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Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))
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Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
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®(H) = trees(H)+2-marks(H)

Lifecycle of a node

@ (7)) @ (3208 :
() @ ()
Loses first child
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Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.
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Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[ ®(H) — trees(H) + 2 - marks(H)

Change in Potential
= trees(H') =trees(H) + x
* marks(H') <
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Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.
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First Coin ~ pays cut
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Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))

g ey 5.2: Fibonacci Heaps (Analysis)

TS.




Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.



Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

——— Change in Potential

a 5.2: Fibonacci Heaps (Analysis) TS.



Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

min
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Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))
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Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))

[ ®(H) = trees(H) + 2 - marks(H) )

degrees

Change in Potential
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* trees(H') < d(n) + 1
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Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.
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Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

d=3,n=2%
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Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n. ]

T

Fibonacci Heap
| Not all trees are binomial trees, but still d(n) < log,, n, where ¢ ~ 1.62. ]

5.2: Fibonacci Heaps (Analysis) TS. 8



Lower Bounding Degrees of Children

[ d(n) <log,n
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Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogg, n
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From Degrees to Minimum Subtree Sizes
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From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.
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From Degrees to Minimum Subtree Sizes
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From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.
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From Degrees to Minimum Subtree Sizes
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From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO)=1 N(1)=2 N(2)= N(3 - N(4 8=5+3
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From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted

at a node of degree k.
{ N(k) = F(k + 2)? ]7

NO)=1 N(1)=2 N(2)= N(3 - N(4 8=5+3
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From Minimum Subtree Sizes to Fibonacci Numbers

( Vi<i<k: d>i-2 ] N(k) = F(k + 2)?
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From Minimum Subtree Sizes to Fibonacci Numbers

( Vi<i<k: d>i-2 ] N(k) = F(k + 2)?

]
N(k) =

1 NE2-2) N3E-2) N(k - 2)
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From Minimum Subtree Sizes to Fibonacci Numbers

( Vi<i<k: d>i-2 ] N(k) = F(k + 2)?

]
N(k) =

1 NE2-2) N3E-2) N(k - 2)

N(k)=1+1+N@2-2)+NB—2)+ -+ N(k —2)

k—2
=1+1+) N
£=0
k—3
=1+14+> N+ N(k-2)
£=0
= N(k—1)+ N(k—2)
= F(k+1)+ F(k) = F(k+2) O
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Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers k > 0, the (k+2)nd Fib. number satisfies F(k +2) > ¢,
where ¢ = (1 +/5)/2 = 1.61803.... ..
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Putting the Pieces Together

Amortized Analysis
= INSERT: amortized cost O(1)
= EXTRACT-MIN amortized cost O(d(n))
« DECREASE-KEY amortized cost O(1)
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~—— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN amortized cost O(d(n))
« DECREASE-KEY amortized cost O(1)
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Putting the Pieces Together

~—— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN amortized cost Otdr)) O(log n)
« DECREASE-KEY amortized cost O(1)

n> N(k) = F(k +2) > ¥
= Iogvnzk
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What if we don’t have marked nodes?

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)
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What if we don’t have marked nodes?
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What if we don’t have marked nodes?

= INSERT: actual O(1) amortized O(1)
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Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o(1) O(log n) O(log n) O(log n)

aD 5.2: Fibonacci Heaps (Analysis)

TS.




Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o(1) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) Ologn) |7 o)

DECREASE-KEY o) O(log n) Can we perform

EXTRACT-MIN in o(log n)?

DELETE o) O(log n) - -
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Summary
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EXTRACT-MIN O(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) Ologn) |7 o)
DECREASE-KEY o) O(log n) Can we perform
EXTRACT-MIN in o(log n)?
DELETE o) O(log n) \— o — -

If this was possible, then there would be a
sorting algorithm with runtime o(nlog n)!
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Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap
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DELETE o(1) ralilaYaWa)l Allan n) %(Inn n\

[

Crucial for many applications including
shortest paths and minimum spanning trees!

]
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Summary
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7\

[ EXTRACT-MIN = MIN + DELETE J
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Recent Studies of Fibonacci Heaps

= Fibonacci Numbers were discovered >800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984
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Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

= Queries to marked bits are intercepted and responded with a
random bit

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569,
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random bit
= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

= less efficient than the original Fibonacci heap

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569,

2014)

= marked bit is not redundant!
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Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)
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[all this requires key values to be in a universe of size u! ]
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