000 @

5.2 Fibonacci Heaps

Frank Stajano Thomas Sauerwald

Lent 2015 _

B UNIVERSITY OF
P CAMBRIDGE

Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap
MAKE-HEAP o) o) o)

INSERT o) O(log n) O(log n)
MINIMUM O(n) o) O(log n)
EXTRACT-MIN o(n) O(log n) O(log n)
MERGE O(n) o(n) O(log n)
DECREASE-KEY o) O(log n) O(log n)
DELETE o) O(log n) O(log n)

5 5.2: Fibonacci Heaps

Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
MERGE o(n) o(n) O(log n) o(1)
DECREASE-KEY o(1) O(log n) O(log n) o)

DELETE o) O(log n) O(log n) O(log n)

B 5.2: Fibonacci Heaps TS. 2

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap

MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)

EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)

DELETE O(log n) O(log n)

5.2: Fibonacci Heaps

TS.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

5.2: Fibonacci Heaps

TS.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

N

[

All these cost bounds hold
if n is the size of the heap.

J

5.2: Fibonacci Heaps

TS.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

(57 5.2: Fibonacci Heaps TS.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

n C1:CZ:~-:Ck:0(IOgn)

B 5.2: Fibonacci Heaps T.S.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT

LI :CZ:”-:ck:O(lOgn)
= YL, ¢ = O(klogn)

ol
* 5.2: Fibonacci Heaps T.S.

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2
+ k/2 INSERT DECREASE-KEY + k/2 INSERT
"c=c=--=ck=0(logn)

= K. ¢ =O(klogn)

ol
* 5.2: Fibonacci Heaps TS. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2
+ k/2 INSERT DECREASE-KEY + k/2 INSERT
"cr=0C = =cx=O(logn) "G =C=--=0C=0(1)

= K. ¢ =O(klogn)

ol
* 5.2: Fibonacci Heaps TS. 3

Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2
+ k/2 INSERT DECREASE-KEY + k/2 INSERT
"cr=0C = =cx=O(logn) "G =C=--=0C=0(1)
= 3, 6 = O(klogn) = Yl G <Y 6= 0(k)

o
Y

5.2: Fibonacci Heaps

TS. 3

Actual vs. Amortized Cost

(

14-0(1)

14

5.2: Fibonacci Heaps

TS.

Actual vs. Amortized Cost

(ZL ¢ —

14-0(1)

2.0(1)
o)

5.2: Fibonacci Heaps TS.

Actual vs. Amortized Cost

(

14.0(1)-

2.0(1) -

o(1)

=l

>

=
j=1 G ——

E;{:1 Ci wmmm

¥

2

i

5.2: Fibonacci Heaps

TS.

Actual vs. Amortized Cost

(

14.0(1)-

>

=
j=1 G ——

E;{a Ci wmmm

5.2: Fibonacci Heaps

TS.

Actual vs. Amortized Cost

(

14-0(1)

k = K
D1 G —— D Ci

Potential > 0, but should be
also as small as possible

k

1 2 14

5.2: Fibonacci Heaps T.S. 4

Outline

Structure

5.2: Fibonacci Heaps

TS.

Reminder: Binomial Heaps

Binomial Trees

B(O) B(1 B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property

¥

)
g 5.2: Fibonacci Heaps T.S. 6

Reminder: Binomial Heaps

Binomial Trees

B(O) B(1 B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property

= Operations:

¥

5.2: Fibonacci Heaps TS.

Reminder: Binomial Heaps

Binomial Trees

B(0) B(1

Binomial Heaps

B(k)

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
= Operations:

= MERGE: Merge two binomial heaps using Binary Addition Procedure

= INSERT: Add B(0) and perform a MERGE

= EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
= DECREASE-KEY: The same as in a binary heap

5.2: Fibonacci Heaps T.S. 6

Merging two Binomial Heaps

o 6 " . 6%y 6

00 11 7
0 1 11 =1

1
0
11

10010 =18

1

—_
—_

i
5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

o 6 " . 6%y 6

00 11 7
0 1 11 =1

1
0
11

10010 =18

1

—_
—_

i
5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

op 6" . oYy ¢

00 11 7
0 1 11 =1

1
0
11

10010 =18

1

—_
—_

i
5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

op 6" . oYy ¢

00 11 7
0 1 11 =1

1
0
11

10010 =18

1

—_
—_

i
5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

o 6 " . 6%y 6

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

—_
—_

i
5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

SR N

00 11 7
0 1 11 =1

1
0
1 1

10010 =18

1

—_
—_

i
5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

e

& @

00111 7
01011 1
1 1

10010 =18

1

—_
—_

i
5 5.2: Fibonacci Heaps

TS.

Merging two Binomial Heaps

Ryt

OO

00 11 7
0 1 11 =1

1
0
11

10010 =18

1

—_
—_

i
5 5.2: Fibonacci Heaps

TS.

Merging two Binomial Heaps

Byt

OO

00111 7
01011 1
1 1

10010 =18

1

—_
—_

i
5 5.2: Fibonacci Heaps

TS.

Merging two Binomial Heaps

@

fp b7 L&

&

0111 7
1011 1
1 1

10010 =18

i
5.2: Fibonacci Heaps T.S. 7

0
0 1

—_
—_

Merging two Binomial Heaps

@

Sy b7

&

00 11 7
0 1 11 =1

1
0
11

10010 =18

i
5.2: Fibonacci Heaps T.S. 7

1

—_
—_

Merging two Binomial Heaps

@

Sy b7 L6

&

0 11 7
1011 =1

1
0
11

10010 =18

0
0 1

—_
—_

5.2: Fibonacci Heaps T.S. 7

Merging two Binomial Heaps

SRR

0 11 7
1011 =1

1
0
11

10010 =18

i
5.2: Fibonacci Heaps T.S. 7

0
0 1

—_
—_

Merging two Binomial Heaps

SRR

00 11 7
0 1 11 =1

1
0
11

10010 =18

i
5.2: Fibonacci Heaps T.S. 7

1

=
—_

Merging two Binomial Heaps

SRR

00 11 7
0 1 11 =1

1
0
11

10010 =18

i
5.2: Fibonacci Heaps T.S. 7

1

=
—_

Merging two Binomial Heaps

SRR

00 11 7
0 1 11 =1

1
0
11

10010 =18

i
5.2: Fibonacci Heaps T.S. 7

1

=
—_

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

s
o 5.2: Fibonacci Heaps TS.

Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

Fibonacci Heap:

() @)
@ & @ &E
© @ @ &
(2
= forest of MIN-HEAPs

= |azily defer tidying up; do it on-the-fly when search for the MIN

g

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

5.2: Fibonacci Heaps TS.

Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

[N

[How do we implement a Fibonacci Heap?]

5.2: Fibonacci Heaps TS.

A single Node

TParent

Previous Sibling ‘
«—) .

Yo

p Payload marked degree

} 0

3

f

O—

lOne of the Children

Next Sibling
>

ol 5.2: Fibonacci Heaps

TS.

Magnifying a Four-Node Portion

i
5 5.2: Fibonacci Heaps

TS.

Magnifying a Four-Node Portion

i
5.2: Fibonacci Heaps T.S. 11

Magnifying a Four-Node Portion

58

-
O

O 41[1][2] OO 1381[0][1] O
O O
i 54

Outline

Operations

5.2: Fibonacci Heaps

TS.

Fibonacci Heap: INSERT

INSERT

g 5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT
= Create a singleton tree

g 5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list

5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT
= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

@ ® O @ @
@)

Sl
5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

[Actual Costs: O(1)] min

Sl
5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

g 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min

g 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/

g 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/

5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)

g 5.2: Fibonacci Heaps T.S.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree=2

g 5.2: Fibonacci Heaps T.S.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

,,,,,, @ @ @

g 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

3 "8 8

g 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)

g 5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

1 0 1

sigig

g 5.2: Fibonacci Heaps T.S. 14

¥

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I

@@@

g 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

g 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
L Tl T 1

A

)
Bl e 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Tal,l |

@@@

g 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

A

)
Bl e 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
A

[f.°°3°¢

)
Bl e 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
A

[f.5°3°¢

)
Bl e 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]

—>

A}

@T@@:

)
Bl e 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

$e "3

)
Bl e 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L Talal |

28

)
Bl e 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
-" []

iz: :

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
-" []

iz: :

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L[Tal |

® @ ® ® @
TO 6w ® &
® &

g 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
L[Tal |

® @ ® ® @
TO 6w ® &
® &

g 5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0[1]2[3]
L [bal |

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)

TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

[0]1T2]3]
LT T T4l

() () ()
® @

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

ol
5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

ol
5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v’
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree

5.2: Fibonacci Heaps TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

ol
5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

ol
5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

ol
5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum

ol
5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

min

ol
5.2: Fibonacci Heaps T.S. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

i [Actual Costs:

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

L Every root becomes child of another root at most once! J
v
, [Actual Costs:]
min

@

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/

= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

in [Actual Costs: O(trees(H) + d(n))

5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

TS. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

TS. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

TS. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

ol
5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

min

N

ol
5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not

min

N

ol
5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise,

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

e

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

e ge b

OB ORORC

,.
¥

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

e ge b

LEORORORE,

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

e

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

e

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.

= Otherwise, cut tree rooted at x and meld into root list (update min).

e

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

et

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

Pyt

)
g 5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

e

19

¥
-5

5.2: Fibonacci Heaps T.S. 15

YEY
¥

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

e

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

e

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

e

5.2: Fibonacci Heaps T.S. 15

YEY
¥

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

@é

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

@é

g 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

@é

12

g 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

@é

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

@é

®

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

@é

b

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

@é@

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

min

@é@

)
g 5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

$ O, @é@
® ©6 @0 ©
(=)

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Degree_3
Nodes:4 min
$: (9 é (1) (1)
O OINC) 6 (39)
Wide and
shallow tree

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

@@@

Wide and
shallow tree

5.2: Fibonacci Heaps T.S. 15

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

g 5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

min

1. DECREASE-KEY 46 ~ 15

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

1. DECREASE-KEY 46 ~ 15

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

1. DECREASE-KEY 46 ~ 15

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

1. DECREASE-KEY 46 ~ 15

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list

min

1. DECREASE-KEY 46 ~ 15

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

min

Lyt

1. DECREASE-KEY 46 ~ 15

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

min

eIk

() (38) (0
1. DECREASE-KEY 46 ~~ 15

TS. 16

5.2: Fibonacci Heaps

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

eIk

() (38) (0
1. DECREASE-KEY 46 ~~ 15

TS. 16

5.2: Fibonacci Heaps

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

~yo gu b

() (38) (0
1. DECREASE-KEY 46 ~~ 15

TS. 16

5.2: Fibonacci Heaps

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

1. DECREASE-KEY 46 ~ 15 vV

et

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

et

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

et

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

et

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

et

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

et

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked
= If unmarked, mark it (unless it is a root)

min

.

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked,

min

et

1. DECREASE-KEY 46 ~ 15 vV
@ 2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

Rad L

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

@é

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

it

1. DECREASE-KEY 46 ~ 15 vV
@ 2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

@é

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

@&~

@ ®

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

@é

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

@&~

@ ®

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
= Cut tree rooted at x, unmark x, meld into root list and:

= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

@é

@)
(8 1. DECREASE-KEY 46 ~» 15 v
@ 2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS.

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

@é

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

@é

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5 v

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

[Actual Cost:

]@é

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5 v

5.2: Fibonacci Heaps TS. 16

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

min

[Actual Cost: O(# cuts)

]@é

1. DECREASE-KEY 46 ~ 15 vV
2. DECREASE-KEY 35~ 5 v

5.2: Fibonacci Heaps TS. 16

Outline

Glimpse at the Analysis

bl 5.2: Fibonacci Heaps

TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

ol
* 5.2: Fibonacci Heaps TS. 18

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps T.S. 18

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps T.S. 18

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

.3

5.2: Fibonacci Heaps T.S. 18

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1)

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

@ () () 6 (308 :
(@) @ ()
Loses first child

5.2: Fibonacci Heaps T.S. 18

	Structure
	Operations
	Glimpse at the Analysis

