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Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap
MAKE-HEAP o) o) o)

INSERT o) O(log n) O(log n)
MINIMUM O(n) o) O(log n)
EXTRACT-MIN o(n) O(log n) O(log n)
MERGE O(n) o(n) O(log n)
DECREASE-KEY o) O(log n) O(log n)
DELETE o) O(log n) O(log n)
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Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
MERGE o(n) o(n) O(log n) o(1)
DECREASE-KEY o(1) O(log n) O(log n) o)

DELETE o) O(log n) O(log n) O(log n)
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap

MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)

EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)

DELETE O(log n) O(log n)
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
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All these cost bounds hold
if n is the size of the heap.
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)

Binomial Heap: k/2 DECREASE-KEY
+ k/2 INSERT
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
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Binomial Heap vs. Fibonacci Heap: Costs

Operation Binomial heap | Fibonacci heap
actual cost amortized cost
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
MERGE O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
Binomial Heap: k/2 DECREASE-KEY Fibonacci Heap: k/2
+ k/2 INSERT DECREASE-KEY + k/2 INSERT
"cr=0C = =cx=O(logn) "G =C=--=0C=0(1)
= 3, 6 = O(klogn) = Yl G <Y 6= 0(k)
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Actual vs. Amortized Cost
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Actual vs. Amortized Cost

( ZL ¢ —

14-0(1)

2.0(1)
o)

5.2: Fibonacci Heaps TS.



Actual vs. Amortized Cost

(

14.0(1)-

2.0(1) -

o(1)

=l

>

=
j=1 G ——

E;{:1 Ci wmmm

¥

2

i

5.2: Fibonacci Heaps

TS.




Actual vs. Amortized Cost

(

14.0(1)-

>

=
j=1 G ——

E;{a Ci wmmm

5.2: Fibonacci Heaps

TS.




Actual vs. Amortized Cost
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Outline

Structure

5.2: Fibonacci Heaps

TS.



Reminder: Binomial Heaps

Binomial Trees

B(O) B(1 B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property

¥
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Reminder: Binomial Heaps

Binomial Trees

B(O) B(1 B(k)

Binomial Heaps

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property

= Operations:
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Reminder: Binomial Heaps

Binomial Trees

B(0) B(1

Binomial Heaps

B(k)

= Binomial Heap is a collection of binomial trees of different orders,
each of which obeys the heap property
= Operations:

= MERGE: Merge two binomial heaps using Binary Addition Procedure

= INSERT: Add B(0) and perform a MERGE

= EXTRACT-MIN: Find tree with minimum key, cut it and perform a MERGE
= DECREASE-KEY: The same as in a binary heap
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Merging two Binomial Heaps
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Merging two Binomial Heaps
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Merging two Binomial Heaps
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Merging two Binomial Heaps
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Merging two Binomial Heaps
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Merging two Binomial Heaps
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Merging two Binomial Heaps
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Merging two Binomial Heaps

SRR

0 11 7
1011 =1

1
0
11

10010 =18

i
5.2: Fibonacci Heaps T.S. 7

0
0 1

—_
—_




Merging two Binomial Heaps

SRR

00 11 7
0 1 11 =1

1
0
11

10010 =18

i
5.2: Fibonacci Heaps T.S. 7

1

=
—_




Merging two Binomial Heaps

SRR

00 11 7
0 1 11 =1

1
0
11

10010 =18

i
5.2: Fibonacci Heaps T.S. 7

1

=
—_




Merging two Binomial Heaps
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Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

s
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Binomial Heap vs. Fibonacci Heap: Structure

Binomial Heap:
= consists of binomial trees, and every order appears at most once
= immediately tidy up after INSERT or MERGE

Fibonacci Heap:

() @)
@ & @ &E
© @ @ &
(2
= forest of MIN-HEAPs

= |azily defer tidying up; do it on-the-fly when search for the MIN

g
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
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Structure of Fibonacci Heaps

——— Fibonacci Heap
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= Nodes can be marked (roots are always unmarked)
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
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Structure of Fibonacci Heaps

——— Fibonacci Heap

= Forest of MIN-HEAPs
= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
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Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element
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Structure of Fibonacci Heaps
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= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
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Structure of Fibonacci Heaps

——— Fibonacci Heap
= Forest of MIN-HEAPs

= Nodes can be marked (roots are always unmarked)
= Tree roots are stored in a circular, doubly-linked list
= Min-Pointer pointing to the smallest element

[N

[How do we implement a Fibonacci Heap?]
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A single Node
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Magnifying a Four-Node Portion
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Magnifying a Four-Node Portion
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Magnifying a Four-Node Portion

58

-
O

O 41[1][2] OO 1381[0][1] O
O O
i 54




Outline

Operations
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Fibonacci Heap: INSERT

INSERT
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Fibonacci Heap: INSERT

INSERT
= Create a singleton tree
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list
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Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list
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Fibonacci Heap: INSERT

INSERT
= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

@ ® O @ @
@)
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5.2: Fibonacci Heaps T.S. 13




Fibonacci Heap: INSERT

INSERT

= Create a singleton tree
= Add to root list and update min-pointer (if necessary)

X

[ Actual Costs: O(1) ] min

Sl
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree=2
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

1 0 1
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
[0]1T2]3]
I I
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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L Talal |

28

)
Bl e 5.2: Fibonacci Heaps T.S. 14




Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)

degree
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN
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= Consolidate so that no roots have the same degree (# children)
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN
= Delete min v/
= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

L Every root becomes child of another root at most once! J
v
, [ Actual Costs: ]
min

@
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Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/

= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

d(n) is the maximum degree of a
root in any Fibonacci heap of size n

in [ Actual Costs: O(trees(H) + d(n))
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DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
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DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
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Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not

min

N

ol
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Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated
= If not, then done.
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= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).
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DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
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= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).
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DECREASE-KEY of node x
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DECREASE-KEY of node x
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Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).
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Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Degree_3
Nodes:4 min
$ : (9 é (1) (1)
O OINC) 6 (39)
Wide and
shallow tree
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Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= Otherwise, cut tree rooted at x and meld into root list (update min).

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

@@@

Wide and
shallow tree
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Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)

g 5.2: Fibonacci Heaps TS.




Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)
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Outline
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Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))
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Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)
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Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1)

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

@ () () 6 (308 :
(@) @ ()
Loses first child
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