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Use of Amortized Analysis

__ [el ol Fe 9 [

NCEERCEE R EIEACEE RN GCED
PUSH(T) PUSH(B) PUSH(X)  POP  PUSH(D) MULTIPOP(3)

Amortized Analysis

next week
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Motivating Example: Stack

Stack Operations
* PUSH (S, X)
= pushes object x onto stack S
P ) \/
PUSH(S,X)
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= pops the top of (a non-empty) stack S

[X]
I

POP(S)

B
g

5.1: Amortized Analysis TS. 3



Motivating Example: Stack

Stack Operations
* PUSH (S, X)
= pushes object x onto stack S
= total cost of 1 M
= POP (S) (S,X)

= pops the top of (a non-empty) stack S

= total cost of 1 .
NEiD

POP(S)

B
g

)
oy 5.1: Amortized Analysis TS. 3



Motivating Example: Stack

Stack Operations
* PUSH (S, X)
= pushes object x onto stack S
= total cost of 1 M
= POP (S) (S,X)

= pops the top of (a non-empty) stack S

= total cost of 1 .
= MULTIPOP (S, k) \._/

POP(S)

B
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1

= POP (S)

= pops the top of (a non-empty) stack S
= total cost of 1

= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
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Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}
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Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}
N

\

: MULTIPOP (S, k)

: while not S.empty() andk >0
POP (S)

k=k-1
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

What is the largest possible cost of
a sequence of n stack operations
(starting from an empty stack)?
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

What is the largest possible cost of
a sequence of n stack operations
(starting from an empty stack)?

[\

A

Simple Worst-Case Bound (stack is initially empty):

= largest cost of an operation: n
= cost is at most n- n= n?
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Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

What is the largest possible cost of
a sequence of n stack operations
(starting from an empty stack)?

[\

A

Simple Worst-Case Bound (stack is initially empty):
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

o

B
BE
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BE
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=
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Sequence of Stack Operations
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Sequence of Stack Operations
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Sequence of Stack Operations
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A new Analysis Tool: Amortized Analysis

Amortized Analysis

= analyse a sequence of operations

ol
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A new Analysis Tool: Amortized Analysis

[ Data structure operations (Heap, Stack, Queue etc.) ]

Amortized Analysis V//
= analyse a sequence of operations

ol
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Amortized Analysis

= analyse a sequence of operations
= show that average cost of an operation is small
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A new Analysis Tool: Amortized Analysis

Amortized Analysis
= analyse a sequence of operations

= show that average cost of an operation is small

This is not average case analysis! ]

7

ol
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Amortized Analysis

= analyse a sequence of operations

= show that average cost of an operation is small
= concrete techniques
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= analyse a sequence of operations
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A new Analysis Tool: Amortized Analysis

~——— Amortized Analysis

= analyse a sequence of operations

= show that average cost of an operation is small
= concrete techniques

= Aggregate Analysis
= Potential Method

——— Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations

= amortized cost of each operation is the average @
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A new Analysis Tool: Amortized Analysis

~——— Amortized Analysis N
= analyse a sequence of operations
= show that average cost of an operation is small

= concrete techniques
= Aggregate Analysis
= Potential Method

——— Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations

= amortized cost of each operation is the average T(n)

/.
/[
[ Even though operations may be of different types/costs ]
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

-
~__"
MULTIPOP(3)
[ Every item which is POPPED from ]

the stack had to be PUSHED earlier!
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Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

PUSH(B) MULTIPOP(3)

Every item which is POPPED from
the stack had to be PUSHED earlier!
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[ Every item which is POPPED from ]
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + TeusH(N)
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

-
N N
PUSH(B) MULTIPOP(3)

[ MULTIPOP(k) contributes min{k, |S|} to Teop(n) ]

T(n) < Tpop(n) + TeusH(N)
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Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

PUSH(B) MULTIPOP(3)

T(n) < Tpop(n) + TeusH(n) < 2- TpysH(n) < 2 n.
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Stack: Aggregate Analysis

Simple Worst-Case Bound:
= largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

N

PUSH(B) MULTIPOP(3)

[ Aggregate Analysis: The amortized cost per operation is ”) <2 ]

N\

A\
T(n) < Tpop(n) + TeusH(n) < 2- TpysH(n) < 2 n.

(57 5.1: Amortized Analysis TS. 6
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Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure
to cover up for expensive operations
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Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure

to cover up for expensive operations
N

A

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state
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Second Technique: Potential Method

Potential Method

= allow different amortized costs

~ store (fictitious) credit in the data structure

to cover up for expensive operations
N

A

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state
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Stack as a coin-operated machine (p. 83)
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Stack and Coins
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= ¢; is the actual cost of operation i
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= ¢; is the actual cost of operation i
= ¢; is the amortized cost of operation i
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Potential Method in Detail

( ¢ < Gi, ¢ = G or ¢; > ¢ are all possible! ]

A\
= ¢; is the actual cost of operation i pZ
= C; is the amortized cost of operation /

Sl
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Potential Method in Detail

= ¢; is the actual cost of operation i
= ¢; is the amortized cost of operation i
= ®; is the potential stored after operation i ($o = 0)
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Potential Method in Detail

= ¢; is the actual cost of operation i
= C; is the amortized cost of operation /

= ®; is the potential stored after operation i ($o = 0)
N\

1\
[ Function that maps states of the 1

data structure to some value
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Potential Method in Detail

= ¢; is the actual cost of operation i
= ¢; is the amortized cost of operation i
= ®; is the potential stored after operation i ($o = 0)
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Potential Method in Detail

= ¢; is the actual cost of operation i
= C; is the amortized cost of operation /
= &, is the potential stored after operation i (¢ = 0)

\ J
e D
Ci=Ci+ (i — di_v)

- J

n n
dG=> (c+oi—biy)
= =
n
- Z Ci+ bp — ¢0
i=1f\

If ®, > 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)

¥
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)

PUSH

)
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)
PUSH
= actual cost: ¢; = 1 O
B O
o 0O
I
~—

PUSH
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) J
PUSH i
= actual cost: ¢; = 1 O .
. O O
= potential change: ¢, — ¢,y = 0 o
NEPENER
~— =1

PUSH
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Stack: Analysis via Potential Method
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= actual cost: ¢; = 1 - B e
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)
PUSH
= actual cost: ¢; = 1 O
. o O
= potential change: ®; — ®;_¢ =1 o O
i a I
= amortized cost: ¢; =
~—
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)
PUSH
= actual cost: ¢; = 1 O
. o O
= potential change: ®; — ®;_¢ =1 o O
= amortized cost: G = ¢+ (®; — ®;_1) = Ko
16 =G+ ( i 1—1) = ~_

PUSH
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) J
PUSH o,
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_¢ =1 o O
i = I
= amortized cost: ¢;=cCi+ (¢i—di_) =1+1=2 <A PR

PUSH
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins)
PUSH .
= actual cost: ¢ = 1 O
. O 0
= potential change: ®; — ®;_¢ =1 o O
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 Lo
Ui =4 i i—1) = = ~_
o PUSH

POP \
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Stack: Analysis via Potential Method

(

®; = # objects in the stack after ith operation (= # coins)

PUSH

r

actual cost: ¢; = 1

potential change: ®; — ®;_1 =1
amortized cost: G = ¢+ (¢ —di_1) =1+1=2

POP

ci=1

o
( Fooo

PUSH

oo
( tm

®
e

i—1 i
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) J
PUSH Y ®i
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_; = 1 H H
= amortized cost: ¢ = i+ (¢ — ®i_1) =1+1=2 ~_ N
7 PUSH
POP Y i
= C= 1 °
O
"0 -0 = g o
a0 40 9192
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) J
PUSH Y ®i
= actual cost: ¢; = 1 - B e
= potential change: ®; — ®;_¢ =1 H H
= amortized cost: C; = ¢+ (¢, — Pi_1) =1+1=2 ~_ il
~/ PUSH
POP Y i
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O
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Stack: Analysis via Potential Method

( ®; = # objects in the stack after ith operation (= # coins) J
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Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2],. .., A[0] of k bits

¥

A[BJAl2]A[1] A[0]

[ o] 11 [1]
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Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2],...., A[0] of k bits
= Use array for counting from 0 to 2% — 1
= only operation: INC

¥

A[BJAl2]A[1] A[0]
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Second Example: Binary Counter

Binary Counter

« Array Ak — 1], Alk — 2],...., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC
= increases the counter by one

¥

A[BJAl2]A[1] A[0]

ENCIREIRET AN

INC

)
g 5.1: Amortized Analysis TS.



Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC
= increases the counter by one

A[3] A[2] A[1] A[O]

[ [o] T[]

INC

A[B]Al2]A[1] A[C]

(][] (o] [o] 12

)
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Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC
= increases the counter by one

INC (A)

i=0

while i <k andA[i]==
A[i] =0
i=i+1

A[i] =1

Udx W N KE O

A[3] A[2] A[1] A[O]

(] [o] 1] [1]

INC

A[B]Al2]A[1] A[C]

(1] [1] o] [o]

5.1: Amortized Analysis
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Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

- only operation: INC A[3]A[2]A[1]A[O]

o ot 71 O el

INC (3) INC
=
while i <k and A[i]==
etk ABIARIAI1] L)

i=i+1 @@

A[i] =1

Udx W N KE O
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Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= fotal cost: < k

/]
7 |
0: INC(A)
1: i=0
2: whilei<kandA[i]==
3: A[i] =0
4: i=i+1
5: A[i]l =1

A[3] A[2] A[1] A[O]

(] [o] 1] [1]
INC
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Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

i=i+1 @@

A[i] =1

= only operation: INC A[3]A[2]A[1]A[O]
= increases the counter by one
= total cost: number of flips (smallest index of @
a zero)
7 |
0: INC(A) ING
1: i=0
2: whilei<kandA[i]== AMTA
s Al o Al3] Al2] A[1] A[0]
4:
5:
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Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= total cost: number of flips (smallest index of
a zero)

What is the total cost of a se-
quence of n INC operations?
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Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1
= only operation: INC

= increases the counter by one

= total cost: number of flips (smallest index of
a zero)

What is the total cost of a se-

quence of n INC operations?
N

Simple Worst-Case Bound:
= largest cost of an operation: k
= cost is at most n- k

A[3] A[2] A[1] A[O]
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INC
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Second Example: Binary Counter

Binary Counter

= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1
= only operation: INC

= increases the counter by one

= total cost: number of flips (smallest index of
a zero)

What is the total cost of a se-

quence of n INC operations?
N

Simple Worst-Case Bound:
= largest cost of an operation: k
= cost is at most n - k (correct, but not tight!)

A[3] A[2] A[1] A[O]

[ [o] T[]

INC

A[3] A[2] A[1] A[0]

(][] (o] [o] 12

i
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Incrementing a Binary Counter

o
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Counterl 71 ] Als] AW ARl A2l ANl Al | 0@

Value Cost

0 0 0 0 0 0 0 0 0 0
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Incrementing a Binary Counter

Total

Cost

10

11

15
16
18
19
22
23
25
26
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Al0]

All]
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Al7]
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Incrementing a Binary Counter

Total

Cost

10

11

15
16
18
19
22
23
25
26
31

Al0]

All]
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Al4]

Al5]

Ale]

Al7]

Counter

Value

10

11
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TS.
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Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

ol
* 5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter A A2l Al :A[O]: Total
Value . 1| Cost
0 o 0o o0 ;o 0
1 0 0 0
2 0o o 110 8
3 0 0 11 4
4 0 1 0o 10, 7
5 0o 1 0 1! 8
6 o 1 1 .0 10
7 0 1 1 1

T

ol
%E 5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter A3 A2 :A[1]: A[0] Total
Value . I Cost
0 0o 0 ;0 0 0
1 0 0 10 1
2 0 0 "1, 3
3 0 0 Do 4
4 0 1 10, 0 7
5 0 1 10! 1 8
6 o 1 .1' 0 10
7 0 H W 11
| E—

ol
%E 5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter Al3) 'rA[2]: All] A[O] Total
Value . I Cost
0 0o ;o 0 0 0
1 0 10 0 1 1
2 0 10 1 0 3
3 0 1o Do 1 4
4 0 1, 0 0 7
5 0o 1! 0 1 8
6 0o .1 1 0 10
7 0 1! 1 1 11

| Ep————

ol
%E 5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter :A[S] ! A2 A1) A[O] Total
Value |, I Cost
o [[or 0o o 0 0
1 por 0 0 1
2 o, o0 1 0 3
3 10, 0 1 1 4
4 ol 1 o 0 7
5 o' o1 0o 1 8
6 o' 1 1 0 10
7 oA 1 1 11
| E——

ol
%E 5.1: Amortized Analysis TS.



Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[i] is only flipped every 2’ increments

ol
* 5.1: Amortized Analysis TS.
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Counter A8l A2l Afl AD] Total
Value Cost
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4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[i] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[f] is flipped | 7| times
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Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[i] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[f] is flipped | 7| times

T(n) < TZ—_; EJ
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Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[i] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[f] is flipped | 7| times

A
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Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit A[i] is only flipped every 2’ increments
= In a sequence of nincrements from 0, bit A[f] is flipped | 7| times

A

S i 24

in 11
—=n-(14+=4+—=4---
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Incrementing a Binary Counter: Aggregate Analysis

Counter A8l A2l Afl AD] Total
Value Cost
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 3
3 0 0 1 1 4
4 0 1 0 0 7
5 0 1 0 1 8
6 0 1 1 0 10
7 0 1 1 1 11

= Bit Alil is onlv flipped every 2’ increments
Aggregate Analysis: The amortized cost per operation is @ < 2.]

5.1: Amortized Analysis TS.
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Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

L Po=0v & >0 J

Increment without Carry-Over 1100
= actual cost: ¢; = 1 l
. INC
= potential change: ¢, — ¢,y =

1101
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Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

4
L O =0v & >0V J
Increment without Carry-Over 1100 i
= actual cost: ¢; = 1 lINC e
= potential change: ¢; — ®;_y =1
1101 i—1i
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Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

4
L P =0v & >0V J
Increment without Carry-Over 1100 i
= actual cost: ¢; = 1 lINC e
= potential change: ¢; — ®;_y =1
» amortized cost: G = 1101 i=1i
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Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

J
L O =0v & >0V J
®;

~——— Increment without Carry-Over \ 1100

= actual cost: ¢; = 1 lINC e

= potential change: ¢; — ®;_y =1

= amortized cost: G = ¢+ (&; — D, 1) =1+1=2 1101 =1
~——— Increment with Carry-Over N
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Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

L Po=0v & >0 J

~——— Increment without Carry-Over

= actual cost: ¢; = 1
= potential change: ¢; — ®;_y =1

= amortized cost: ¢; = ¢+ (¢ — Di_1) =1+1=2

~

~——— Increment with Carry-Over
= ¢; = x + 1, (x lowest index of a zero)

1100

me

1101

0111

b;

5.1: Amortized Analysis

TS.
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Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

4
L O =0v & >0V J
~——— Increment without Carry-Over \ 1100 @
= actual cost: ¢; = 1 lINC e
= potential change: ¢; — ®;_y =1
= amortized cost: G = ¢+ (®; —d; ) =14+1=2 1101 =i
~——— Increment with Carry-Over N 011 1
= ¢; = x + 1, (x lowest index of a zero)
lINC
1000
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Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

4
L O =0v & >0V J

~——— Increment without Carry-Over \ 1100 @

= actual cost: ¢; = 1 lINC e

= potential change: ¢; — ®;_y =1

= amortized cost: G = ¢+ (®; —d; ) =14+1=2 1101 f=1i
~——— Increment with Carry-Over N 011 1 b;

= ¢; = x + 1, (x lowest index of a zero) .

=P — P = lINC

1000 i—1
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~——— Increment without Carry-Over

Binary Counter: Analysis via Potential Function

= actual cost: ¢; = 1
= potential change: ¢; — ®;_y =1
= amortized cost: ¢; = ¢+ (¢ — Di_1) =1+1=2

~——— Increment with Carry-Over N

= ¢; = x + 1, (x lowest index of a zero)
=P - =—x+1

®; = # ones in the binary representation of
N

L Po=0v & >0 J

1100

me

1101

0111

me

1000
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~——— Increment without Carry-Over

Binary Counter: Analysis via Potential Function

= actual cost: ¢; = 1
= potential change: ¢; — ®;_y =1
= amortized cost: ¢; = ¢+ (¢ — Di_1) =1+1=2

~——— Increment with Carry-Over N

= ¢; = x + 1, (x lowest index of a zero)
=P - =—x+1
"=+ (P - i) =

®; = # ones in the binary representation of
N

L Po=0v & >0 J

1100

me

1101

0111

me

1000

5.1: Amortized Analysis TS.
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~——— Increment without Carry-Over

Binary Counter: Analysis via Potential Function

= actual cost: ¢; = 1
= potential change: ¢; — ®;_y =1
= amortized cost: ¢; = ¢+ (¢ — Di_1) =1+1=2

~——— Increment with Carry-Over N

= ¢; = x + 1, (x lowest index of a zero)
=P - =—x+1
" C=C+ (P —diq)=1+x—x+1

®; = # ones in the binary representation of
N

L Po=0v & >0 J

1100

me

1101

0111

me

1000
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~——— Increment without Carry-Over

Binary Counter: Analysis via Potential Function

= actual cost: ¢; = 1
= potential change: ¢; — ®;_y =1
= amortized cost: ¢; = ¢+ (¢ — Di_1) =1+1=2

~——— Increment with Carry-Over N

= ¢; = x + 1, (x lowest index of a zero)
=P - =—x+1
= a:Cf+(¢/—¢/,1):1+X—X+1 =2

®; = # ones in the binary representation of
N

L Po=0v & >0 J

1100

me

1101

0111

me

1000

5.1: Amortized Analysis TS.
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~——— Increment without Carry-Over

Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

L Po=0v & >0

J

= actual cost: ¢; = 1
= potential change: ¢; — ®;_y =1
= amortized cost: ¢; = ¢+ (¢ — Di_1) =1+1=2

~——— Increment with Carry-Over

= ¢; = x + 1, (x lowest index of a zero)
=P - =—x+1
= a:Cf+(¢/—¢/,1):1+X—X+1 =2

1100

me

1101

SASAS)
0111

lINC @

1000
S

b;

b;

5.1: Amortized Analysis TS.

-

i1

N\

i—1i



~——— Increment without Carry-Over

Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

L Po=0v & >0

J

= actual cost: ¢; = 1
= potential change: ¢; — ®;_y =1
= amortized cost: ¢; = ¢+ (¢ — Di_1) =1+1=2

~——— Increment with Carry-Over

= ¢; = x + 1, (x lowest index of a zero)
=P - =—x+1
= a:Cf+(¢/—¢/,1):1+X—X+1 =2

1100

me

1101

SASAS)
0111

lINC @

1000
S

b;

b;

5.1: Amortized Analysis TS.
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Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

L Po=0v & >0 J

~——— Increment without Carry-Over

Amortized Cost =2 = T(n) < 2n
= actual cost: ¢; = 1

= potential change: ¢; — ®;_y =1 v :
-amortizedcost:c?,:c,-+(d>,—¢,_1):1+1:2J 1101 i—1i

SESAS)
~——— Increment with Carry-Over 0111 b;
= ¢; = x + 1, (x lowest index of a zero)
O, —®_=—x+1 lINC@ \
" G=C+ (P - q)=1+x—x+1=2 1000 -1
©
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Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

5
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Summary

Amortized Analysis

= Average costs over a sequence of n operations

= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

E.g. by bounding the number of expensive operations

Aggregate Analysis ;/
= Determine an absolute upper bound T(n)
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Summary

Amortized Analysis
= Average costs over a sequence of n operations

= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

Aggregate Analysis

= Determine an absolute upper bound T(n)

= every operation has amortized cost @

7 [TTTTT]

ol
5.1: Amortized Analysis TS.



Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)
i i T(n
= every operation has amortized cost @ (n) D:I:I:D:I
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Summary

Amortized Analysis

= Average costs over a sequence of n operations

= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

Aggregate Analysis

= Determine an absolute upper bound T(n)

= every operation has amortized cost @

M

Potential Method

» use savings from cheap operations to
compensate for expensive ones

7 [TTTTT]
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Summary

Amortized Analysis

= Average costs over a sequence of n operations

= overcharge cheap operations and undercharge expensive operations

= no probability/average case analysis involved!

Aggregate Analysis

= Determine an absolute upper bound T(n)

= every operation has amortized cost @

M

Potential Method

» use savings from cheap operations to
compensate for expensive ones

7 [TTTTT]
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s
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SE

5.1: Amortized Analysis TS.



Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

. . T(n
every operation has amortized cost @ (")
o [T T[]
Potential Method

» use savings from cheap operations to credit
compensate for expensive ones /,/'\,/
= operations may have different amortized cost i

i
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Summary

Amortized Analysis
= Average costs over a sequence of n operations
= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

Aggregate Analysis
= Determine an absolute upper bound T(n)

. . T
= every operation has amortized cost @ (n) D:D:D:I
[ Full power of this method will become clear later! j T(n) Dj:l]:l]

Potential Method \ .
= use savings from cheap operations to credit

compensate for expensive ones /\,/
= operations may have different amortized cost i

i
5.1: Amortized Analysis TS. 16




Next Lecture: Fibonacci Heap

DELETE

Operation Binomial heap
worst-case cost
MAKE-HEAP o)

INSERT O(log n)
MINIMUM O(log n)
EXTRACT-MIN O(log n)
UNION O(log n)
DECREASE-KEY O(log n)
(logn)

5.1: Amortized Analysis

TS.



Next Lecture: Fibonacci Heap

Operation Binomial heap | Fibonacci heap
worst-case cost | amortized cost
MAKE-HEAP 0(1) 0(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
UNION O(log n) 0(1)
DECREASE-KEY O(log n) 0(1)
DELETE O(log n) O(log n)
/

Crucial for many applications including
shortest paths and minimum spanning trees!
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