

More generally,

- For every $i = 0, 1, \ldots$ after iteration $1 + 4 \cdot i$: $\stackrel{1-\phi^{2i}}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{\phi-\phi^{2i+1}}{\longrightarrow}$
- Ford-Fulkerson does not terminate!

In summary:

- After iteration 1: $\stackrel{0}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{0}{\longleftarrow}$, |f| = 1
- After iteration 5: $\xrightarrow{1-\phi^2}$, $\xrightarrow{1}$, $\xrightarrow{\phi-\phi^3}$, $|f|=1+2\phi+2\phi^2$
- After iteration 9: $\stackrel{1-\phi^4}{\longrightarrow}$, $\stackrel{+}{\longrightarrow}$, $\stackrel{\phi-\phi^5}{\longleftarrow}$, $|f|=1+2\phi+2\phi^2+2\phi^3+2\phi^4$

More generally,

- For every $i = 0, 1, \ldots$ after iteration $1 + 4 \cdot i$: $\stackrel{1-\phi^{2i}}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{\phi-\phi^{2i+1}}{\longrightarrow}$
- Ford-Fulkerson does not terminate!

$$|f| = 1 + 2\sum_{k=1}^{2i} \Phi^i \approx 4.23607 < 5$$

In summary:

- After iteration 1: $\stackrel{0}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{0}{\longleftarrow}$, |f|=1
- After iteration 5: $\stackrel{1-\phi^2}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{\phi-\phi^3}{\longleftarrow}$, $|f|=1+2\phi+2\phi^2$
- After iteration 9: $\stackrel{1-\phi^4}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{\phi-\phi^5}{\longleftarrow}$, $|f|=1+2\phi+2\phi^2+2\phi^3+2\phi^4$

More generally,

- For every $i = 0, 1, \ldots$ after iteration $1 + 4 \cdot i$: $\stackrel{1-\phi^{2i}}{\longrightarrow}$, $\stackrel{1}{\longrightarrow}$, $\stackrel{\phi-\phi^{2i+1}}{\longrightarrow}$
- Ford-Fulkerson does not terminate!
- $|f| = 1 + 2\sum_{k=1}^{2i} \Phi^i \approx 4.23607 < 5$
- It does not even converge to a maximum flow!

Ford-Fulkerson Method -

works only for integral (rational) capacities

Ford-Fulkerson Method

- works only for integral (rational) capacities
- Runtime: $O(E \cdot |f^{\text{max}}|) = O(E \cdot V \cdot C)$

Ford-Fulkerson Method

- works only for integral (rational) capacities
- Runtime: $O(E \cdot |f^{\text{max}}|) = O(E \cdot V \cdot C)$

Capacity-Scaling Algorithm _____

Ford-Fulkerson Method

- works only for integral (rational) capacities
- Runtime: $O(E \cdot |f^{\max}|) = O(E \cdot V \cdot C)$

Capacity-Scaling Algorithm

- Idea: Find an augmenting path with high capacity
- Consider subgraph of G_f consisting of edges (u, v) with $c_f(u, v) > \Delta$
- scaling parameter Δ , which is initially $2^{\lceil \log_2 C \rceil}$ and 1 after termination
- Runtime: $O(E^2 \cdot \log C)$

Ford-Fulkerson Method

- works only for integral (rational) capacities
- Runtime: $O(E \cdot |f^{\text{max}}|) = O(E \cdot V \cdot C)$

Capacity-Scaling Algorithm —

- Idea: Find an augmenting path with high capacity
- Consider subgraph of G_f consisting of edges (u, v) with $c_f(u, v) > \Delta$
- scaling parameter Δ , which is initially $2^{\lceil \log_2 C \rceil}$ and 1 after termination
- Runtime: $O(E^2 \cdot \log C)$

Edmonds-Karp Algorithm -

Ford-Fulkerson Method

- works only for integral (rational) capacities
- Runtime: $O(E \cdot |f^{\max}|) = O(E \cdot V \cdot C)$

Capacity-Scaling Algorithm

- Idea: Find an augmenting path with high capacity
- Consider subgraph of G_f consisting of edges (u, v) with $c_f(u, v) > \Delta$
- scaling parameter Δ , which is initially $2^{\lceil \log_2 C \rceil}$ and 1 after termination
- Runtime: $O(E^2 \cdot \log C)$

- Edmonds-Karp Algorithm

- Idea: Find the shortest augmenting path in G_f
- Runtime: O(E² · V)

Outline

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

Introduction and Line Intersection

Matching -

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Bipartite Graph -

A graph G is bipartite if V can be partitioned into L and R so that all edges go between L and R.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

- Bipartite Graph -

A graph G is bipartite if V can be partitioned into L and R so that all edges go between L and R.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Bipartite Graph -

A graph G is bipartite if V can be partitioned into L and R so that all edges go between L and R.

Given a bipartite graph $G = (L \cup R, E)$, find a matching of maximum cardinality.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

Bipartite Graph -

A graph G is bipartite if V can be partitioned into L and R so that all edges go between L and R.

Given a bipartite graph $G = (L \cup R, E)$, find a matching of maximum cardinality.

Matching

A matching is a subset $M \subseteq E$ such that for all $v \in V$, at most one edge of M is incident to v.

- Bipartite Graph -

A graph G is bipartite if V can be partitioned into L and R so that all edges go between L and R.

Given a bipartite graph $G = (L \cup R, E)$, find a matching of maximum cardinality.

6.3: Maximum Flows T.S. 22

6.3: Maximum Flows T.S. 22

Correspondence between Maximum Matchings and Max Flow

Theorem (Corollary 26.11)

The cardinality of a maximum matching M in a bipartite graph G equals the value of a maximum flow f in the corresponding flow network \widetilde{G} .

Graph G

6.3: Maximum Flows T.S. 23

Graph \widetilde{G}

From Matching to Flow

Given a maximum matching of cardinality k

Graph G

From Matching to Flow

Given a maximum matching of cardinality k

Graph G

From Matching to Flow

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths

24

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths
- \Rightarrow f is a flow and has value k

24

- Given a maximum matching of cardinality k
- Consider flow f that sends one unit along each each of k paths
- \Rightarrow f is a flow and has value k

• Let f be a maximum flow in \widetilde{G} of value k

• Let f be a maximum flow in \widetilde{G} of value k

• Let f be a maximum flow in \widetilde{G} of value k

6.3: Maximum Flows

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem \Rightarrow $f(u, v) \in \{0, 1\}$ and k integral

6.3: Maximum Flows

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation

6.3: Maximum Flows T.S. 25

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit

6.3: Maximum Flows T.S. 25

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit

6.3: Maximum Flows T.S. 25

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation ⇒ every node in *L* sends at most one unit
- b) Flow Conservation ⇒ every node in *R* receives at most one unit

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation ⇒ every node in *R* receives at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\})$

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation ⇒ every node in *R* receives at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\}) \Rightarrow$ net flow is k

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation ⇒ every node in *R* receives at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\}) \Rightarrow$ net flow is $k \Rightarrow M'$ has k edges

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation ⇒ every node in *R* receives at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\}) \Rightarrow$ net flow is $k \Rightarrow M'$ has k edges
- \Rightarrow By a) & b), M' is a matching and by c), M' has cardinality k

- Let f be a maximum flow in \widetilde{G} of value k
- Integrality Theorem $\Rightarrow f(u, v) \in \{0, 1\}$ and k integral
- Let M' be all edges from L to R which carry a flow of one
- a) Flow Conservation \Rightarrow every node in L sends at most one unit
- b) Flow Conservation ⇒ every node in *R* receives at most one unit
- c) Cut $(L \cup \{s\}, R \cup \{t\}) \Rightarrow$ net flow is $k \Rightarrow M'$ has k edges
- \Rightarrow By a) & b), M' is a matching and by c), M' has cardinality k

7: Geometric Algorithms

Frank Stajano

Thomas Sauerwald

Outline

Analysis of Ford-Fulkerson

Matchings in Bipartite Graphs

Introduction and Line Intersection

Computational Geometry -

Branch that studies algorithms for geometric problems

Computational Geometry -

- Branch that studies algorithms for geometric problems
- typically, input is a set of points, line segments etc.

Computational Geometry -

- Branch that studies algorithms for geometric problems
- typically, input is a set of points, line segments etc.

Computational Geometry -

- Branch that studies algorithms for geometric problems
- typically, input is a set of points, line segments etc.

- Applications -

- computer graphics
- computer vision
- textile layout
- VLSI design

:

$$p_1 \times p_2$$

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$$

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1$$

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = 2 \cdot 3 - 1 \cdot 1$$

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = 2 \cdot 3 - 1 \cdot 1 = 5$$

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = 2 \cdot 3 - 1 \cdot 1 = 5$$

 $p_2 \times p_1$

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = 2 \cdot 3 - 1 \cdot 1 = 5$$

$$p_2 \times p_1 = y_1 x_2 - y_2 x_1$$

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = 2 \cdot 3 - 1 \cdot 1 = 5$$

$$p_2 \times p_1 = y_1 x_2 - y_2 x_1 = -(p_1 \times p_2)$$

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = 2 \cdot 3 - 1 \cdot 1 = 5$$

$$p_2 \times p_1 = y_1 x_2 - y_2 x_1 = -(p_1 \times p_2) = -5$$

Alternatively, one could take the dot-product (but not used here): $p_1 \cdot p_2 = \|p_1\| \cdot \|p_2\| \cdot \cos(\phi)$.

$$p_1 \times p_2 = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1 = 2 \cdot 3 - 1 \cdot 1 = 5$$

$$p_2 \times p_1 = y_1 x_2 - y_2 x_1 = -(p_1 \times p_2) = -5$$

Sign of cross product determines turn!

Sign of cross product determines turn!

Cross product equals zero iff vectors are colinear

Opposite signs $\Rightarrow \overline{p_1p_2}$ crosses (infinite) line through p_3 and p_4

Opposite signs $\Rightarrow \overline{p_1p_2}$ crosses (infinite) line through p_3 and p_4

Opposite signs $\Rightarrow \overline{p_1p_2}$ crosses (infinite) line through p_3 and p_4

Opposite signs $\Rightarrow \overline{p_1p_2}$ crosses (infinite) line through p_3 and p_4

Opposite signs $\Rightarrow \overline{p_1p_2}$ crosses (infinite) line through p_3 and p_4

- $\widetilde{p_1p_2} \cap \widetilde{p_3p_4} \supseteq \overline{p_1p_2} \cap \widetilde{p_3p_4} \neq \emptyset$
- $\widetilde{p_1p_2} \cap \widetilde{p_3p_4} \supseteq \widetilde{p_1p_2} \cap \overline{p_3p_4} \neq \emptyset$
- Since $\widetilde{p_1p_2} \cap \widetilde{p_3p_4}$ consists of (at most) one point $\Rightarrow \overline{p_1p_2} \cap \overline{p_3p_4} \neq \emptyset$

Opposite signs $\Rightarrow \overline{p_1p_2}$ crosses (infinite) line through p_3 and p_4

Opposite signs $\Rightarrow \overline{p_1p_2}$ crosses (infinite) line through p_3 and p_4

 $\overline{p_1p_2}$ does **not** cross $\overline{p_3p_4}$

0: DIRECTION (p_i, p_j, p_k) 1: return $(p_k - p_i) \times (p_j - p_i)$

0: DIRECTION (p_i, p_j, p_k) 1: return $(p_k - p_i) \times (p_j - p_i)$

0: DIRECTION
$$(p_i, p_j, p_k)$$

1: return $(p_k - p_i) \times (p_j - p_i)$


```
0: DIRECTION(p_i, p_j, p_k)
1: return (p_k - p_i) \times (p_j - p_i)
```

```
0: SEGMENTS-INTERSECT(p_i, p_j, p_k)

1: d_1 = \text{DIRECTION}(p_3, p_4, p_1)

2: d_2 = \text{DIRECTION}(p_3, p_4, p_2)

3: d_3 = \text{DIRECTION}(p_1, p_2, p_3)

4: d_4 = \text{DIRECTION}(p_1, p_2, p_4)

5: If d_1 \cdot d_2 < 0 and d_3 \cdot d_4 < 0 return TRUE

6: ... (handle all degenerate cases)
```



```
0: DIRECTION(p_i, p_j, p_k)
1: return (p_k - p_i) \times (p_j - p_i)
```

```
0: SEGMENTS-INTERSECT(p_i, p_j, p_k)

1: d_1 = \text{DIRECTION}(p_3, p_4, p_1)

2: d_2 = \text{DIRECTION}(p_3, p_4, p_2)

3: d_3 = \text{DIRECTION}(p_1, p_2, p_3)

4: d_4 = \text{DIRECTION}(p_1, p_2, p_4)

5: If d_1 \cdot d_2 < 0 and d_3 \cdot d_4 < 0 return TRUE

6: ... (handle all degenerate cases)
```



```
0: DIRECTION(p_i, p_j, p_k)
1: return (p_k - p_i) \times (p_j - p_i)
```

```
0: SEGMENTS-INTERSECT(p_i, p_j, p_k)

1: d_1 = \text{DIRECTION}(p_3, p_4, p_1)

2: d_2 = \text{DIRECTION}(p_3, p_4, p_2)

3: d_3 = \text{DIRECTION}(p_1, p_2, p_3)

4: d_4 = \text{DIRECTION}(p_1, p_2, p_4)
```

5: If $d_1 \cdot d_2 < 0$ and $d_3 \cdot d_4 < 0$ return TRUE

6 (handle all degenerate cases)

In total 4 satisfying conditions!


```
0: DIRECTION(p_i, p_j, p_k)
1: return (p_k - p_i) \times (p_j - p_i)
```

```
0: SEGMENTS-INTERSECT(p_i, p_j, p_k)
1: d_1 = \mathsf{DIRECTION}(p_3, p_4, p_1)
2: d_2 = \mathsf{DIRECTION}(p_3, p_4, p_2)
3: d_3 = \mathsf{DIRECTION}(p_1, p_2, p_3)
4: d_4 = \mathsf{DIRECTION}(p_1, p_2, p_4)
5: If d_1 \cdot d_2 < 0 and d_3 \cdot d_4 < 0 return TRUE
6: ... (handle all degenerate cases)
```

Lines could touch or be colinear

Lines could touch or be colinear

0: DIRECTION
$$(p_i, p_j, p_k)$$

1: return $(p_k - p_i) \times (p_j - p_i)$

- 0: SEGMENTS-INTERSECT (p_i, p_j, p_k)
- 1: $d_1 = \text{DIRECTION}(p_3, p_4, p_1)$
- 2: $d_2 = DIRECTION(p_3, p_4, p_2)$
- 3: $d_3 = \mathsf{DIRECTION}(p_1, p_2, p_3)$
- 4: $d_4 = DIRECTION(p_1, p_2, p_4)$
- 5: If $d_1 \cdot d_2 < 0$ and $d_3 \cdot d_4 < 0$ return TRUE
- 6: ... (handle all degenerate cases)

7: Geometric Algorithms

0: DIRECTION
$$(p_i, p_j, p_k)$$

1: return $(p_k - p_i) \times (p_j - p_i)$

1: $d_1 = \text{DIRECTION}(p_3, p_4, p_1)$ 2: $d_2 = \text{DIRECTION}(p_3, p_4, p_2)$

3: $d_3 = DIRECTION(p_1, p_2, p_3)$

4: $d_4 = \text{DIRECTION}(p_1, p_2, p_4)$

5: If $d_1 \cdot d_2 < 0$ and $d_3 \cdot d_4 < 0$ return TRUE

6: (handle all degenerate cases)

Lines could touch or be colinear

