
5.2 Fibonacci Heaps (Analysis)
Frank Stajano Thomas Sauerwald

Lent 2015

Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))

DECREASE-KEY: actual O(# cuts)  O(marks(H)) amortized O(1)

�(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

26

26

26

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps T.S. 18



Outline

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

5.2: Fibonacci Heaps (Analysis) T.S. 2



Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3



Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3



Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3



Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3



Amortized Analysis via Potential Method

INSERT: actual O(1)

amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H))

amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18

Lo
se

s
se

co
nd

ch
ild C

onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3



Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1)

X

EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))

?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H)) amortized O(1)

?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18
Lo

se
s

se
co

nd
ch

ild C
onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3



Amortized Analysis via Potential Method

INSERT: actual O(1) amortized O(1) X

EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) ?

DECREASE-KEY: actual O(# cuts) ≤ O(marks(H)) amortized O(1) ?

Φ(H) = trees(H)+2·marks(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

Lifecycle of a node

18

18

18
Lo

se
s

se
co

nd
ch

ild C
onsolidate

Loses first child

5.2: Fibonacci Heaps (Analysis) T.S. 3



Outline

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

5.2: Fibonacci Heaps (Analysis) T.S. 4



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) =

trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤

marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ

≤ O(x + 1) + 4− x = O(1)

Amortized Cost

Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ ≤ O(x + 1) + 4− x

= O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ ≤ O(x + 1) + 4− x = O(1)

Amortized Cost
Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of DECREASE-KEY

DECREASE-KEY: O(x + 1), where x is the number of cuts.

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

trees(H ′) = trees(H) + x

marks(H ′) ≤ marks(H)− x + 2

⇒ ∆Φ ≤ x + 2 · (−x + 2) = 4− x .

Change in Potential

7

24

26

52

17 23

30

18

21

35

39

5

c̃i = ci + ∆Φ ≤ O(x + 1) + 4− x = O(1)

Amortized Cost

Scale up potential units

First Coin ; pays cut
Second Coin ; increase of trees(H)

5.2: Fibonacci Heaps (Analysis) T.S. 5



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ? marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ? marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤

d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3

d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤

d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ

≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ ≤ O(trees(H) +d(n)) + d(n) + 1− trees(H)

= O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ ≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Amortized Analysis of EXTRACT-MIN

EXTRACT-MIN: O(trees(H) + d(n))

Actual Cost

Φ(H) = trees(H) + 2 ·marks(H)

marks(H ′) ≤ marks(H)

trees(H ′) ≤ d(n) + 1

⇒ ∆Φ ≤ d(n) + 1− trees(H)

Change in Potential

3

min

18 52 41

39 44

18 52 41

4439

degrees
0 1 2 3 d(n)

c̃i = ci + ∆Φ ≤ O(trees(H) +d(n)) + d(n) + 1− trees(H) = O(d(n))

Amortized Cost

How to bound d(n)?

5.2: Fibonacci Heaps (Analysis) T.S. 6



Outline

Glimpse at the Analysis

Amortized Analysis

Bounding the Maximum Degree

5.2: Fibonacci Heaps (Analysis) T.S. 7



Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

5.2: Fibonacci Heaps (Analysis) T.S. 8



Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

5.2: Fibonacci Heaps (Analysis) T.S. 8



Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

5.2: Fibonacci Heaps (Analysis) T.S. 8



Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

5.2: Fibonacci Heaps (Analysis) T.S. 8



Bounding the Maximum Degree

Every tree is a binomial tree⇒ d(n) ≤ log2 n.
Binomial Heap

d = 3, n = 23

Not all trees are binomial trees, but still d(n) ≤ logϕ n, where ϕ ≈ 1.62.
Fibonacci Heap

5.2: Fibonacci Heaps (Analysis) T.S. 8



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yky1 y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yky1 y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1

y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1

y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1

y2 y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2

y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2

y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2

y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2

y3 y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3

y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3

y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3

y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3

y4? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

? yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yk

y2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yk

y2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yk

y2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yk

y2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yk

y2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2

y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2

y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3

y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3

y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3 y4

yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3 y4

yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment

and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment
and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



Lower Bounding Degrees of Children

d(n) ≤ logϕ n

We will prove a stronger statement:
Any tree with degree k contains at least ϕk nodes.

Consider any node x of degree k (not necessarily a root) at the final state

Let y1, y2, . . . , yk be the children in the order of attachment
and d1, d2, . . . , dk be their degrees

⇒ ∀1 ≤ i ≤ k : di ≥ i − 2

x

y1 y2 y3 y4 yk

y1 y2 y3 y4

?

yky2 y3 y4 yk

5.2: Fibonacci Heaps (Analysis) T.S. 9



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1

= 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2

= 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3

= 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5

= 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8

= 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8

= 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8

= 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8

= 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Degrees to Minimum Subtree Sizes

x

y1 y2 y3 y4 yk

∀1 ≤ i ≤ k : di ≥ i − 2

Let N(k) be the minimum possible number of nodes of a subtree rooted
at a node of degree k .

Definition

N(0)

0

N(1)

1

0

N(2)

2

0 0

N(3)

3

0 0 1

0

N(4)

4

0 0 1 2

0 0 0

= 1 = 2 = 3 = 5 = 8 = 5 + 3

N(k) = F (k + 2)?

5.2: Fibonacci Heaps (Analysis) T.S. 10



From Minimum Subtree Sizes to Fibonacci Numbers

∀1 ≤ i ≤ k : di ≥ i − 2 N(k) = F (k + 2)?

N(k) =

1

1 N(2− 2) N(3− 2) N(k − 2)

N(k) = 1 + 1 + N(2− 2) + N(3− 2) + · · ·+ N(k − 2)

= 1 + 1 +
k−2∑
`=0

N(`)

= 1 + 1 +
k−3∑
`=0

N(`) + N(k − 2)

= N(k − 1) + N(k − 2)

= F (k + 1) + F (k) = F (k + 2)

5.2: Fibonacci Heaps (Analysis) T.S. 11



From Minimum Subtree Sizes to Fibonacci Numbers

∀1 ≤ i ≤ k : di ≥ i − 2 N(k) = F (k + 2)?

N(k) =

1

1 N(2− 2) N(3− 2) N(k − 2)

N(k) = 1 + 1 + N(2− 2) + N(3− 2) + · · ·+ N(k − 2)

= 1 + 1 +
k−2∑
`=0

N(`)

= 1 + 1 +
k−3∑
`=0

N(`) + N(k − 2)

= N(k − 1) + N(k − 2)

= F (k + 1) + F (k) = F (k + 2)

5.2: Fibonacci Heaps (Analysis) T.S. 11



From Minimum Subtree Sizes to Fibonacci Numbers

∀1 ≤ i ≤ k : di ≥ i − 2 N(k) = F (k + 2)?

N(k) =

1

1 N(2− 2) N(3− 2) N(k − 2)

N(k) = 1 + 1 + N(2− 2) + N(3− 2) + · · ·+ N(k − 2)

= 1 + 1 +
k−2∑
`=0

N(`)

= 1 + 1 +
k−3∑
`=0

N(`) + N(k − 2)

= N(k − 1) + N(k − 2)

= F (k + 1) + F (k) = F (k + 2)

5.2: Fibonacci Heaps (Analysis) T.S. 11



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1

X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1

X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1

X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1

X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2

X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X

Inductive Step (k ≥ 2):

F (k + 2) =

F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X

Inductive Step (k ≥ 2):

F (k + 2) = F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X

Inductive Step (k ≥ 2):

F (k + 2) = F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X

Inductive Step (k ≥ 2):

F (k + 2) = F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X

Inductive Step (k ≥ 2):

F (k + 2) = F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Exponential Growth of Fibonacci Numbers

For all integers k ≥ 0, the (k + 2)nd Fib. number satisfies F (k + 2) ≥ ϕk ,
where ϕ = (1 +

√
5)/2 = 1.61803 . . ..

Lemma 19.3

Fibonacci Numbers grow at
least exponentially fast in k .

ϕ2 = ϕ + 1

Proof by induction on k :

Base k = 0: F (2) = 1 and ϕ0 = 1 X

Base k = 1: F (3) = 2 and ϕ1 ≈ 1.619 < 2 X

Inductive Step (k ≥ 2):

F (k + 2) = F (k + 1) + F (k)

≥ ϕk−1 + ϕk−2 (by the inductive hypothesis)

= ϕk−2 · (ϕ + 1)

= ϕk−2 · ϕ2 (ϕ2 = ϕ + 1)

= ϕk

5.2: Fibonacci Heaps (Analysis) T.S. 12



Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN amortized cost O(d(n))

DECREASE-KEY amortized cost O(1)

Amortized Analysis

n ≥

N(k)

= F (k + 2) ≥ ϕk

⇒

logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13



Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN amortized cost O(d(n))

DECREASE-KEY amortized cost O(1)

Amortized Analysis

n ≥

N(k)

= F (k + 2) ≥ ϕk

⇒

logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13



Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN amortized cost O(d(n))

DECREASE-KEY amortized cost O(1)

Amortized Analysis

n ≥

N(k) = F (k + 2)

≥ ϕk

⇒

logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13



Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN amortized cost O(d(n))

DECREASE-KEY amortized cost O(1)

Amortized Analysis

n ≥

N(k) = F (k + 2) ≥ ϕk

⇒

logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13



Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN amortized cost O(d(n))

DECREASE-KEY amortized cost O(1)

Amortized Analysis

n ≥ N(k) = F (k + 2) ≥ ϕk

⇒

logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13



Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN amortized cost O(d(n))

DECREASE-KEY amortized cost O(1)

Amortized Analysis

n ≥ N(k) = F (k + 2) ≥ ϕk

⇒ logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13



Putting the Pieces Together

INSERT: amortized cost O(1)

EXTRACT-MIN amortized cost���
��XXXXXO(d(n)) O(log n)

DECREASE-KEY amortized cost O(1)

Amortized Analysis

n ≥ N(k) = F (k + 2) ≥ ϕk

⇒ logϕ n ≥ k

5.2: Fibonacci Heaps (Analysis) T.S. 13



What if we don’t have marked nodes?

INSERT: actual O(1)

amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1)

amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14



What if we don’t have marked nodes?

INSERT: actual O(1)

amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1)

amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14



What if we don’t have marked nodes?

INSERT: actual O(1)

amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1)

amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14



What if we don’t have marked nodes?

INSERT: actual O(1)

amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n))

amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1)

amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14



What if we don’t have marked nodes?

INSERT: actual O(1) amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))

6= O(log n)

DECREASE-KEY: actual O(1) amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14



What if we don’t have marked nodes?

INSERT: actual O(1) amortized O(1)

EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n)) 6= O(log n)

DECREASE-KEY: actual O(1) amortized O(1)

Φ(H) = trees(H)

7

24 17 23

26 46 30

35

18

21

52

39

38

41

5.2: Fibonacci Heaps (Analysis) T.S. 14



Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform
EXTRACT-MIN in o(log n)?

If this was possible, then there would be a
sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15



Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform
EXTRACT-MIN in o(log n)?

If this was possible, then there would be a
sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15



Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform
EXTRACT-MIN in o(log n)?

If this was possible, then there would be a
sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15



Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform
EXTRACT-MIN in o(log n)?

If this was possible, then there would be a
sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15



Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform
EXTRACT-MIN in o(log n)?

If this was possible, then there would be a
sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15



Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform
EXTRACT-MIN in o(log n)?

If this was possible, then there would be a
sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15



Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform
EXTRACT-MIN in o(log n)?

If this was possible, then there would be a
sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15



Summary

Operation Linked list Binary heap Binomial heap Fibon. heap

MAKE-HEAP O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1)

MINIMUM O(n) O(1) O(log n) O(1)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

UNION O(n) O(n) O(log n) O(1)

DECREASE-KEY O(1) O(log n) O(log n) O(1)

DELETE O(1) O(log n) O(log n) O(log n)

DELETE = DECREASE-KEY + EXTRACT-MIN

EXTRACT-MIN = MIN + DELETE

Crucial for many applications including
shortest paths and minimum spanning trees!

Can we perform
EXTRACT-MIN in o(log n)?

If this was possible, then there would be a
sorting algorithm with runtime o(n log n)!

5.2: Fibonacci Heaps (Analysis) T.S. 15



Recent Studies of Fibonacci Heaps

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)

5.2: Fibonacci Heaps (Analysis) T.S. 16



Recent Studies of Fibonacci Heaps

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)

5.2: Fibonacci Heaps (Analysis) T.S. 16



Recent Studies of Fibonacci Heaps

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)

5.2: Fibonacci Heaps (Analysis) T.S. 16



Recent Studies of Fibonacci Heaps

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)

5.2: Fibonacci Heaps (Analysis) T.S. 16



Recent Studies of Fibonacci Heaps

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)

5.2: Fibonacci Heaps (Analysis) T.S. 16



Recent Studies of Fibonacci Heaps

Fibonacci Numbers were discovered >800 years ago

Fibonacci Heaps were developed by Fredman and Tarjan in 1984

Strict Fibonacci Heap:

pointer-based heap implementation similar to Fibonacci Heaps

achieves the same cost as Fibonacci Heaps, but actual costs!

Brodal, Lagogiannis, Tarjan: Strict Fibonacci Heap, (STOC’12)

Queries to marked bits are intercepted and responded with a
random bit

several lower bounds on the amortized cost in terms of the size of
the heap and the number of operations

⇒ less efficient than the original Fibonacci heap

⇒ marked bit is not redundant!

Li, Peebles: Replacing Mark Bits with Randomness in Fibonacci Heap, (Arxive:1407.2569, 2014)

5.2: Fibonacci Heaps (Analysis) T.S. 16



Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap Van Emde Boas Tree

amortized cost actual cost

INSERT O(1) O(log log u)

MINIMUM O(1) O(1)

EXTRACT-MIN O(log n) O(log log u)

MERGE/UNION O(1) -

DECREASE-KEY O(1) O(log log u)

DELETE O(log n) O(log log u)

SUCC - O(log log u)

PRED - O(log log u)

MAXIMUM - O(1)

all this requires key values to be in a universe of size u!

5.2: Fibonacci Heaps (Analysis) T.S. 17



Outlook: A More Efficient Priority Queue for fixed Universe

Operation Fibonacci heap Van Emde Boas Tree

amortized cost actual cost

INSERT O(1) O(log log u)

MINIMUM O(1) O(1)

EXTRACT-MIN O(log n) O(log log u)

MERGE/UNION O(1) -

DECREASE-KEY O(1) O(log log u)

DELETE O(log n) O(log log u)

SUCC - O(log log u)

PRED - O(log log u)

MAXIMUM - O(1)

all this requires key values to be in a universe of size u!

5.2: Fibonacci Heaps (Analysis) T.S. 17


	Glimpse at the Analysis
	Amortized Analysis
	Bounding the Maximum Degree

