Graph G= (V. E,c):

6.3: Maximum Flows
Frank Stajano Thomas Sauerwald

Lent 2015

UNIVERSITY OF
CAMBRIDGE

Announcements

= Deadline for Microchallenge 7 today!

= There is a list of errata for the slides on the webpage

= There might be a little bit of time in the last lecture to revisit
one of the previous topics and briefly discuss some data
structure/algorithm/proof etc. which may or may not have

been covered in previous lectures.
If you have any suggestion, please send an email today.

6.3: Maximum Flows TS. 2

Outline

Analysis of Ford-Fulkerson

g 6.3: Maximum Flows

TS.

Max-Flow Min-Cut Theorem

Theorem
The value of the max-flow is equal to the capacity of the min-cut, that is

max |f| = Srggvcap(s, 7).

i
ﬂ, 6.3: Maximum Flows TS. 4

Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

WNRO

) 6.3: Maximum Flows TS. 5

Analysis of Ford-Fulkerson

def FordFulkerson (G)
initialize flow to 0 on all edges
while an augmenting path in G; can be found:
push as much extra flow as possible through it

WNRO

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-
Fulkerson is integral.

) 6.3: Maximum Flows TS. 5

Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G; can be found:

3 push as much extra flow as possible through it

Lemma

If all capacities c(u, v) are integral, then the flow at every iteration of Ford-
Fulkerson is integral.

Theorem
For integral capacities c(u, v), Ford-Fulkerson terminates after V - C
iterations, where C := maxy,v ¢(u, v) and returns theﬂmaximum flow.

at the time of termination, no augmenting path
= Ford-Fulkerson returns maxflow (Key Lemma)

&

) 6.3: Maximum Flows TS. 5

Slow Convergence of Ford-Fulkerson (Figure 26.7)

(Number of iterations is at least C := max, , c(u, v)!)

6.3: Maximum Flows TS. 6

Slow Convergence of Ford-Fulkerson (Figure 26.7)

(Number of iterations is at least C := max, , c(u, v)!)

7

[For irrational capacities, Ford-Fulkerson 1

may even fail to terminate!

ff
%E 6.3: Maximum Flows TS. 6

Non-Termination of Ford-Fulkerson for Irrational Capacities

6.3: Maximum Flows TS. 7

il
¥

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

—1-6, ¢=(/5-1)/2~0618 |

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 1, |f| =0

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 1, |f| =0

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 1, |f| = 1

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 1, |f| = 1

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Iteration: 2, |f| = 1

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Joo

Iteration: 2, |f| = 1

Eg 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eg 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Joo

Iteration: 4, |[f|=1+4+2-¢

Eg 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

lteration: 4, |f|=1+2-¢ + ¢?

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

lteration: 4, |f|=1+2-¢ + ¢?

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

lteration: 5, |f| =1+ 2- ¢ + ¢*

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eg 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

Eig 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

4 Y
In summary:
0

« After iteration 1: -2, -1 2 |f| =1

2
SR 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

é N
In summary:
= After iteration 1: —> —1+, <L, [fl =1
3
= After iteration 5: —%, %, i [fl = 1+ 2¢ + 2¢°
\ Y

2
SR 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

7 N
In summary:
= After iteration 1: i>, —1+, <L, [fl =1
: : 1—¢2 1 ¢p—¢3 2
= After iteration 5: —%, —, <2, |fl =14 26 + 2¢
4t 5

- After iteration 9: =%, L5 =% |f| =1+ 26 + 2¢% + 24° + 2¢°

L

2
SR 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

7 N
In summary:
= After iteration 1: i>, —1+, <L, [fl =1
: : 1—¢2 1 ¢p—¢3 2
= After iteration 5: —%, —, <2, |fl =14 26 + 2¢
Y 5
- After iteration 9: =%, L5 =% |f| =1+ 26 + 2¢% + 24° + 2¢°
G
7 Y
More generally,
\ 4

B
SR 6.3: Maximum Flows

TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

7
In summary:
= After iteration 1: L>, %, <L, [fl =1
: - C1=¢2 1 9—4° 2
= After iteration 5: —%, —, “2, |f| =1+ 2¢ + 2¢
.] L1=gt 1 6=9° 2 3 4
= After iteration 9: —%, —, “—, |f| =1+ 2¢ + 2¢° + 2¢° + 2¢
\,
7
More generally,
) . ' L 1—g? g g g2t
= Forevery i =0,1,... after iteration 1 +4-i: —, —, +—
\,

B
SR 6.3: Maximum Flows TS. 7

Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

7
In summary:
= After iteration 1: L>, %, <L, [fl =1
: - C1=¢2 1 9—4° 2
= After iteration 5: —%, —, “2, |f| =1+ 2¢ + 2¢
. q R 2 8 4
= After iteration 9: —%, —, “—, |f| =1+ 2¢ + 2¢° + 2¢° + 2¢
G
7
More generally,
) . X L 1—g? g g g2t
= Forevery i =0,1,... after iteration 1 +4-i: —, —, +—
= Ford-Fulkerson does not terminate!
G

6.3: Maximum Flows TS. 7

il
¥

Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

7
In summary:
= After iteration 1: L>, %, <L, [fl =1
: : 1—¢2 1 ¢—g8 2
= After iteration 5: —%, —, “2, |f| =1+ 2¢ + 2¢
. q 1—¢* 1 ¢—¢° 2 8 4
= After iteration 9: —%, —, “—, |f| =1+ 2¢ + 2¢° + 2¢° + 2¢
G
7
More generally,
) . X L 1—g? g g g2t
= Forevery i =0,1,... after iteration 1 +4-i: —, —, +—
= Ford-Fulkerson does not terminate!
s fl=1+23% &' ~4.23607 <5
G

6.3: Maximum Flows TS. 7

il
¥

Non-Termination of Ford-Fulkerson for Irrational Capacities

ﬁ\

7
In summary:
= After iteration 1: L>, %, <L, [fl =1
: : 1—¢2 1 ¢—g8 2
= After iteration 5: —%, —, “2, |f| =1+ 2¢ + 2¢
. q 1—¢* 1 ¢—¢° 2 8 4
= After iteration 9: —%, —, “—, |f| =1+ 2¢ + 2¢° + 2¢° + 2¢
A\
7
More generally,
. . X 1?4 B—g?it1
= Forevery i =0,1,... after iteration 1 +4-i: —, —, +—
= Ford-Fulkerson does not terminate!
s fl=1+23% &' ~4.23607 <5
= It does not even converge to a maximum flow!
A\

6.3: Maximum Flows TS. 7

il
¥

Non-Termination of Ford-Fulkerson for Irrational Capacities

&

f flow value N\

7 —+

iterations

\ 15913172125293337414549)

) @

;-,.'.-, 6.3: Maximum Flows TS. 7

Summary and Outlook

Ford-Fulkerson Method
= works only for integral (rational) capacities

ol
) 6.3: Maximum Flows TS.

Summary and Outlook

Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |[f™|) = O(E - V - C)

6.3: Maximum Flows TS.

Summary and Outlook

——— Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |[f™|) = O(E - V - C)

~——— Capacity-Scaling Algorithm

6.3: Maximum Flows TS.

Summary and Outlook

——— Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |[f™|) = O(E - V - C)

~——— Capacity-Scaling Algorithm
= |dea: Find an augmenting path with high capacity

= Consider subgraph of Gy consisting of edges (u, v) with ¢/(u,v) > A
= scaling parameter A, which is initially 2192 €1 and 1 after termination
= Runtime: O(E? - log C)

6.3: Maximum Flows TS. 19

Summary and Outlook

——— Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |[f™|) = O(E - V - C)

~——— Capacity-Scaling Algorithm
= |dea: Find an augmenting path with high capacity

= Consider subgraph of Gy consisting of edges (u, v) with ¢/(u,v) > A
= scaling parameter A, which is initially 2192 €1 and 1 after termination
= Runtime: O(E? - log C)

Edmonds-Karp Algorithm

6.3: Maximum Flows TS. 19

Summary and Outlook

——— Ford-Fulkerson Method
= works only for integral (rational) capacities
= Runtime: O(E - |[f™|) = O(E - V - C)

~——— Capacity-Scaling Algorithm
= |dea: Find an augmenting path with high capacity

= Consider subgraph of Gy consisting of edges (u, v) with ¢/(u,v) > A
= scaling parameter A, which is initially 2192 €1 and 1 after termination
= Runtime: O(E? - log C)

Edmonds-Karp Algorithm
Idea: Find the shortest augmenting path in Gy
Runtime: O(E? - V)

6.3: Maximum Flows TS. 19

Outline

Matchings in Bipartite Graphs

g 6.3: Maximum Flows

TS.

20

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

6.3: Maximum Flows TS.

21

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

6.3: Maximum Flows TS.

21

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

6.3: Maximum Flows TS.

21

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

=
R 6.3: Maximum Flows TS. 21

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

L

R

(Jobs l(Machines
21

6.3: Maximum Flows TS.

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Given a bipartite graph G = (LU R, E), find a
matching of maximum cardinality.

L

R

(Jobs l(Machines
= 21

o 6.3: Maximum Flows TS.

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Given a bipartite graph G = (LU R, E), find a
matching of maximum cardinality.

L R
(Jobs l(Machines
= 21

o 6.3: Maximum Flows TS.

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

[J
Bipartite Graph

A graph G is bipartite if V can be partitioned into L

and R so that all edges go between L and R. :W:
.>'(?K.
[J

Given a bipartite graph G = (LU R, E), find a

matching of maximum cardinality.

L R
(Jobs l(Machines
= 21

o 6.3: Maximum Flows TS.

Matchings in Bipartite Graphs via Maximum Flows

Matchings in Bipartite Graphs via Maximum Flows

Matchings in Bipartite Graphs via Maximum Flows

Matchings in Bipartite Graphs via Maximum Flows

SN

Every edge in the flow
network has capacity 1

i
) 6.3: Maximum Flows TS. 22

Matchings in Bipartite Graphs via Maximum Flows

Matchings in Bipartite Graphs via Maximum Flows

Matchings in Bipartite Graphs via Maximum Flows

Matchings in Bipartite Graphs via Maximum Flows

Correspondence between Maximum Matchings and Max Flow

Theorem (Corollary 26.11)
The cardinality of a maximum matching M in a bipartite graph G~equals]

the value of a maximum flow f in the corresponding flow network G.

Graph G Graph G

ol 6.3: Maximum Flows TS. 23

From Matching to Flow

= Given a maximum matching of cardinality k

Graph G

¥
¥

6.3: Maximum Flows TS.

24

From Matching to Flow

= Given a maximum matching of cardinality k

Graph G

¥
¥

6.3: Maximum Flows TS.

24

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths

O

ONONON®

Graph G Graph G

6.3: Maximum Flows TS. 24

£l
¥

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths

ONONON®

Graph G Graph G

6.3: Maximum Flows TS. 24

£l
¥

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths

0.0 OO

Graph G Graph G

6.3: Maximum Flows TS. 24

£l
¥

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

0.0 OO

Graph G Graph G

6.3: Maximum Flows TS. 24

£l
¥

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

(max cardinality matching < value of maxflow)

0.0 OO

Graph G Graph G

% 6.3: Maximum Flows TS. 24

From Flow to Matching

= Let f be a maximum flow in G of value k

ffi
) 6.3: Maximum Flows

TS.

25

From Flow to Matching

= Let f be a maximum flow in G of value k

O

L R

B 6.3: Maximum Flows TS.

25

From Flow to Matching

= Let f be a maximum flow in G of value k

O

L R

B 6.3: Maximum Flows TS.

25

From Flow to Matching

» Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0, 1} and k integral

A\
2
N> <
s O 1 e
O
L R

ol 6.3: Maximum Flows TS. 25

From Flow to Matching

= Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0, 1} and k integral
= Let M’ be all edges from L to R which carry a flow of one

A
2
N <
s O 1 e
O
L R L

=M ONONONG®;

B 6.3: Maximum Flows TS.

25

From Flow to Matching

= Let f be a maximum flow in G of value k
= Integrality Theorem = f(u, v) € {0, 1} and k integral
= Let M’ be all edges from L to R which carry a flow of one

O

L R L

=M ONONONG®;

B 6.3: Maximum Flows TS.

25

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one
a) Flow Conservation

O

L R L

=M ONONONG®;

B 6.3: Maximum Flows TS.

25

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

O

L R L

=M ONONONG®;

B 6.3: Maximum Flows TS.

25

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

O

L R L

=M ONONONG®;

B 6.3: Maximum Flows TS.

25

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit

O

=M ONONONG®;

L R L

ol 6.3: Maximum Flows TS. 25

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, Ru{t})

=M ONONONG;

ol 6.3: Maximum Flows TS. 25

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RU{t}) = netflow is k

=M ONONONG®;

ol 6.3: Maximum Flows TS. 25

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RU{t}) = net flow is k = M’ has k edges

=M ONONONG®;

ol 6.3: Maximum Flows TS. 25

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RU{t}) = net flow is k = M’ has k edges
= By a) & b), M’ is a matching and by c¢), M’ has cardinality k

O

=M ONONONG®;

L R L

ol 6.3: Maximum Flows TS. 25

From Flow to Matching

» Let f be a maximum flow in G of value k

= Integrality Theorem = f(u, v) € {0, 1} and k integral

= Let M’ be all edges from L to R which carry a flow of one

a) Flow Conservation = every node in L sends at most one unit

b) Flow Conservation = every node in R receives at most one unit
c) Cut (LU {s}, RU{t}) = net flow is k = M’ has k edges
= By a) & b), M’ is a matching and by c¢), M’ has cardinality k

[N

(value of maxflow < max cardinality matchingj

s O B

O

=M ONONONG®;

L R L

ol 6.3: Maximum Flows TS. 25

(0,0)
(ps = p1) x (P2 = p1) = (=3, =1) x (—4,2) = —10

(Ps = p1) x (P2 — p1) = (-2,2) x (-4,2) = 4

7: Geometric Algorithms

Frank Stajano Thomas Sauerwald

Lent 2015

UNIVERSITY OF
CAMBRIDGE

Outline

Introduction and Line Intersection

7: Geometric Algorithms

TS.

Introduction

Computational Geometry

= Branch that studies algorithms for
geometric problems

7: Geometric Algorithms

TS.

Introduction

Computational Geometry
= Branch that studies algorithms for
geometric problems
= typically, input is a set of points, line
segments etc.

7: Geometric Algorithms TS.

Introduction

Computational Geometry
= Branch that studies algorithms for
geometric problems
= typically, input is a set of points, line
segments etc.

Pa

Pr

A

[Do these lines intersect?]

ggg 7: Geometric Algorithms TS.

Introduction

~——— Computational Geometry ———————

= Branch that studies algorithms for
geometric problems

= typically, input is a set of points, line Ps
segments etc.

\ 7 p2

~——— Applications N\ Pa
= computer graphics
= computer vision p1

= textile layout /\

= VLSI design [Do these lines intersect?]

7: Geometric Algorithms TS. 3

5 Fd
Gl
VY

Cross Product (Area)

ggg 7: Geometric Algorithms

TS.

Cross Product (Area)

P :(2a1)

ggg 7: Geometric Algorithms

TS.

Cross Product (Area)

y
Ao =(1,3)

Egg 7: Geometric Algorithms TS.

Cross Product (Area)

E:g 7: Geometric Algorithms TS.

Cross Product (Area)

E:g 7: Geometric Algorithms TS.

Cross Product (Area)

E:g 7: Geometric Algorithms TS.

Cross Product (Area)

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

P1 X P2

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

- X1 Xo
p1 X p2 = det (y1 y2)

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

P1 X p2 = det(y ;):X1}/2*X2,\/1

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

X1 Xo
Yooy

p1><p2:det():x1y2—x2y1:2-3—1-1

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

X1 Xo
Yooy

p1><p2:det():x1y2—x2y1:2-3—1-1:5

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

X1 Xo
Yooy

p1><p2:det():x1y2—x2y1:2-3—1-1:5

P2 X P

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

X1 Xo
Yooy
P2 X P1 = Y1X2 — Yo Xq

p1><p2:det():x1y2—x2y1:2-3—1-1:5

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

P1 X P2 = det(y yz) =XiYo—Xoy1 =2-3—1-1=5

P2 X p1 = yiX2 — YoXi = —(p1 X p2)

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

P1 X P2 = det(y yz) =XiYo—Xoy1 =2-3—1-1=5

P2 X p1 = YiXe — YoX1 = —(p1 X P2) = —

% 7: Geometric Algorithms TS.

Cross Product (Area)

[How large is this area? j

P :(2a1)

> X

(0,0)

Alternatively, one could take the dot-product (but
not used here): pi - p2 = [|p1]| - [|p2|| - cos(¢).

X1 Xo
iy
P2 X p1 = yi1Xe — YoXi = —(p1 X p2) = =5

p1><p2:det():x1y2—x2y1:2-3—1-1:5

% 7: Geometric Algorithms TS.

Cross Product in 3D

> N

o)) p1 + p2

ggg 7: Geometric Algorithms TS. 5

Cross Product in 3D

z
A
p1 x p2 = (0,0, x1y2 —x2y1))

”

Jo p1 + p2

i
7: Geometric Algorithms TS. 5

Cross Product in 3D

V4
A
p1 x p2 = (0,0,x1)2 —X2y1))

”

o p1 + p2

E = 7: Geometric Algorithms TS. 5

Cross Product in 3D

V4
A
p1 x p2 = (0,0,x1)2 —X2y1))

”

a ‘e 7: Geometric Algorithms TS. 5

Cross Product in 3D

z
A

A

p1 % p2 = (0,0, x1¥2 — Xoy1)

”

-,,a,;, 7: Geometric Algorithms TS. 5

Cross Product in 3D

z
A

A

p1 % p2 = (0,0, x1¥2 — Xoy1)

”

.,a 7: Geometric Algorithms TS. 5

Cross Product in 3D

p1 % p2 = (0,0, x1¥2 — Xoy1)

z

4 Right-hand rule gives direction of p; x po J

A

y

(b1 x-)>0

(p1x-)<0

~'-.'»'. 7: Geometric Algorithms

TS. 5

Using Cross product to determine Turns (1/2)

P2 :(173)

P = (271)

(0,0)
,03:(17_1)

Egg 7: Geometric Algorithms TS.

Using Cross product to determine Turns (1/2)

P2 :(173)

P = (271)

(0,0)
,03:(17_1)

ggg 7: Geometric Algorithms TS.

Using Cross product to determine Turns (1/2)

A
p2 = (173)
<[pi x po > 0: left (counterclockwise) turn J
P = (27 1)
> X
(0,0)
p3 = (1) _1)

% 7: Geometric Algorithms TS. 6

Using Cross product to determine Turns (1/2)

A
p2 = (1,3)
<[pi x po > 0: left (counterclockwise) turn J
P = (27 1)
\ > x
(0,0) | \/
p3 = (1) _1)

% 7: Geometric Algorithms TS. 6

Using Cross product to determine Turns (1/2)

A
p2 = (173)
<[pi x po > 0: left (counterclockwise) turn J
P = (27 1)
\ it iy ;
0.0) / <k p1 x ps < 0O: right (clockwise) turn
P3 = (1) _1)

% 7: Geometric Algorithms TS. 6

Using Cross product to determine Turns (1/2)

A
p2 = (173)

<[pi x po > 0: left (counterclockwise) turn J

’7°p1 = (271)

~

o~
)

(0, 0) \/\‘. { p1 x ps < 0: right (clockwise) turn]
ps = (

1,-1)

% 7: Geometric Algorithms TS. 6

Using Cross product to determine Turns (1/2)

A
p2 = (1,3)
<[p1 x p2 > 0: left (counterclockwise) turn J
B =(21)
= / [p1 x ps < 0O: right (clockwise) turn]
_.-(00) ~
- p3 = (1) _1)
Sign of cross product determines turn! l

J‘I% 7: Geometric Algorithms TS. 6

Using Cross product to determine Turns (1/2)

A
p2 = (1,3)
<[p1 x p2 > 0: left (counterclockwise) turn J
b= (2,1)
f 0: right (clockwi
—60'05 / <k p1 X ps < 0: right (clockwise) turn
po=(1.-1)

Sign of cross product determines turn! l

AN
[Cross product equals zero iff vectors are colinearj

\,_';;, 7: Geometric Algorithms TS. 6

Using Cross product to determine Turns (2/2)

P2 = (374)

p1 = (47 2)

p02(2a1)

(0,0) ps = (3.0)

Egg 7: Geometric Algorithms TS.

Using Cross product to determine Turns (2/2)

P2 = (374)

p1 = (47 2)

p02(2a1)

(0,0) ps = (3.0)

Egg 7: Geometric Algorithms TS.

Using Cross product to determine Turns (2/2)

A
P2 = (374)
<[(P1 — po) X (P2 — po) > 0: left turn J
p1 = (47 2)
Po = (2a1)
. >» X
(0,0) ps = (3,0)

%g 7: Geometric Algorithms TS. 7

Using Cross product to determine Turns (2/2)

A P2 = (3,4) [(2,1) x (1,3) = 5]
{ (p1fp0)><(,'.{l)/27po)>0: left turn J
pr=(4,2)
Po=(2,1)
. > X
(0,0) ps = (3,0)

% 7: Geometric Algorithms TS. 7

Using Cross product to determine Turns (2/2)

A P2 = (3,4) [(2,1) x (1,3) = 5]
{ (p1 — po) x (;{;/2 — po) > 0: left turn J
pi=(42)
po=(2,1))
(0,0) ps = (3.0) >

% 7: Geometric Algorithms TS. 7

Using Cross product to determine Turns (2/2)

y
A s = (3,4) [2.1)x (1,3) = 5]
<[(Pt — po) % (;{)/2 — po) > O: left turn J
P :(472)
po=(2,1)) <[(P — Po) x (ps — Po) < O: right turn]
> X
(0,0) ps = (3,0)

% 7: Geometric Algorithms TS. 7

Using Cross product to determine Turns (2/2)

y
A s = (3,4) [2.1)x (1,3) = 5]
{ (p1—p0)><(;{)/27p0)>0: left turn J
pi = (4,2) [2,1)x(1,-1) =-3 J
po=(2,1)) <[(p1—p0)x(p:—po)<0: right turn]
> X
(0,0) ps = (3,0)

Eg 7: Geometric Algorithms TS. 7

Using Cross product to determine Turns (2/2)

P2 = (3,4) [(2,1) x (1,3) =5]
{ (p1—p0)><(;{l)/27po) > 0: left turn J
i) (@111 =3)

<[(P1 — po) x (p:—po) < 0: right turn]

>» X

Eg 7: Geometric Algorithms TS. 7

Solving Line Intersection (without Trigonometry and Division!)

A

4l

3l

ol

11
'(070) T 5 4 5 >F

ggg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)

A

4 5

3.-

2--

1-_

ps

} } > X
(0.0) i 2 3 4 5 7

ggg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)

A

. P2 P4

3.-

2T P

1._

p3

} t > X
(0.0) i 2 3 4 5 7

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)
A
4--
3.-
2--
1__
} } } } } —> X
(0.0) i 2 3 4 5 7
T (P1 — p3) x (Ps — Ps3)

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
4.-
3--
2.-
1__
N N N N N A'Y
'(00) T 2 3 a4 5 2~
T (p1 — p3) x (ps — ps) = (3,1) x (1,3)

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
4.-
3--
2.-
1__
N N N N N
'(00) T 2 3 a4 5 2~
T (P1 —Ps) x (ps —ps) = (3,1) x (1,8) =8

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
4.-
3--
2.-
1__
N N N N N A'Y
'(00) T 2 3 a4 5 2~
T (P1 —Ps) x (ps —ps) = (3,1) x (1,8) =8

(P2 — p3) % (Ps — ps)

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
4._
3--
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (p1 = p3) x (ps —p3) =(3,1) x (1,3)=8
(P2 — ps) x (ps — ps) = (=1,3) x (1,3)

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
4._
3--
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (p1 = p3) x (ps —p3) =(3,1) x (1,3)=8
(P2 — Ps) x (ps — ps) = (~1,3) x (1,3) = —6

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
4._
3--
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (p1 = p3) x (ps —p3) =(3,1) x (1,3)=8
(P2 — Ps) x (ps — ps) = (~1,3) x (1,3) = —6

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
4._
3--
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (p1 = p3) x (ps —p3) =(3,1) x (1,3)=8
(P2 — Ps) x (ps — ps) = (~1,3) x (1,3) = —6

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)

A

. P2 P4

3.-

2t P1

1._

ps

. ' : > X
(0.0) 1 /2 3 4 5 7

Opposite signs = pp> crosses
(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

J
A
4--
3.-
2--
1__
' t t ' ; —>X
0o 1.2 3 4 5 ~
T (Ps — pr) x (P2 = p1)

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
4__
3.-
2.-
1__
N N N N N A'Y
'(00) T2 5 4 5 2
T (s = p1) x (P2 = p1) = (=3, ~1) x (-4,2)

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)
A
4--
3.-
2--
1__
} } } } } —>X
0ol 1,2 3 4 5 ~
T (s = p1) x (P2 — p1) = (=3, —1) x (=4,2) = —10

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)
A
4--
3.-
2--
1__
} } } } } —>X
0ol 1,2 3 4 5 ~
T (s = p1) x (P2 — p1) = (=3, —1) x (=4,2) = —10

(Pa — p1) x (P2 — p1)
=

[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
4._
3+
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 = p1) = (=3, =1) x (=4,2) = —10
(Ps = P1) % (P2 = p1) = (~2,2) x (~4,2)

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
4._
3+
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (s = p1) x (P2 — p1) = (=3, —1) x (=4,2) = —10
(Ps = P1) % (P2 = 1) = (~2,2) x (~4,2) = 4

==
[Opposite signs = p1p2 crosses}

(infinite) line through ps and ps4

%g 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

X
4._
3+
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 = p1) = (=3, =1) x (=4,2) = —10

(Pa = p1) x (P2 = p1) = (=2,2) x (-4,2) = 4
e =

[Opposite signs = p1p2 crosses} [Opposite signs = pPsps crosses}

(infinite) line through ps and ps (infinite) line through py and p»

% 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

X
4._
3+
2._
1-_
' t t ' ; —>X
(0,0) 1 2 3 4 5
T (Ps = p1) x (P2 = p1) = (=3, =1) x (=4,2) = —10

(Pa = p1) x (P2 = p1) = (=2,2) x (-4,2) = 4
e ~-

[Opposite signs = p1p2 crosses} [Opposite signs = pPsps crosses}

(infinite) line through ps and ps (infinite) line through py and p»

% 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

y
A
P2 P4
4__
3--
2t P1
1 +
Ps
= ~-

Opposite signs = pp> crosses Opposite signs = ps3ps crosses
(infinite) line through ps and ps (infinite) line through py and p»

Eg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

y
A
P2 P4
4__
3--
2t P1
1__
Ps
P12 N paps # 0
P12 N Papa #
= ~-

Opposite signs = pp> crosses Opposite signs = ps3ps crosses
(infinite) line through ps and ps (infinite) line through py and p»

Eg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

><

1__

P

* P12 N P3Ps 2 PPz N Papa # 0
= P12 N PsPs D P12 N PaPa # 0

== ~-
[Opposite signs = p1p2 crosses} [Opposite signs = pPsps crosses}

(infinite) line through ps and ps (infinite) line through py and p»

Eg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

><

1__

P

* P1P2 N P3Ps 2 P1Pz N PaPs # 0
* P1P2 N PsPs 2 P12 M Paps 7 0
= Since pi1p2 N P3ps consists of (at most) one point
= P12 N P3ps # 0
= ~N-

[Opposite signs = p1p2 crosses} [Opposite signs = pPsps crosses}

(infinite) line through ps and ps (infinite) line through py and p»

Eg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

y
A

P2 P4
4__
3.-
2+ P1
1__

P3
N N N N N A'Y
'(00) T2 5 4 5 2
[P12 CrOSSES P34]

== ~-
[Opposite signs = p1p2 crosses} [Opposite signs = pPsps crosses}

(infinite) line through ps and ps (infinite) line through py and p»

% 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)
A
p2
4--
3.-
2t .?. pi
1_
p3
" N
(0.0) T2 5 4 5 2

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)
A
P2

4._

3.-

21 Pa e P

Nl /-

p3

} t > X
(0.0) i 2 3 4 5 7

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)
A
p2
4__
3__
21 Pa e P
|
ps
. ' : > X
0o 1 2 % 4 5 ~
T (s = p1) x (P2 —p1) <0

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)
A
p2
4--
3“ \
21 Ps g -+ |- - =8 P
N
ps
. ' : > X
0o 1 2 % 4 5 ~
T (s = p1) x (P2 —p1) <0

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)
A
p2
4--
3“ \
21 Ps g -+ |- - =8 P
N
ps
. ' : > X
0o 1 2 % 4 5 ~
T (s = p1) x (P2 —p1) <0

Egg 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

)

A

p2

4--

3“ \

21 Ps g -+ |- - =8 P

|

ps

. ' : > X
(0.0) i 2 3 4 5 7

(ps —p1) x (P2 —p1) <0

(Pa—p1) x (P2 —p1) <0

[p1p2 does not cross P3Py]

% 7: Geometric Algorithms TS. 8

Solving Line Intersection

y

(0,0)

0: DIRECTION(p;, pj, px)
1 return (px — p;) X (P — Pi)

ggg 7: Geometric Algorithms TS.

Solving Line Intersection

y Pa

(0,0)

0: DIRECTION(p;, pj, px)
1 return (px — p;) X (P — Pi)

Egg 7: Geometric Algorithms TS.

Solving Line Intersection

0,0
©.9) DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, pj, px)
1 return (px — p;) X (P — Pi)

E:g 7: Geometric Algorithms TS.

Solving Line Intersection

(0,0)
DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, P Pk)
1 return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1$
d> = DIRECTION(ps3, p4, p2)
d3 = DIRECTION(py, p2, p3)
dy = DIRECTION(p1, p2, ps)
If di -do < 0and dz-dy < 0return TRUE

Qahwh =

% 7: Geometric Algorithms TS.

Solving Line Intersection

(0,0)
DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, pj, px)
1 return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1$
d> = DIRECTION(ps3, p4, p2)
d3 = DIRECTION(py, p2, p3)
dy = DIRECTION(p1, p2, ps)
If di -d> < 0and dz - dy < 0return TRUE

Qahwh O

E:g 7: Geometric Algorithms TS.

Solving Line Intersection

0,0
©.9) DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, P Pk)
1 return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1$
d> = DIRECTION(ps3, p4, p2)
d3 = DIRECTION(py, p2, p3)
dy — DIRECTION(p+ ps. 1) — -

If dy-db < 0and ds-dy < O return TRUE{ In total 4 satisfying condmons!J

Qahwh O

% 7: Geometric Algorithms TS. 9

Solving Line Intersection

0,0)
(DIRECTION(ps, ps, p1) = (Pt — Ps) x (pa — p3)

0: DIRECTION(p;, P Pk)
1 return (px — p;) X (P — Pi)

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1ﬁ
d> = DIRECTION(ps3, p4, p2)
d; = DIRECTION(py, p2, p3)
dy = DIRECTION(p1, p2, ps)
If di -do < 0and dz-dy < 0return TRUE

Qahwn=o

_—

(Lines could touch or be coIinear)

% 7: Geometric Algorithms TS.

Solving Line Intersection

0,0)
OO DIRECTION(ps. e 1) = (b1 —) * (p1 —)

0: DIRECTION(p;, P Pk)
return (px — pi) x (P — Pi)

ke]

P4

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1ﬁ
d> = DIRECTION(ps3, p4, p2)
d; = DIRECTION(py, p2, p3)
dy = DIRECTION(p1, p2, ps)
If di -do < 0and dz-dy < 0return TRUE

Qahwn=o

_—

(Lines could touch or be coIinear)

% 7: Geometric Algorithms TS.

Solving Line Intersection

(0,0)
DIRECTION(ps, pi p1) = (b1 — pa) X (Ps —)
0: DIRECTION(p,, pjs pk)
1 return (px — p;) % (pj — Pi) P
P4

: SEGMENTS-INTERSECT (p;, p,
d; = DIRECTION(p3, p4,p1ﬁ
d> = DIRECTION(ps3, p4, p2)
d; = DIRECTION(py, p2, p3)
dy = DIRECTION(p1, p2, ps)
If di -do < 0and dz-dy < 0return TRUE

Qahwn=o

_—

(Lines could touch or be coIinear)

% 7: Geometric Algorithms TS.

5

	Analysis of Ford-Fulkerson
	Matchings in Bipartite Graphs
	Introduction and Line Intersection

