T

5.2 Fibonacci Heaps (Analysis)

Frank Stajano Thomas Sauerwald

Lent 2015 _

B UNIVERSITY OF
P CAMBRIDGE

Outline

Glimpse at the Analysis

g ey 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

ol
* 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

b

5.2: Fibonacci Heaps (Analysis TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

b

5.2: Fibonacci Heaps (Analysis TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H))

®(H) = trees(H)+2-marks(H)

r-

5.2: Fibonacci Heaps (Analysis TS.

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1)

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

@ (7)) @ (3208 :
() @ ()
Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1) v
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?
= DECREASE-KEY: actual O(# cuts) < O(marks(H)) amortized O(1) ?

®(H) = trees(H)+2-marks(H)

Lifecycle of a node

@ (7)) @ (3208 :
() @ ()
Loses first child

5.2: Fibonacci Heaps (Analysis) TS. 3

Outline

Amortized Analysis

g ey 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

| ®(H) = trees(H) + 2 - marks(H)

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

| ®(H) = trees(H) + 2 - marks(H)

Change in Potential

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

| ®(H) = trees(H) + 2 - marks(H)

Change in Potential
* trees(H') =

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

| ®(H) = trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x

5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)

Change in Potential
= trees(H') =trees(H) + x
* marks(H') <

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

| ®(H) = trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost
= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) = trees(H) + 2 - marks(H)

Change in Potential
= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP<x+2-(—x+2)=4—x.

¥

5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

Amortized Cost

EiZC/-i-Aq)

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)]

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

®

5 (Scale up potential units J

Amortized Cost

C=C+AP<O(x+1)+4—x

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[®(H) — trees(H) + 2 - marks(H)]

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

®

5 (Scale up potential units J

Amortized Cost

C=C+Ad<O(x+1)+4—x=0(1)

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 5

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x + 1), where x is the number of cuts.

[d(H) = trees(H)Lz -marks(H)

First Coin ~ pays cut
Second Coin ~ increase of trees(H)

Change in Potential

= trees(H') =trees(H) + x
* marks(H’) < marks(H) — x + 2
= AP <x+2- (—x+2)=4—x.

Amortized Cost

C=C+Ad<O(x+1)+4—x=0(1)

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))

g ey 5.2: Fibonacci Heaps (Analysis)

TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

——— Change in Potential

a 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

min
——— Change in Potential

» marks(H’) ? marks(H)

O
® =
® ©

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

——— Change in Potential

- marks(H') ? marks(H) (18) - (22) - (a1)
@ @

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

——— Change in Potential

- marks(H') < marks(H) (18) - (22) - (a1)
® &

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) — trees(H) + 2 - marks(H)

degrees
[0]1[2]3]

——— Change in Potential

» marks(H') < marks(H)
= trees(H’) <

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) — trees(H) + 2 - marks(H)

degrees

Change in Potential

» marks(H') < marks(H)
= trees(H’) <

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

degrees

Change in Potential

» marks(H') < marks(H)
= trees(H’) < d(n) + 1

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H)

degrees

Change in Potential
» marks(H') < marks(H)
* trees(H') < d(n) + 1

= A® < d(n)+1—trees(H)

¥

5.2: Fibonacci Heaps (Analysis) TS. 6

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

®(H) = trees(H) + 2 - marks(H)

degrees

——— Change in Potential
» marks(H') < marks(H)
* trees(H') < d(n) + 1

= A® < d(n)+1—trees(H)

Amortized Cost

G =C + AdD

g ey 5.2: Fibonacci Heaps (Analysis) TS.

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) — trees(H) + 2 - marks(H)

degrees

Change in Potential
» marks(H') < marks(H)
* trees(H') < d(n) + 1

= A® < d(n)+1—trees(H)

Amortized Cost

& = ¢+ A® < Otrees(H) +d(n) + d(n) + 1 — trees(H)

g ey 5.2: Fibonacci Heaps (Analysis) TS. 6

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) — trees(H) + 2 - marks(H)

degrees

Change in Potential
» marks(H') < marks(H)
* trees(H') < d(n) + 1

= A® < d(n)+1—trees(H)

Amortized Cost

Ci = ¢+ Ad < O(trees(H) +d(n)) + d(n) + 1 — trees(H) = O(d(n))

g ey 5.2: Fibonacci Heaps (Analysis) TS. 6

Amortized Analysis of EXTRACT-MIN

Actual Cost
= EXTRACT-MIN: O(trees(H) + d(n))

[®(H) = trees(H) + 2 - marks(H))

degrees

Change in Potential
» marks(H') < marks(H)
* trees(H') < d(n) + 1

= A® < d(n)+1—trees(H)

Amortized Cost

Ci = ¢+ Ad < O(trees(H) +d(n)) + d(n) + 1 — trees(H) = O(d(n))
e

L How to bound d(n)?]

g ey 5.2: Fibonacci Heaps (Analysis) TS. 6

Outline

Bounding the Maximum Degree

g ey 5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

i
* 5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

©

i
* 5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

d=3,n=2%

i
* 5.2: Fibonacci Heaps (Analysis) TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

©

i
* 5.2: Fibonacci Heaps (Analysis)

TS.

Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.]

T

Fibonacci Heap
| Not all trees are binomial trees, but still d(n) < log,, n, where ¢ ~ 1.62.]

5.2: Fibonacci Heaps (Analysis) TS. 8

Lower Bounding Degrees of Children

[d(n) <log,n

¥

g ey 5.2: Fibonacci Heaps (Analysis)

TS.

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogg, n

5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogg, n }

= Consider any node x of degree k (not necessarily a root) at the final state

5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

ol
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

®
D,

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

®

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

7

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

©
OO0,

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

0@

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

©,
G@@

ol
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

ol
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

ol
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

ol
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

ol
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

ol
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

ol
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

ol
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlogw n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

ol
5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥« be the children in the order of attachment

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state
= Let y1, ¥o, ..., ¥k be the children in the order of attachment

5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state

= Let y1, ¥o, ..., ¥« be the children in the order of attachment
and di, d, . . ., dk be their degrees

5 5.2: Fibonacci Heaps (Analysis) TS. 9

Lower Bounding Degrees of Children

We will prove a stronger statement:
Any tree with degree k contains at least ¢* nodes.

{ d(n) gvlog<p n }

= Consider any node x of degree k (not necessarily a root) at the final state

= Let y1, ¥o, ..., ¥« be the children in the order of attachment
and di, d, . . ., dk be their degrees

:\wggk: d,-zi—Z‘

Sl 5.2: Fibonacci Heaps (Analysis) TS. 9

From Degrees to Minimum Subtree Sizes

ol
5.2: Fibonacci Heaps (Analysis)

TS.

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0)

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0)
o0

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)
o0

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)

o0 o1

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1)

e0 I1
0

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2)

e0 I1
0

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2)

o0 I1 ®2
0

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2)

e0 I1 IQ\
0 0 e0

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3)

e0 I1 IQ\
0 0 e0

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3)
3

LR
0 o0 we(Q

¥

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3)

Ul e o
0 @00 o0 01

¥

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3)

00 I1 Iz\
0 0> 0 N1
0

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

¥

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3) N(4)

00 I1 Iz\
0 0> 0 N1
0

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

¥

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2) N(3) N(4)

SN '
0 0> 0 N1
0

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

¥

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2)

N(3 N(4
D SRR SN I\ e

¥

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(0) N(1) N(2)

N(3 N(4
° I:) Ii\o I\ N

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N()=1 N(1) N(2) N(3 N(4
°0 1 2
I 0 Io\ 0 I\ M

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(O)=1 N(1)=2 N(2)

'°I$I\I\I§T\

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N(O)=1 N(1)=2 N(2)=3 N(3 N(4
°0 1 2
Io Io\o I\ M

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N@O)=1 N(1)=2 N(@2)=

" I:) Ii\o I\ N

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

N(3 -

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N@O)=1 N(1)=2 N(@2)=

" I:) Ii\o I\ N

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

N(3 -

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N@O)=1 N(1)=2 N(@2)=

" I:) Ii\o I\ N

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

N(3 -

¥

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

N@O)=1 N(1)=2 N(@2)=

" I:) Ii\oo I\ N

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

N(3 -

¥

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO)=1 N(1)=2 N(2)=

" I:) Ii\o I\ w

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

N(3 =

¥

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k.

NO)=1 N(1)=2 N(2)= N(3 - N(4 8=5+3

"L I%\SO I\

g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

¥

From Degrees to Minimum Subtree Sizes

Definition

Let N(k) be the minimum possible number of nodes of a subtree rooted

at a node of degree k.
{ N(k) = F(k + 2)?]7

NO)=1 N(1)=2 N(2)= N(3 - N(4 8=5+3

"L I%\.SO I\

)
g ey 5.2: Fibonacci Heaps (Analysis) TS. 10

¥

From Minimum Subtree Sizes to Fibonacci Numbers

(Vi<i<k: d>i-2] N(k) = F(k + 2)?

5.2: Fibonacci Heaps (Analysis) TS. 11

From Minimum Subtree Sizes to Fibonacci Numbers

(Vi<i<k: d>i-2] N(k) = F(k + 2)?

]
N(k) =

1 NE2-2) N3E-2) N(k - 2)

i
5.2: Fibonacci Heaps (Analysis) TS. 11

From Minimum Subtree Sizes to Fibonacci Numbers

(Vi<i<k: d>i-2] N(k) = F(k + 2)?

]
N(k) =

1 NE2-2) N3E-2) N(k - 2)

N(k)=1+1+N@2-2)+NB—2)+ -+ N(k —2)

k—2
=1+1+) N
£=0
k—3
=1+14+> N+ N(k-2)
£=0
= N(k—1)+ N(k—2)
= F(k+1)+ F(k) = F(k+2) O

5.2: Fibonacci Heaps (Analysis) TS. 11

Exponential Growth of Fibonacci Numbers

Lemma 19.3

For all integers k > 0, the (k+2)nd Fib. number satisfies F(k +2) > ¢,
where ¢ = (1 +/5)/2 = 1.61803.... ..

o 5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k +2) > ¢,]
where p = (1 ++/5)/2 =1.61803... .. y7

Fibonacci Numbers grow at
L least exponentially fast in k.

5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:

ol
* 5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
= Base k = 0: F(2) = 1and ©° =1

i
* 5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1

i
* 5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
= Base k = 1: F(8) =2and ¢' ~ 1.619 < 2

ol
5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v

i
5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):

F(k+2)=

5.2: Fibonacci Heaps (Analysis)

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):

F(k+2)=F(k+1)+ F(k)

5.2: Fibonacci Heaps (Analysis)

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):
F(k+2)=F(k+1)+ F(k)
> o R (by the inductive hypothesis)

i
5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):
F(k+2)=F(k+1)+ F(k)
> o R (by the inductive hypothesis)

= (o +1)

i
5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):

F(k+2)=F(k+1)+ F(k)

> of 1 pf 2 (by the inductive hypothesis)
=" (p+1)
=2 (P =p+1)

ol
* 5.2: Fibonacci Heaps (Analysis) TS. 12

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k+2)nd Fib. number satisfies F(k+2) > <pk,]
where ¢ = (1 +/5)/2 = 1.61803.... .. 7

(Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0: F(2)=1and ® =1
*Base k = 1: F(8) =2and ¢' ~ 1619 <2 v
= Inductive Step (k > 2):

F(k+2)=F(k+1)+ F(k)

> of 1 pf 2 (by the inductive hypothesis)
=" (p+1)

=2 (P =p+1)
= (pk D

ol
5.2: Fibonacci Heaps (Analysis) T.S. 12

Putting the Pieces Together

Amortized Analysis
= INSERT: amortized cost O(1)
= EXTRACT-MIN amortized cost O(d(n))
« DECREASE-KEY amortized cost O(1)

ol
5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~—— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN amortized cost O(d(n))
« DECREASE-KEY amortized cost O(1)

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~—— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN amortized cost O(d(n))
« DECREASE-KEY amortized cost O(1)

N(k) = F(k + 2)

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~—— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN amortized cost O(d(n))
« DECREASE-KEY amortized cost O(1)

N(k) = F(k +2) > ¢

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~—— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN amortized cost O(d(n))
« DECREASE-KEY amortized cost O(1)

n> N(k) = F(k +2) > o

5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~—— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN amortized cost O(d(n))
« DECREASE-KEY amortized cost O(1)

n> N(k) = F(k +2) > ¥
= Iogvnzk

2
o 5.2: Fibonacci Heaps (Analysis) TS.

Putting the Pieces Together

~—— Amortized Analysis
= INSERT: amortized cost O(1)

= EXTRACT-MIN amortized cost Otdr)) O(log n)
« DECREASE-KEY amortized cost O(1)

n> N(k) = F(k +2) > ¥
= Iogvnzk

2
o 5.2: Fibonacci Heaps (Analysis) TS.

What if we don’t have marked nodes?

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

ol
%E 5.2: Fibonacci Heaps (Analysis) TS.

What if we don’t have marked nodes?

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

®(H) = trees(H)

5.2: Fibonacci Heaps (Analysis) TS.

What if we don’t have marked nodes?

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

®(H) = trees(H)

e b

5.2: Fibonacci Heaps (Analysis) TS. 14

What if we don’t have marked nodes?

= INSERT: actual O(1)
* EXTRACT-MIN: actual O(trees(H) + d(n))
= DECREASE-KEY: actual O(1)

®(H) = trees(H)

=(7) (1) 9

5.2: Fibonacci Heaps (Analysis) TS.

What if we don’t have marked nodes?

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(1) amortized O(1)

®(H) = trees(H)

=(7) =(18) 9

5.2: Fibonacci Heaps (Analysis) TS. 14

What if we don’t have marked nodes?

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) # O(log n)
= DECREASE-KEY: actual O(1) amortized O(1)

®(H) = trees(H)

=(7) SOSRC)

5.2: Fibonacci Heaps (Analysis) TS. 14

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o(1) O(log n) O(log n) O(log n)

aD 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o(1) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) Ologn) |7 o)

DECREASE-KEY o) O(log n) Can we perform

EXTRACT-MIN in o(log n)?

DELETE o) O(log n) - -

I

I

aD 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap
MAKE-HEAP o) o) o) o)
INSERT o(1) O(log n) O(log n) o(1)
MINIMUM O(n) o) O(log n) o)
EXTRACT-MIN O(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) Ologn) |7 o)
DECREASE-KEY o) O(log n) Can we perform
EXTRACT-MIN in o(log n)?
DELETE o) O(log n) \— o — -

If this was possible, then there would be a
sorting algorithm with runtime o(nlog n)!

J

5.2: Fibonacci Heaps (Analysis)

TS.

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o(1) O(log n) O(log n) O(log n)

aD 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o(1) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o(1)

DELETE o(1) ralilaYaWa)l Allan n) %(Inn n\

[

Crucial for many applications including
shortest paths and minimum spanning trees!

]

aD 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o(1) O(log n) O(log n) O(log n)

aD 5.2: Fibonacci Heaps (Analysis)

TS.

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o(1) O(log n) O(log n) O(log n)

=

[DELETE = DECREASE-KEY + EXTRACT-MIN J

El
aD 5.2: Fibonacci Heaps (Analysis) TS. 15

Summary

Operation Linked list | Binary heap | Binomial heap | Fibon. heap

MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM O(n) o) O(log n) o)

EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o(1)
DECREASE-KEY o) O(log n) O(log n) o)

DELETE o(1) O(log n) O(log n) O(log n)

=

[DELETE = DECREASE-KEY + EXTRACT-MIN J

7\

[EXTRACT-MIN = MIN + DELETE J

5 5.2: Fibonacci Heaps (Analysis) TS. 15

Recent Studies of Fibonacci Heaps

= Fibonacci Numbers were discovered >800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

5 5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies of Fibonacci Heaps

= Fibonacci Numbers were discovered >800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies of Fibonacci Heaps

= Fibonacci Numbers were discovered =800 years ago

= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

= Queries to marked bits are intercepted and responded with a
random bit

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569,

g ey 5.2: Fibonacci Heaps (Analysis) TS.

2014)

Recent Studies of Fibonacci Heaps

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps
= achieves the same cost as Fibonacci Heaps, but actual costs!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)

= Queries to marked bits are intercepted and responded with a
random bit

= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies of Fibonacci Heaps

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps

= achieves the same cost as Fibonacci Heaps, but actual costs!

= Queries to marked bits are intercepted and responded with a

random bit
= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

= less efficient than the original Fibonacci heap

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569,

2014)

5.2: Fibonacci Heaps (Analysis) TS. 16

Recent Studies of Fibonacci Heaps

= Fibonacci Numbers were discovered =800 years ago
= Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Strict Fibonacci Heap:
= pointer-based heap implementation similar to Fibonacci Heaps

= achieves the same cost as Fibonacci Heaps, but actual costs!

= Queries to marked bits are intercepted and responded with a

random bit
= several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

= less efficient than the original Fibonacci heap

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569,

2014)

= marked bit is not redundant!

5.2: Fibonacci Heaps (Analysis) TS. 16

Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)

5.2: Fibonacci Heaps (Analysis)

TS.

Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(log log u)
MERGE/UNION o) -
DECREASE-KEY o) O(log log u)
DELETE O(log n) O(loglog u)
Succ - O(log log u)
PRED - O(log log u)
MAXIMUM - o)
A

[all this requires key values to be in a universe of size u!]

5.2: Fibonacci Heaps (Analysis)

TS.

	Glimpse at the Analysis
	Amortized Analysis
	Bounding the Maximum Degree

