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Introduction

Branch that studies algorithms for
geometric problems

typically, input is a set of points, line
segments etc.

Computational Geometry

computer graphics

computer vision

textile layout

VLSI design
...

Applications

p1

p2

p3

p4

Do these lines intersect?
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Cross Product (Area)

How large is this area?

x

y

(0, 0)

p1 = (2, 1)

p2 = (1, 3)

p1 + p2 = (3, 4)

Alternatively, one could take the dot-product (but
not used here): p1 · p2 = ‖p1‖ · ‖p2‖ · cos(φ).

p1 × p2 = det
(

x1 x2

y1 y2

)
= x1y2 − x2y1 = 2 · 3− 1 · 1 = 5

p2 × p1 = y1x2 − y2x1 = −(p1 × p2) = −5
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Using Cross product to determine Turns (2/2)

x

y

p0 = (2, 1)

(0, 0)

p1 = (4, 2)

p2 = (3, 4)

p3 = (3, 0)

(p1 − p0) × (p2 − p0) > 0: left turn

(2, 1) × (1, 3) = 5

(p1 − p0) × (p3 − p0) < 0: right turn

(2, 1) × (1,−1) = −3
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Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

Definition

Smallest perimeter fence enclosing the points

Input: set of points Q in the Euclidean space

Output: return points of the convex hull in counterclockwise order

Convex Hull Problem
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Application of Convex Hull

Find shortest path from s to t which avoids a polygonal obstacle.

Robot Motion Planning

can be solved by computing the Convex hull!

s

t

t

s
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Graham’s Scan

00

1

2

3
4

x

y

Start with the point with smallest y -coordinate

Sort all points increasingly according to their polar angle
Try to add next point to the convex hull

If it does not introduce non-left turn, then fine

X

Otherwise,

keep on removing recent points until point can be added

Basic Idea

Efficient Sorting by comparing (not computing!) polar angles

Use Cross Product!

0: GRAHAM-SCAN(Q)
1: Let p0 be the point with minimum y -coordinate
2: Let (p1, p2, . . . , pn) be the other points sorted by polar angle w.r.t. p0
3: If n < 2 return false
4: S = ∅
5: PUSH(p0,S)
6: PUSH(p1,S)
7: PUSH(p2,S)
8: For i = 3 to n
9: While angle of NEXT-TO-TOP(S),TOP(S),pi makes a non-left turn

10: POP(S)
11: End While
12: PUSH(pi ,S)
13: End For
14: Return S

Takes O(n log n) time

Takes O(n) time, since every point is
part of a PUSH or POP at most once.

Overall Runtime: O(n log n)
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Jarvis’ March (Gift wrapping)

Wrapping taut paper around the points

1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2

Intuition

1. Let p0 be the lowest point

2. Next point the one with smallest angle w.r.t. p0

3. Continue until highest point pk

4. Next point the one with smallest angle w.r.t. pk

5. Continue until p0 is reached

Algorithm

Here, we rotate the coordinate system by 180◦!

Runtime: O(n · h), where h is the
number of points on the convex hull Output sensitive algorithm!
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Runtime: O(n · h), where h is the
number of points on the convex hull Output sensitive algorithm!
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Computing Convex Hull: Summary

natural backtracking algorithm

cross-product avoids computing polar angles

Runtime dominated by sorting O(n log n)

Graham’s Scan

proceeds like wrapping a gift

Runtime O(n · h) output-sensitive

Jarvis’ March

Improves Graham’s scan only if h = O(log n)

There exists an algorithm with O(n log h) runtime!

cross product very powerful tool

need to take care of degenerate cases,
numerical precision

Lessons Learned
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The End

Thank you for attending this course &
Best wishes for the rest of your Tripos!

Don’t forget to visit the online feedback page!

Please send comments on the slides (typos, criticsm, praise etc.) to:
tms41@cam.ac.uk
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