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Announcements

= Deadline for Microchallenge 7 today!

= There is a list of errata for the slides on the webpage

= There might be a little bit of time in the last lecture to revisit
one of the previous topics and briefly discuss some data
structure/algorithm/proof etc. which may or may not have

been covered in previous lectures.
If you have any suggestion, please send an email today.
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Outline

Analysis of Ford-Fulkerson
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Max-Flow Min-Cut Theorem

Theorem
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = Srggvcap(s, 7).

i
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Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

WNRO
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Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

WNRO

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-
Fulkerson is integral.
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Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-
Fulkerson is integral.

Theorem
For integral capacities c(u, v), Ford-Fulkerson terminates after V - C
iterations, where C := maxy,v ¢(u, v) and returns theﬂmaximum flow.

at the time of termination, no augmenting path
= Ford-Fulkerson returns maxflow (Key Lemma)

&
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Slow Convergence of Ford-Fulkerson (Figure 26.7)

( Number of iterations is at least C := max, , c(u, v)! )
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Slow Convergence of Ford-Fulkerson (Figure 26.7)

( Number of iterations is at least C := max, , c(u, v)! )

7

[ For irrational capacities, Ford-Fulkerson 1

may even fail to terminate!
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Non-Termination of Ford-Fulkerson for Irrational Capacities
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Non-Termination of Ford-Fulkerson for Irrational Capacities

—1-6, ¢=(/5-1)/2~0618 |
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Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 1, |f| =0
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Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 1, |f| = 1
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Iteration: 1, |f| = 1
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Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 2, |f| = 1
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Non-Termination of Ford-Fulkerson for Irrational Capacities

Joo

Iteration: 2, |f| = 1
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Non-Termination of Ford-Fulkerson for Irrational Capacities

Joo

Iteration: 4, |[f|=1+4+2-¢
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Non-Termination of Ford-Fulkerson for Irrational Capacities
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Non-Termination of Ford-Fulkerson for Irrational Capacities

lteration: 5, |f| =1+ 2- ¢ + ¢*
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Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

4 Y
In summary:
0

« After iteration 1: -2, -1 2 |f| =1
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Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

é N
In summary:
= After iteration 1: —> —1+, <L, [fl =1
3
= After iteration 5: —%, %, i [fl = 1+ 2¢ + 2¢°
\ Y
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Non-Termination of Ford-Fulkerson for Irrational Capacities
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In summary:
= After iteration 1: i>, —1+, <L, [fl =1
: : 1—¢2 1 ¢p—¢3 2
= After iteration 5: —%, —, <2, |fl =14 26 + 2¢
4t 5

- After iteration 9: =%, L5 =% |f| =1+ 26 + 2¢% + 24° + 2¢°
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Non-Termination of Ford-Fulkerson for Irrational Capacities
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7 N
In summary:
= After iteration 1: i>, —1+, <L, [fl =1
: : 1—¢2 1 ¢p—¢3 2
= After iteration 5: —%, —, <2, |fl =14 26 + 2¢
Y 5
- After iteration 9: =%, L5 =% |f| =1+ 26 + 2¢% + 24° + 2¢°
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Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\
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In summary:
= After iteration 1: L>, %, <L, [fl =1
: - C1=¢2 1 9—4° 2
= After iteration 5: —%, —, “2, |f| =1+ 2¢ + 2¢
. ] L1=gt 1 6=9° 2 3 4
= After iteration 9: —%, —, “—, |f| =1+ 2¢ + 2¢° + 2¢° + 2¢
\,
7
More generally,
) . ' L 1—g? g g g2t
= Forevery i =0,1,... after iteration 1 +4-i: —, —, +—
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Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

7
In summary:
= After iteration 1: L>, %, <L, [fl =1
: - C1=¢2 1 9—4° 2
= After iteration 5: —%, —, “2, |f| =1+ 2¢ + 2¢
. q R 2 8 4
= After iteration 9: —%, —, “—, |f| =1+ 2¢ + 2¢° + 2¢° + 2¢
G
7
More generally,
) . X L 1—g? g g g2t
= Forevery i =0,1,... after iteration 1 +4-i: —, —, +—
= Ford-Fulkerson does not terminate!
G
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Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

7
In summary:
= After iteration 1: L>, %, <L, [fl =1
: : 1—¢2 1 ¢—g8 2
= After iteration 5: —%, —, “2, |f| =1+ 2¢ + 2¢
. q 1—¢* 1 ¢—¢° 2 8 4
= After iteration 9: —%, —, “—, |f| =1+ 2¢ + 2¢° + 2¢° + 2¢
G
7
More generally,
) . X L 1—g? g g g2t
= Forevery i =0,1,... after iteration 1 +4-i: —, —, +—
= Ford-Fulkerson does not terminate!
s fl=1+23% &' ~4.23607 <5
G

6.3: Maximum Flows TS. 7

il
¥



Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

7
In summary:
= After iteration 1: L>, %, <L, [fl =1
: : 1—¢2 1 ¢—g8 2
= After iteration 5: —%, —, “2, |f| =1+ 2¢ + 2¢
. q 1—¢* 1 ¢—¢° 2 8 4
= After iteration 9: —%, —, “—, |f| =1+ 2¢ + 2¢° + 2¢° + 2¢
A\
7
More generally,
. . X 1?4 B—g?it1
= Forevery i =0,1,... after iteration 1 +4-i: —, —, +—
= Ford-Fulkerson does not terminate!
s fl=1+23% &' ~4.23607 <5
= It does not even converge to a maximum flow!
A\
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Non-Termination of Ford-Fulkerson for Irrational Capacities

&

f flow value N\

7 —+

iterations

\ 15913172125293337414549)

) @
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Summary and Outlook

Ford-Fulkerson Method
= works only for integral (rational) capacities

ol
) 6.3: Maximum Flows TS.



Summary and Outlook

Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |[f™|) = O(E - V - C)
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Summary and Outlook
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= works only for integral (rational) capacities
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Summary and Outlook

——— Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |[f™|) = O(E - V - C)

~——— Capacity-Scaling Algorithm
= |dea: Find an augmenting path with high capacity

= Consider subgraph of Gy consisting of edges (u, v) with ¢/(u,v) > A
= scaling parameter A, which is initially 2192 €1 and 1 after termination
= Runtime: O(E? - log C)
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Summary and Outlook

——— Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |[f™|) = O(E - V - C)

~——— Capacity-Scaling Algorithm
= |dea: Find an augmenting path with high capacity

= Consider subgraph of Gy consisting of edges (u, v) with ¢/(u,v) > A
= scaling parameter A, which is initially 2192 €1 and 1 after termination
= Runtime: O(E? - log C)

Edmonds-Karp Algorithm
Idea: Find the shortest augmenting path in Gy
Runtime: O(E? - V)
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Outline

Matchings in Bipartite Graphs
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Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.
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Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.
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Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

L

R

( Jobs l( Machines
21
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Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Given a bipartite graph G = (LU R, E), find a
matching of maximum cardinality.

L

R

( Jobs l( Machines
= 21
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Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Given a bipartite graph G = (LU R, E), find a
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Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

[ J
Bipartite Graph

A graph G is bipartite if V can be partitioned into L

and R so that all edges go between L and R. :W:
.>'( ?K.
[ J

Given a bipartite graph G = (LU R, E), find a

matching of maximum cardinality.

L R
( Jobs l( Machines
= 21

o 6.3: Maximum Flows TS.



Matchings in Bipartite Graphs via Maximum Flows




Matchings in Bipartite Graphs via Maximum Flows




Matchings in Bipartite Graphs via Maximum Flows




Matchings in Bipartite Graphs via Maximum Flows

SN

Every edge in the flow
network has capacity 1

i
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Correspondence between Maximum Matchings and Max Flow

Theorem (Corollary 26.11)
The cardinality of a maximum matching M in a bipartite graph G~equals ]

the value of a maximum flow f in the corresponding flow network G.

Graph G Graph G
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From Matching to Flow

= Given a maximum matching of cardinality k

Graph G
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From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths

O
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From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
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From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

0.0 OO

Graph G Graph G
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From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

(max cardinality matching < value of maxflow)

0.0 OO

Graph G Graph G
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From Flow to Matching

= Let f be a maximum flow in G of value k

ffi
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From Flow to Matching

= Let f be a maximum flow in G of value k
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From Flow to Matching

= Let f be a maximum flow in G of value k
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From Flow to Matching

» Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0, 1} and k integral

A\
2
N> <
s O 1 e
O
L R
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From Flow to Matching

= Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0, 1} and k integral
= Let M’ be all edges from L to R which carry a flow of one
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From Flow to Matching
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From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one
a) Flow Conservation

O

L R L
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From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit
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From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit

O
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From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, Ru{t})
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ol 6.3: Maximum Flows TS. 25



From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RU{t}) = netflow is k

=M ONONONG®;

ol 6.3: Maximum Flows TS. 25



From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral
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a) Flow Conservation = every node in L sends at most one unit
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From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RU{t}) = net flow is k = M’ has k edges
= By a) & b), M’ is a matching and by c¢), M’ has cardinality k
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From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RU{t}) = net flow is k = M’ has k edges
= By a) & b), M’ is a matching and by c¢), M’ has cardinality k

[N

(value of maxflow < max cardinality matchingj

s O B

O
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Computational Geometry
= Branch that studies algorithms for
geometric problems
= typically, input is a set of points, line
segments etc.
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Introduction

~——— Computational Geometry ———————

= Branch that studies algorithms for
geometric problems

= typically, input is a set of points, line Ps
segments etc.

\ 7 p2

~——— Applications N\ Pa
= computer graphics
= computer vision p1

= textile layout /\

= VLSI design [Do these lines intersect?]

7: Geometric Algorithms TS. 3

5 Fd
Gl
VY



Cross Product (Area)

ggg 7: Geometric Algorithms

TS.



Cross Product (Area)

P :(2a1)

ggg 7: Geometric Algorithms

TS.



Cross Product (Area)

y
Ao =(1,3)

Egg 7: Geometric Algorithms TS.



Cross Product (Area)

E:g 7: Geometric Algorithms TS.



Cross Product (Area)

E:g 7: Geometric Algorithms TS.



Cross Product (Area)

E:g 7: Geometric Algorithms TS.



Cross Product (Area)

% 7: Geometric Algorithms TS.



Cross Product (Area)

[ How large is this area? j

P :(2a1)

> X

% 7: Geometric Algorithms TS.



Cross Product (Area)

[ How large is this area? j

P :(2a1)

> X

P1 X P2

% 7: Geometric Algorithms TS.



Cross Product (Area)

[ How large is this area? j

P :(2a1)

> X

- X1 Xo
p1 X p2 = det (y1 y2)

% 7: Geometric Algorithms TS.



Cross Product (Area)

[ How large is this area? j

P :(2a1)

> X

P1 X p2 = det(y ;):X1}/2*X2,\/1

% 7: Geometric Algorithms TS.



Cross Product (Area)
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Cross Product (Area)

[ How large is this area? j

P :(2a1)

> X

X1 Xo
Yooy

p1><p2:det( ):x1y2—x2y1:2-3—1-1:5

P2 X P
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Cross Product (Area)

[ How large is this area? j

P :(2a1)

> X

X1 Xo
Yooy
P2 X P1 = Y1X2 — Yo Xq

p1><p2:det( ):x1y2—x2y1:2-3—1-1:5
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[ How large is this area? j

P :(2a1)

> X

P1 X P2 = det(y yz) =XiYo—Xoy1 =2-3—1-1=5

P2 X p1 = YiXe — YoX1 = —(p1 X P2) = —

% 7: Geometric Algorithms TS.



Cross Product (Area)

[ How large is this area? j

P :(2a1)

> X

(0,0)

Alternatively, one could take the dot-product (but
not used here): pi - p2 = [|p1]| - [|p2|| - cos(¢).

X1 Xo
iy
P2 X p1 = yi1Xe — YoXi = —(p1 X p2) = =5

p1><p2:det( ):x1y2—x2y1:2-3—1-1:5

% 7: Geometric Algorithms TS.



Cross Product in 3D

> N

o)) p1 + p2

ggg 7: Geometric Algorithms TS. 5



Cross Product in 3D

z
A
p1 x p2 = (0,0, x1y2 —x2y1))

”

Jo p1 + p2

i
7: Geometric Algorithms TS. 5



Cross Product in 3D

V4
A
p1 x p2 = (0,0,x1)2 —X2y1))

”

o p1 + p2

E = 7: Geometric Algorithms TS. 5



Cross Product in 3D

V4
A
p1 x p2 = (0,0,x1)2 —X2y1))

”

a ‘e 7: Geometric Algorithms TS. 5



Cross Product in 3D

z
A

A

p1 % p2 = (0,0, x1¥2 — Xoy1)

”

-,,a,;, 7: Geometric Algorithms TS. 5



Cross Product in 3D

z
A

A

p1 % p2 = (0,0, x1¥2 — Xoy1)

”

.,a 7: Geometric Algorithms TS. 5



Cross Product in 3D

p1 % p2 = (0,0, x1¥2 — Xoy1)

z

4 Right-hand rule gives direction of p; x po J

A

y

(b1 x-)>0

(p1x-)<0

~'-.'»'. 7: Geometric Algorithms

TS. 5



Using Cross product to determine Turns (1/2)

P2 :(173)

P = (271)

(0,0)
,03:(17_1)

Egg 7: Geometric Algorithms TS.



Using Cross product to determine Turns (1/2)

P2 :(173)

P = (271)

(0,0)
,03:(17_1)

ggg 7: Geometric Algorithms TS.



Using Cross product to determine Turns (1/2)

A
p2 = (173)
<[ pi x po > 0: left (counterclockwise) turn J
P = (27 1)
> X
(0,0)
p3 = (1 ) _1)

% 7: Geometric Algorithms TS. 6



Using Cross product to determine Turns (1/2)

A
p2 = (1,3)
<[ pi x po > 0: left (counterclockwise) turn J
P = (27 1)
\ > x
(0,0) | \/
p3 = (1 ) _1)

% 7: Geometric Algorithms TS. 6



Using Cross product to determine Turns (1/2)

A
p2 = (173)
<[ pi x po > 0: left (counterclockwise) turn J
P = (27 1)
\ it iy ;
0.0) / <k p1 x ps < 0O: right (clockwise) turn
P3 = (1 ) _1)

% 7: Geometric Algorithms TS. 6



Using Cross product to determine Turns (1/2)

A
p2 = (173)

<[ pi x po > 0: left (counterclockwise) turn J

’7°p1 = (271)

~

o~
)

(0, 0) \/\‘. { p1 x ps < 0: right (clockwise) turn ]
ps = (

1,-1)

% 7: Geometric Algorithms TS. 6



Using Cross product to determine Turns (1/2)

A
p2 = (1,3)
<[ p1 x p2 > 0: left (counterclockwise) turn J
B =(21)
= / [ p1 x ps < 0O: right (clockwise) turn ]
_.-(00) ~
- p3 = (1 ) _1)
Sign of cross product determines turn! l

J‘I% 7: Geometric Algorithms TS. 6



Using Cross product to determine Turns (1/2)

A
p2 = (1,3)
<[ p1 x p2 > 0: left (counterclockwise) turn J
b= (2,1)
f 0: right (clockwi
—60'05 / <k p1 X ps < 0: right (clockwise) turn
po=(1.-1)

Sign of cross product determines turn! l

AN
[Cross product equals zero iff vectors are colinearj

\,_';;, 7: Geometric Algorithms TS. 6



Using Cross product to determine Turns (2/2)

P2 = (374)

p1 = (47 2)

p02(2a1)

(0,0) ps = (3.0)

Egg 7: Geometric Algorithms TS.



Using Cross product to determine Turns (2/2)

P2 = (374)

p1 = (47 2)

p02(2a1)

(0,0) ps = (3.0)

Egg 7: Geometric Algorithms TS.



Using Cross product to determine Turns (2/2)

A
P2 = (374)
<[ (P1 — po) X (P2 — po) > 0: left turn J
p1 = (47 2)
Po = (2a1)
. >» X
(0,0) ps = (3,0)

%g 7: Geometric Algorithms TS. 7



Using Cross product to determine Turns (2/2)

A P2 = (3,4) [ (2,1) x (1,3) = 5 ]
{ (p1fp0)><(,'.{l)/27po)>0: left turn J
pr=(4,2)
Po=(2,1)
. > X
(0,0) ps = (3,0)

% 7: Geometric Algorithms TS. 7



Using Cross product to determine Turns (2/2)

A P2 = (3,4) [ (2,1) x (1,3) = 5 ]
{ (p1 — po) x (;{;/2 — po) > 0: left turn J
pi=(42)
po=(2,1) )
(0,0) ps = (3.0) >

% 7: Geometric Algorithms TS. 7



Using Cross product to determine Turns (2/2)

y
A s = (3,4) [ 2.1)x (1,3) = 5 ]
<[ (Pt — po) % (;{)/2 — po) > O: left turn J
P :(472)
po=(2,1) ) <[ (P — Po) x (ps — Po) < O: right turn ]
> X
(0,0) ps = (3,0)

% 7: Geometric Algorithms TS. 7



Using Cross product to determine Turns (2/2)

y
A s = (3,4) [ 2.1)x (1,3) = 5 ]
{ (p1—p0)><(;{)/27p0)>0: left turn J
pi = (4,2) [ 2,1)x(1,-1) =-3 J
po=(2,1) ) <[ (p1—p0)x(p:—po)<0: right turn ]
> X
(0,0) ps = (3,0)

Eg 7: Geometric Algorithms TS. 7



Using Cross product to determine Turns (2/2)

P2 = (3,4) [ (2,1) x (1,3) =5 ]
{ (p1—p0)><(;{l)/27po) > 0: left turn J
i) ( @111 =3 )

<[ (P1 — po) x (p:—po) < 0: right turn ]

>» X

Eg 7: Geometric Algorithms TS. 7



Solving Line Intersection (without Trigonometry and Division!)

A

4l

3l

ol

11
'(070) T 5 4 5 >F

ggg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)

A

4 5

3.-

2--

1-_

ps

} } > X
(0.0) i 2 3 4 5 7

ggg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)

A

. P2 P4

3.-

2T P

1._

p3

} t > X
(0.0) i 2 3 4 5 7

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)
A
4--
3.-
2--
1__
} } } } } —> X
(0.0) i 2 3 4 5 7
T (P1 — p3) x (Ps — Ps3)

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

A
4.-
3--
2.-
1__
N N N N N A'Y
'(00) T 2 3 a4 5 2~
T (p1 — p3) x (ps — ps) = (3,1) x (1,3)

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

A
4.-
3--
2.-
1__
N N N N N
'(00) T 2 3 a4 5 2~
T (P1 —Ps) x (ps —ps) = (3,1) x (1,8) =8

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

A
4.-
3--
2.-
1__
N N N N N A'Y
'(00) T 2 3 a4 5 2~
T (P1 —Ps) x (ps —ps) = (3,1) x (1,8) =8

(P2 — p3) % (Ps — ps)

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

A
4._
3--
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (p1 = p3) x (ps —p3) =(3,1) x (1,3)=8
(P2 — ps) x (ps — ps) = (=1,3) x (1,3)

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

A
4._
3--
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (p1 = p3) x (ps —p3) =(3,1) x (1,3)=8
(P2 — Ps) x (ps — ps) = (~1,3) x (1,3) = —6

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

A
4._
3--
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (p1 = p3) x (ps —p3) =(3,1) x (1,3)=8
(P2 — Ps) x (ps — ps) = (~1,3) x (1,3) = —6

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

A
4._
3--
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (p1 = p3) x (ps —p3) =(3,1) x (1,3)=8
(P2 — Ps) x (ps — ps) = (~1,3) x (1,3) = —6

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)

A

. P2 P4

3.-

2t P1

1._

ps

. ' : > X
(0.0) 1 /2 3 4 5 7

Opposite signs = pp> crosses
(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

J
A
4--
3.-
2--
1__
' t t ' ; —>X
0o 1.2 3 4 5 ~
T (Ps — pr) x (P2 = p1)

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

A
4__
3.-
2.-
1__
N N N N N A'Y
'(00) T2 5 4 5 2
T (s = p1) x (P2 = p1) = (=3, ~1) x (-4,2)

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)
A
4--
3.-
2--
1__
} } } } } —>X
0ol 1,2 3 4 5 ~
T (s = p1) x (P2 — p1) = (=3, —1) x (=4,2) = —10

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)
A
4--
3.-
2--
1__
} } } } } —>X
0ol 1,2 3 4 5 ~
T (s = p1) x (P2 — p1) = (=3, —1) x (=4,2) = —10

(Pa — p1) x (P2 — p1)
=

[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

A
4._
3+
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 = p1) = (=3, =1) x (=4,2) = —10
(Ps = P1) % (P2 = p1) = (~2,2) x (~4,2)

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

A
4._
3+
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (s = p1) x (P2 — p1) = (=3, —1) x (=4,2) = —10
(Ps = P1) % (P2 = 1) = (~2,2) x (~4,2) = 4

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

X
4._
3+
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 = p1) = (=3, =1) x (=4,2) = —10

(Pa = p1) x (P2 = p1) = (=2,2) x (-4,2) = 4
e =

[Opposite signs = p1p2 crosses} [Opposite signs = pPsps crosses}

(infinite) line through ps and ps (infinite) line through py and p»

% 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

X
4._
3+
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 = p1) = (=3, =1) x (=4,2) = —10

(Pa = p1) x (P2 = p1) = (=2,2) x (-4,2) = 4
e ~-

[Opposite signs = p1p2 crosses} [Opposite signs = pPsps crosses}

(infinite) line through ps and ps (infinite) line through py and p»

% 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

y
A
P2 P4
4__
3--
2t P1
1 +
Ps
= ~-

Opposite signs = pp> crosses Opposite signs = ps3ps crosses
(infinite) line through ps and ps (infinite) line through py and p»

Eg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

y
A
P2 P4
4__
3--
2t P1
1__
Ps
P12 N paps # 0
P12 N Papa #
= ~-

Opposite signs = pp> crosses Opposite signs = ps3ps crosses
(infinite) line through ps and ps (infinite) line through py and p»

Eg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

><

1__

P

* P12 N P3Ps 2 PPz N Papa # 0
= P12 N PsPs D P12 N PaPa # 0

== ~-
[Opposite signs = p1p2 crosses} [Opposite signs = pPsps crosses}

(infinite) line through ps and ps (infinite) line through py and p»

Eg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

><

1__

P

* P1P2 N P3Ps 2 P1Pz N PaPs # 0
* P1P2 N PsPs 2 P12 M Paps 7 0
= Since pi1p2 N P3ps consists of (at most) one point
= P12 N P3ps # 0
= ~N-

[Opposite signs = p1p2 crosses} [Opposite signs = pPsps crosses}

(infinite) line through ps and ps (infinite) line through py and p»

Eg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

y
A

P2 P4
4__
3.-
2+ P1
1__

P3
N N N N N A'Y
'(00) T2 5 4 5 2
[ P12 CrOSSES P34 ]

== ~-
[Opposite signs = p1p2 crosses} [Opposite signs = pPsps crosses}

(infinite) line through ps and ps (infinite) line through py and p»

% 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)
A
p2
4--
3.-
2t .?. pi
1_
p3
" N
(0.0) T2 5 4 5 2

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)
A
P2

4._

3.-

21 Pa e P

Nl /-

p3

} t > X
(0.0) i 2 3 4 5 7

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)
A
p2
4__
3__
21 Pa e P
|
ps
. ' : > X
0o 1 2 % 4 5 ~
T (s = p1) x (P2 —p1) <0

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)
A
p2
4--
3“ \
21 Ps g -+ |- - =8 P
N
ps
. ' : > X
0o 1 2 % 4 5 ~
T (s = p1) x (P2 —p1) <0

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)
A
p2
4--
3“ \
21 Ps g -+ |- - =8 P
N
ps
. ' : > X
0o 1 2 % 4 5 ~
T (s = p1) x (P2 —p1) <0

Egg 7: Geometric Algorithms TS. 8



Solving Line Intersection (without Trigonometry and Division!)

)

A

p2

4--

3“ \

21 Ps g -+ |- - =8 P

|

ps

. ' : > X
(0.0) i 2 3 4 5 7

(ps —p1) x (P2 —p1) <0

(Pa—p1) x (P2 —p1) <0

[ p1p2 does not cross P3Py ]

% 7: Geometric Algorithms TS. 8



Solving Line Intersection

y

(0,0)

0: DIRECTION(p;, pj, px)
1 return (px — p;) X (P — Pi)

ggg 7: Geometric Algorithms TS.



Solving Line Intersection

y Pa

(0,0)

0: DIRECTION(p;, pj, px)
1 return (px — p;) X (P — Pi)

Egg 7: Geometric Algorithms TS.



Solving Line Intersection

0,0
©.9) DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, pj, px)
1 return (px — p;) X (P — Pi)

E:g 7: Geometric Algorithms TS.



Solving Line Intersection

(0,0)
DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, P Pk)
1 return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1$
d> = DIRECTION(ps3, p4, p2)
d3 = DIRECTION(py, p2, p3)
dy = DIRECTION(p1, p2, ps)
If di -do < 0and dz-dy < 0return TRUE

Qahwh =

% 7: Geometric Algorithms TS.



Solving Line Intersection

(0,0)
DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, pj, px)
1 return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1$
d> = DIRECTION(ps3, p4, p2)
d3 = DIRECTION(py, p2, p3)
dy = DIRECTION(p1, p2, ps)
If di -d> < 0and dz - dy < 0return TRUE

Qahwh O

E:g 7: Geometric Algorithms TS.



Solving Line Intersection

0,0
©.9) DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, P Pk)
1 return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1$
d> = DIRECTION(ps3, p4, p2)
d3 = DIRECTION(py, p2, p3)
dy — DIRECTION(p+  ps. 1) — -

If dy-db < 0and ds-dy < O return TRUE{ In total 4 satisfying condmons!J

Qahwh O

% 7: Geometric Algorithms TS. 9



Solving Line Intersection

0,0)
( DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, P Pk)
1 return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1ﬁ
d> = DIRECTION(ps3, p4, p2)
d; = DIRECTION(py, p2, p3)
dy = DIRECTION(p1, p2, ps)
If di -do < 0and dz-dy < 0return TRUE

Qahwn=o

_—

(Lines could touch or be coIinear)

% 7: Geometric Algorithms TS.



Solving Line Intersection

0,0)
OO DIRECTION(ps. e 1) = (b1 — ) * (p1 — )

0: DIRECTION(p;, P Pk)
return (px — pi) x (P — Pi)

ke]

P4

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1ﬁ
d> = DIRECTION(ps3, p4, p2)
d; = DIRECTION(py, p2, p3)
dy = DIRECTION(p1, p2, ps)
If di -do < 0and dz-dy < 0return TRUE

Qahwn=o

_—

(Lines could touch or be coIinear)

% 7: Geometric Algorithms TS.



Solving Line Intersection

(0,0)
DIRECTION(ps, pi p1) = (b1 — pa) X (Ps — )
0: DIRECTION(p,, pjs pk)
1 return (px — p;) % (pj — Pi) P
P4

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1ﬁ
d> = DIRECTION(ps3, p4, p2)
d; = DIRECTION(py, p2, p3)
dy = DIRECTION(p1, p2, ps)
If di -do < 0and dz-dy < 0return TRUE

Qahwn=o

_—

(Lines could touch or be coIinear)

% 7: Geometric Algorithms TS.
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