5.1: Amortized Analysis

Frank Stajano Thomas Sauerwald

Lent 2015

Motivating Example: Stack

[UNIVERSITY OF
¥ CAMBRIDGE

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)

= pops the k top objects (S non-empty)
= total cost of min{|S|, k}

What is the largest possible cost of
a sequence of n stack operations?

N
\

Simple Worst-Case Bound:
= |argest cost of an operation: n

= cost is at most n- n = n? (correct, but not tight!)

BEE

[X]
Ny

~_ "

PUSH(S,X)

[X]
Ny

POP(S)

g
B

B
g

—

~_ "

MULTIPOP(S,4)

S Y
5.1: Amortized Analysis TS.

Motivating Example: Stack

Stack Operations

= PUSH (S, x)
= pushes object x onto stack S
= total cost of 1
= POP (S)
= pops the top of (a non-empty) stack S
= total cost of 1
= MULTIPOP (S, k)
= pops the k top objects (S non-empty)
= total cost of min{|S|, k}
N

B
BB

N~

PUSH(S,X)

BB
B

\ POP(S)

0: MULTIPOP (S, k)

1: while not S.empty () andk >0

2: POP (S)

3: k=k-1

N—
_/
MULTIPOP(S,4)

[l
Sl 5.1: Amortized Analysis TS. 2

Sequence of Stack Operations

//_/\/\/\/

PUSH(T) PUSH(B) PUSH(X POP PUSH(D)

MULTIPOP(3)

S
E;E 5.1: Amortized Analysis TS.

A new Analysis Tool: Amortized Analysis

[Data structure operations (Heap, Stack, Queue etc.)]

Amortized Analysis V//
= analyse a sequence of operations

= show that average cost of an operation is small
= concrete techniques

* Aggregate Analysis| Thig js not average case analysis!]

= Potential Method

7

Aggregate Analysis

= Determine an upper bound T(n) for the total cost of
any sequence of n operations

= amortized cost of each operation is the average @

.
/1l
[Even though operations may be of different types/costs]

5.1: Amortized Analysis T.S. 4

YR

Aggregate Analysis of the STACK

Aggregate Analysis of the STACK

Simple Worst-Case Bound:
= |argest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

Simple Worst-Case Bound:
= |largest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

PUSH(B) MULTIPOP(3)

[MULTIPOP(k) contributes min{, |S|} to Trop(n)]

T(n) < Tpop(N) + TeuskH(N)

S Y
5.1: Amortized Analysis TS. 5

N] PN

MULTIPOP(3)
[Every item which is POPPED from J

the stack had to be PUSHED earlier!

Gl 5.1: Amortized Analysis TS.

Aggregate Analysis of the STACK

Simple Worst-Case Bound:
= |argest cost of an operation: n
= cost is at most n- n = n? (correct, but not tight!)

PUSH(B) MULTIPOP(3)

o q .. T(n)
[Aggregate Analysis: The amortized cost per operation is T"

=)

\
T(n) < Tpop(n) + Tpusk(n) < 2- Tpysn(n) < 2 1.

S Y
%;E 5.1: Amortized Analysis TS.

Second Technique: Potential Method

Stack as a coin-operated machine (p. 83)

Yov w7 O 11“
Potential Method INGRLT A DIN
= allow different amortized costs To OPERATE THE
MACHINE Fol
EA(H SINGlWE
PUSH oft Pob

Potential of a data structure can be
also thought of as

= amount of potential energy stored
= distance from an ideal state

EACH (TeT on

(. THE STAC WAS
\AN ADDITIONAL
DN TAED To (T

~ store (fictitious) credit in the data structure
to cover up for expensive operations
N

I+ Ytou Po?
Tie 1en, Yov
GET TO weed TE Coiw

BT If You Pusk AN
TN, Yov AUST

o~ L | froviee e con

JOE -

5.1: Amortized Analysis TS.

5.1: Amortized Analysis TS.

Stack and Coins

Potential Method in Detail

(Ci < Ci, ¢ = C;or ¢ > ¢ are all possible!]
A
Xo Do = ¢; is the actual cost of operation i Z
Bo Bo BoS Be = ¢ is the amortized cost of operation i
[To] To To To To = &, is the potential stored after operation i (¢o = 0)
NCEP N GCEE R GCE RN R RGCED I\
PUSH(T) ~ PUSH(B) PUSH(X) { POP PUSH(D) MULTIPOP(3) Function that maps states of the
) - data structure to some value
[Every operation costs at most two coins!]
credit
3 4
24 /
| / .
} } } } } ¢ I
0 1 2 3 4 5 6
@:@ 5.1: Amortized Analysis TS.

8 E:? 5.1: Amortized Analysis TS.

Potential Method in Detail

Vs

= ¢; is the actual cost of operation i

= ¢ is the amortized cost of operation i

= ®; is the potential stored after operation i (o = 0)

Ci=Ci+ (P —®i_1)

A
/\

= PUSH(): ¢; =1
= POP: ¢ =1

5.1: Amortized Analysis

Potential Method in Detail

TS.

(. c; is the actual cost of operation i
= C; is the amortized cost of operation i
= @, is the potential stored after operation i (o = 0)
.
(
Ci=Ci+ (P —®i_1)
.

g
(o -dor®—0i+ - r0—0,, |

n n
ZE/ = Z (ci+d—diq)
P

i=1
n
= Z ci+ ®¢p
i=1
/\

[

If &, > 0 for all n, sum of amortized costs is
an upper bound for the sum of actual costs!

)

Potential Method in Detail

4)
= ¢; is the actual cost of operation i

= C; is the amortized cost of operation i
= ®; is the potential stored after operation i (¢g = 0)

Ci=Ci+ (P — i)

" N J
/\
= PUSH(): &, — ¢, 1 =1
= POP: P —d;_1=—-1
5.1: Amortized Analysis T.S. 9

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation J
- PUSH N\ o;

= actual cost: ¢; = 1 O B e

= potential change: ®; — ®;,_y =1 H ﬂ

= amortizedcost: ¢ =i+ (P —Pj_1) =1+1=2 ~ _/—'1_;_)
\ o PUSH
- POP N ®;

ci=1

O

Bal >

£ 8 =0+ (® -) =1-1=0 <_a iar
(Stack is non-empty!) FoP
— MULTIPOP(K) N O @i

" ¢ = min{k,|S[} H \

O — Py :7min{k,|8\} \D., \D.,

" G =i+ (¥ — ®i_y) = min{k, |S|} — min{k, |S|} = 0 S~ -
L) MULTIPOP(3)

5.1: Amortized Analysis

TS.

S fiin
5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation J
—— PUSH ®i
= actual cost: ¢; = 1 - B e
» potential change: ®; — ®;_1 = 1 0 H
» amortized cost: G; = i+ (®i — i) =1+1= \D;/‘,DJ R
\ PUSH
- POP "4 ®i
s =1 Amortized Cost <2 = T(n) < 2n
'¢i_¢i—1:_1L o
-EL:C/+(¢/—¢171):1—1=0 J ~_ _1—'1_;_)
(Stack is non-empty! j For o
——— MULTIPOP(K) O '
. ¢ = min{k, |S|} H \
* & — ®_; = —min{k, |S|} N PR D SN

* G =G+ (P — ®j_y) = min{k,|S|} — min{k,[S|} =0

o
MULTIPOP(3)

5.1: Amortized Analysis TS.

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2],. .., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= total cost: < k

A3]A[2]A[1] A[0]

ENCIAEIREN Y

INC

A3JA[2]A[1] A[0]

] [o] [o] 12

S Y
i‘;:f 5.1: Amortized Analysis TS.

Stack: Analysis via Potential Method

(®; = # objects in the stack after ith operation J
- PUSH ®i
= actual cost: ¢; =1 O B e
» potential change: ®; — ®;_4 = 1 H H
» amortized cost: G; = ¢+ (®i — 1) =1+1= \D;/‘,DJ R
\ PUSH
- POP "4 ®i
c =1 n/2 PUSH, n/2POP = T(n) <n
'¢i_¢i—1:_1L o
-EL:C/+(¢/—¢/'71)=1—1=0 J ~_ _1—'1_;_)
(Stack is non-empty! j FoP
— MULTIPOP(K) - @
. ¢ = min{k, |S|} H \
s & — ®;_; = —min{k,|S|} oo |, 5
" Gi= i+ (¥~ &) = min{k,[S]} - min{k,|S} =0 | o i
L MULTIPOP(3)

5.1: Amortized Analysis TS.

Second Example: Binary Counter

Binary Counter
= Array Alk — 1], Alk — 2], ..., A[0] of k bits
= Use array for counting from 0 to 2% — 1

= only operation: INC

= increases the counter by one
= total cost: number of bit flips

A3]A[2]A[1] A[0]

(] fo] ([

/1

/L
0: INC(A) INC
1: i=0
2: whilei <kandA[i]==
3: A[i] =0 A[B]Al2] A[T] A[0]
4: i=i+1l @ @ 12
5: A[i] =1

5.1: Amortized Analysis T.S. 11

Second Example: Binary Counter Incrementing a Binary Counter (k = 8)

CoUMer| a7 Al Al AW ARl AR AN AR]| O
) Value Cost
Binary Counter 0 0 0 0 0 0 0 0 0 0
= Array A[k—1],A[k—2],,A[0] of k bits 1 0 0 0 0 0 0 0 1 1
= Use array for counting from 0 to 2% — 1 2 0 0 0 0 0 0 1 0 3
= only operation: INC A[B]A[2] A[1] A[0] 3 0 0 0 0 0 0 1 1 4
= increases the counter by one 4 0 0 0 0 0 1 0 0 7
= total cost: number of bit fllpS @ 1 5 0 0 0 0 0 1 0 1 8
6 0 0 0 0 0 1 1 0 10
INC 7 0 0 0 0 0 1 1 1 11
What is the total cost of a se- 8 o o o 0o 1 0 0 ®N 15
quence of n INC operations? 9 c o 0o 0 1 o 0 1 16
N A[3]A[2] A[1]A[0] 10 0 0 0 0 1 0 1 0 18
,)) 1114 12 11 0 0 0 0 1 0 1 1 19
Simple Worst-Case Bound: @ @ 12 0 0 0 0)) 0 g 0o
= |argest cost of an operation: k 13 0 0 0 0 1 9 0 1 23
= cost is at most n- k (correct, but not tight!) 14 0 0 0 0 1 1 1 0 25
15 0 0 0 0 1 1 1 1 26
16 0 0 0 1 0 0 0 0 31

o Y
5.1: Amortized Analysis TS. 11 5.1: Amortized Analysis TS.

Incrementing a Binary Counter: Aggregate Analysis Incrementing a Binary Counter: Aggregate Analysis
Counter|; ~ —“11° - Sirt C T - il Total Counter|; ~ —“1i° - Sir” C T - il Total
Vi VABL AR AT A[O] VABL AR AT A[O]
alue || L h L ! Cost Value || L h L ! Cost
0 ;00000 0 ;00000
1 :0|:0|:0|:1|1 1 :0|:0|:0|:1|1
2 L0010 3 2 L0010 3
! 1! 1! 1! 1 ! 1! 1! 1! 1
3 :0|:0|:1|:1|4 3 :0|:0|:1|:1|4
4 P01 00 7 4 10 1 0 0] 7
5 P 0 01 0 1y 8 5 P 0 1 0 1y 8
6 o110l 10 6 o110l 10
7 Lo 7 Lo
= Bit A[/] is only flipped every 2" increments = Bit Alil is only flipped every 2' increments
= In a sequence of nincrements from 0, bit A[/] is flipped | | times [Aggregate Analysis: The amortized cost per operation is @ < 2_]
N\
k—1 k—1
n n 1 1 1
T(n) < 2 \\EJ S;EZ <1+§+Z++W>

S Y S Y
5.1: Amortized Analysis TS. 13 iy ey 5.1: Amortized Analysis TS.

Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of /
N

J
L G =0v & >0 J

~——— Increment without Carry-Over 1100 @

» actual cost: ¢; = 1 lINC e

= potential change: ®; — ®;_y =1

» amortized cost: G = G+ (®;—d;) =14+1=2 1101 =i
~——— Increment with Carry-Over N 0111 &,

* ¢ = x + 1, (x lowest index of a zero)

P -y =—x+1 l'NC \

" C=C+(Pi—Pi)=1+x—x+1 =2 1000 PP

Sl
5.1: Amortized Analysis TS. 14

Summary

Binary Counter: Analysis via Potential Function

®; = # ones in the binary representation of
N

L D=0y & >0 J

| t without Carry-O ;
(nerementwihiowl BAIOVEr —4 - Amortized Cost = 2 = T(n) < 2n
= actual cost: ¢; = 1

= potential change: ®; — ®;_y =1
= amortized cost: G = ¢+ (¢, — ;1) =1+1=2

J 1101 -1

~——— Increment with Carry-Over o;
* ¢; = x + 1, (x lowest index of a zero)

O —P g =—x+1 |NC@
"C\,‘:Ci+(¢j7¢,‘71):1+)(7x+1 =2 1 000 i—1

Amortized Analysis

= Average costs over a sequence of n operations

= overcharge cheap operations and undercharge expensive operations
= no probability/average case analysis involved!

E.g. by bounding the number of expensive operations

Aggregate Analysis ;/
= Determine an absolute upper bound T(n)
. . T(n
= every operation has amortized cost @ () D:D:I:D

[Full power of this method will become clear later! J T(n) Dj:ﬂ:l]

Potential Method
= use savings from cheap operations to
compensate for expensive ones o

credit

= operations may have different amortized cost i

S Y
_;;E 5.1: Amortized Analysis TS. 15

s 5.1: Amortized Analysis TS. 14

Priority Queues Overview

Operation Linked list | Binary heap | Binomial heap | Fibon. heap
MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM o(n) o) O(log n) o)
5.2 Fibonacci Heaps EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
Frank Stajano Thomas Sauerwald UNION o(n) o(n) O(log n) o)
DECREASE-KEY o) O(log n) O(log n) o)
DELETE o) O(log n) O(log n) O(log n)
Lent 2015
3% UNIVERSITY OF
¥ CAMBRIDGE o
o 5.2: Fibonacci Heaps TS. 2
Binomial Heap vs. Fibonacci Heap: Costs Actual vs. Amortized Cost
Operation Binomial heap | Fibonacci heap [ST G — YN C o)
actual cost amortized cost 14-0(1)
MAKE-HEAP o) o)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
UNION O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
2 00) T |
Binomial Heap: n Inserts Fibonacci Heap: n Inserts o)
s =C=---=Cp=0O(logn) -51:52:--~:E~n:(’)(1) 0 1 2 o 1‘4”
= Y7, ¢ =0O(nlogn) = >r,a<>r,c=0(n) \ y
5.2: Fibonacci Heaps TS. 3 @;@ 5.2: Fibonacci Heaps TS. 4

Binomial Heap vs. Fibonacci Heap: Costs Outline

Operation Binomial heap | Fibonacci heap
actual cost amortized cost Structure
MAKE-HEAP o(1) o(1)
INSERT O(log n) o)
MINIMUM O(log n) o)
EXTRACT-MIN O(log n) O(log n)
UNION O(log n) o)
DECREASE-KEY O(log n) o)
DELETE O(log n) O(log n)
Z ANN

Can we perform EXTRACT-MIN If this was possible, then there would be a
better than O(log n)? sorting algorithm with runtime o(nlog n)!

5.2: Fibonacci Heaps TS. 5 5.2: Fibonacci Heaps T.S. 6

Binomial Heap vs. Fibonacci Heap: Structure Structure of Fibonacci Heaps

Binomial Heap: Fibonacci Heap

= consists of binomial trees, and every order appears at most once = Forest of MIN-HEAPs
= immediately tidy up after INSERT or MERGE = Nodes can be marked

min

e ° [slides/handout: roots are always unmarked, CLRS: roots can be
marked, but have to be unmarked once they become a child.]
@ @ @ @ @ = Tree roots are stored in a circular, doubly-linked list
@ Q @ @ = Min-Pointer pointing to the smallest element

Fibonacci Heap:
= forest of MIN-HEAPs

= lazily defer tidying up; do it on-the-fly when search for the MIN @ ° @ @ @

ONO (5) (s
(0)(3)) (9D
@ @ [How do we implement a Fibonacci Heap?]

gy ey 5.2: Fibonacci Heaps TS. 7 5.2: Fibonacci Heaps TS. 8

A single Node

TParent
p 6

p Payload marked degree ¢

Magnifying a Four-Node Portion

Previous Sibling | |
< O | | 0 3

lOne of the Children

O Next Sibling

5.2: Fibonacci Heaps T.S. 9

Outline

Operations

I_'"

O

<0190i[0][8] O-

0
AT~

\)
.

-O143:[0][0] O

Q

04112 O
®

| ——
~7|

AN

54

5.2: Fibonacci Heaps

Fibonacci Heap: INSERT

TS.

INSERT

= Create a singleton tree

= Add to root list and update min-pointer (if necessary)

Sl
5.2: Fibonacci Heaps TS. 11

Actual Costs: O(1]

I§. @0@:

affin
g 5.2: Fibonacci Heaps

TS.

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

Fibonacci Heap: EXTRACT-MIN

= Delete min

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them

"'ﬂ" 5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

"'ﬂ" 5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps T.S. 13

degree
[0]1]2[3]
A

5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

Fibonacci Heap: EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

»,,ﬂ,, 5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

"'ﬂ" 5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children)

5.2: Fibonacci Heaps T.S. 13

degree
[0[1]2]3
Sel ..
: : 5.2: Fibonacci Heaps TS. 13

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/
= Meld childen into root list and unmark them v/
= Consolidate so that no roots have the same degree (# children) v/

degree
[0]1]273]

I

E—

®

@&

]
iy g 5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

Fibonacci Heap: EXTRACT-MIN

EXTRACT-MIN

= Delete min v/

Meld childen into root list and unmark them v/

Consolidate so that no roots have the same degree (# children) v/
Update minimum

min
;, % 5.2: Fibonacci Heaps T.S. 13

Fibonacci Heap: DECREASE-KEY (First Attempt)

= Delete min v/

= Meld childen into root list and unmark them v/

= Consolidate so that no roots have the same degree (# children) v/
= Update minimum v/

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= If not, then done.
= QOtherwise, cut tree rooted at x and meld into root list.

L Every root becomes child of another root at most once!

74
[Actual Costs: O(trees(H) + d(n))]

min
(7) (1) ()
@ @ (&)

()

gy ey 5.2: Fibonacci Heaps T.S. 13

ORORO) (2)
20 Q @ @ DECREASE-KEY 24 ~ 20
. DECREASE-KEY 46 ~» 15
o @ . DECREASE-KEY 35~ 5
1

1
2
3
4. DECREASE-KEY 26 ~ 19
5. DECREASE-KEY 30 ~~ 12
5
@:@ 5.2: Fibonacci Heaps TS. 14

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise, cut tree rooted at x and meld into root list.

Degree =3,
Nodes =4

:@@Q@
OG@@
B)%

Wide and
shallow tree

5.2: Fibonacci Heaps TS. 14

aHE o
G-

Fibonacci Heap: DECREASE-KEY

DECREASE-KEY of node x
= Decrease the key of x (given by a pointer)
= (Here we consider only cases where heap-order is violated)

= Cut tree rooted at x, unmark x, and meld into root list and:
= Check if parent node is marked

= If unmarked, mark it (unless it is a root)
= If marked, unmark and meld it into root list and recurse (Cascading Cut)

[Actual Cost: O(# cuts) min
& : @ é) ® @
8@ e
. @ @ 1. DECREASE-KEY 46 ~~ 15 v
15 2. DECREASE-KEY 35 5 v/
2
@:@ 5.2: Fibonacci Heaps TS. 15

Fibonacci Heap: DECREASE-KEY (First Attempt)

DECREASE-KEY of node x

= Decrease the key of x (given by a pointer)
= Check if heap-order is violated

= |f not, then done.
= QOtherwise, cut tree rooted at x and meld into root list.

Peculiar Constraint: Make sure that each non-root
node loses at most one child before becoming root

:@@0@
caee
9 % 00

1

HE o
G-

5.2: Fibonacci Heaps TS. 14

Outline

Glimpse at the Analysis

5.2: Fibonacci Heaps TS. 16

Amortized Analysis via Potential Method

= INSERT: actual O(1) amortized O(1)
= EXTRACT-MIN: actual O(trees(H) + d(n)) amortized O(d(n))
= DECREASE-KEY: actual O(# cuts) amortized O(1)

d(H) = trees(H)+2-marks(H)

5.2: Fibonacci Heaps TS.

5.2 Fibonacci Heaps (Analysis)

Frank Stajano Thomas Sauerwald

Lent 2015

1 UNIVERSITY OF
) CAMBRIDGE

Amortized Analysis of DECREASE-KEY

Actual Cost

= DECREASE-KEY: O(x), where x is the number of cuts.

[®(H) = trees(H)j/Z -marks(H)

)

First Coin ~~ pays cut
Second Coin ~~ increase of trees(H)

= A< x+2 - (—x+2)=4—x.

Ch in Potential J ° @
— ange In Fotential ————————————
= trees(H') =trees(H) + x ’ Q @ @
* marks(H') < marks(H) — x +2 . @ @
()

Amortized Cost

5(Scale up potential units

CG=C+AP=0(x)+4-x=0(1)

i
?:E 5.2: Fibonacci Heaps (Analysis) TS.

Outline

Amortized Analysis

5.2: Fibonacci Heaps (Analysis) T.S. 2

Amortized Analysis of EXTRACT-MIN

Actual Cost

= EXTRACT-MIN: O(trees(H) + d(n))

d(H) = trees(H) + 2 - marks(H)

) , degrees
Change in Potential

0[1[2[3] -
= marks(H') < marks(H) | = lalalalal - N
trees(H') < d(n) + 1

= A® =d(n)+ 1 —trees(H)

Amortized Cost

Ci = ¢ + Ad = O(trees(H) +d(n)) + d(n) + 1 — trees(H) = O(d(n))
!

Va

L How to bound d(n)?

)

i
5.2: Fibonacci Heaps (Analysis) TS. 4

Outline Bounding the Maximum Degree

Binomial Heap
| Every tree is a binomial tree = d(n) < log, n.

° N
Bounding the Maximum Degree %

d=3n=2°

Fibonacci Heap
| Not all trees are binomial trees, but still d(n) < log,, n, where ¢ ~ 1.62.]

5.2: Fibonacci Heaps (Analysis) T.S. 5 : ,_ 5.2: Fibonacci Heaps (Analysis) T.S. 6
Lower Bounding Degrees of Children From Degrees to Minimum Subtree Sizes
We will prove a stronger statement:
A tree with degree k contains at least ©* nodes.

{ d(n) gvlog¢ n }

= Consider any node x (not necessarily a root) at the final state Definition
= Let y1, yo, ..., ¥k be the children in the order of attachment Let N(k) be the minimum possible number of nodes of a subtree rooted
and dy, b, ..., dk be their degrees at a node of degree k.

Vi<i<k d>i 2] { N(k) = F(k + 2)!]7

NO)=1 N(1)=2 N(2)= N@4)=8=5+3

Y T

ﬁ-;:E 5.2: Fibonacci Heaps (Analysis) TS. 7 5.2: Fibonacci Heaps (Analysis) TS. 8

From Minimum Subtree Sizes to Fibonacci Numbers

(Vi<i<k: d>i—2
,
1 NE2-2) NB-2) N(k —2)

NKk)=1+1+N2-2)+N@B-2)+---+ N(k—-2)

:1+1+2N(£)

k-3
=1+1+> N+ N(k-2)
:N(k—1)_+N(k—2)
= F(k+1)+ F(k) = F(k+2) m

5.2: Fibonacci Heaps (Analysis) T.S. 9

YRy

Putting the Pieces Together

~—— Amortized Analysis

= INSERT: amortized cost O(1)
« EXTRACT-MIN amortized cost Ofgém)) O(log n)
« DECREASE-KEY amortized cost O(1)

n> N(k) = F(k +2) > ¥
= log,, n > k

S Y
5.2: Fibonacci Heaps (Analysis) TS. 11

Exponential Growth of Fibonacci Numbers

Lemma 19.3
For all integers k > 0, the (k + 2)nd Fib. number satisfies Fxio > ok,]
where ¢ = (1 +1/5)/2 =1.61803.... 7

[Fibonacci Numbers grow at
L least exponentially fast in k.

Proof by induction on k:
*Basek=0:F=1and ¢’ =1V
»Basek=1:F3=2and¢' <1.619 v
= Inductive Step (k > 2):

Fkio = Frp1 + Fk

> (by the inductive hypothesis)
=P (p+1)

=2 P (P =p+1)
= Spk O

) 5.2: Fibonacci Heaps (Analysis) T.S. 10

Summary

= Fibonacci Heaps were developed by Fredman and Tarjan in 1984
= Fibonacci Numbers were discovered >800 years ago

Operation Linked list | Binary heap | Binomial heap | Fibon. heap
MAKE-HEAP o) o) o) o)
INSERT o) O(log n) O(log n) o)
MINIMUM o(n) o) O(log n) o)
EXTRACT-MIN o(n) O(log n) O(log n) O(log n)
UNION o(n) o(n) O(log n) o)
DECREASE-KEY o) O(log n) O(log n) o)
DELETE o) O(log n) O(log n) O(log n)
_
[DELETE = DECREASE—KEY + EXTRACT-MIN
[EXTRACT-MIN = MIN + DELETE J

Outlook: A More Efficient Priority Queue

Operation Fibonacci heap | Van Emde Boas Tree
amortized cost actual cost
INSERT o) O(loglog u)
MINIMUM o) o)
EXTRACT-MIN O(log n) O(loglog u)
MERGE/UNION o) -
DECREASE-KEY o(1) O(loglog u)
DELETE O(log n) O(loglog u)
Succ - O(loglog u)
PRED - O(loglog u)
MAXIMUM - o)
A

[all this requires key values to be in a universe of size u!]

Y
%.‘E 5.2: Fibonacci Heaps (Analysis) T.S. 13

Outline

Disjoint Sets

5.3: Disjoint Sets

Frank Stajano Thomas Sauerwald

Lent 2015
-8 UNIVERSITY OF
<% CAMBRIDGE J
5.3: Disjoint Sets T.S. 2
Disjoint Sets (aka Union Find) Disjoint Sets (aka Union Find)
Disjoint Sets Data Structure Disjoint Sets Data Structure
= Handle makeSet (Item Xx) = Handle makeSet (Item Xx)
Precondition: none of the existing sets contains x Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle Behaviour: create a new set {x} and return its handle

* Handle findSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

ho=makeSet (x) hi=findSet (y)

ARl i
?:E 5.3: Disjoint Sets TS. 3 5.3: Disjoint Sets TS. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

* Handle makeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
» Handle findSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle union (Handle h, Handle g)
Precondition: h# g
Behaviour: merge two disjoint sets and return handle of new set

h4=Union (ho ’ h3)

ol
5.3: Disjoint Sets T.S. 3

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

Disjoint Sets (aka Union Find)

Disjoint Sets Data Structure

* Handle makeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle
» Handle findSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x
* Handle union (Handle h, Handle g)
Precondition: h # g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, hy)

5.3: Disjoint Sets T.S. 3

First Attempt: List Implementation

* Handle makeSet (Item x)
Precondition: none of the existing sets contains x
Behaviour: create a new set {x} and return its handle

* Handle findSet (Item x)
Precondition: there exists a set that contains x (given pointer to x)
Behaviour: return the handle of the set that contains x

* Handle union (Handle h, Handle g)
Precondition: h# g
Behaviour: merge two disjoint sets and return handle of new set

hs=Union (hy, ho)

i
?:E 5.3: Disjoint Sets TS. 3

UNION-Operation Union(h, hy) | Need to find
|
= Add extra pointer to the last h et aEmen
element in each list J
= UNION takes constant time -
he .7
Vool

Sl
5.3: Disjoint Sets TS. 4

First Attempt: List Implementation

First Attempt: List Implementation (Analysis)

UNION-Operation Union(hy, h) Need to find
. I
= Add extra pointer to the last h last element!
element in each list .
= UntoN-takes-constanttime — I
h .o
Vool

FIND-Operation

)) backward pointers!
* Add backward pointer to the list
head from everywhere FindSet(z)
= FIND takes constant time ha
¥

Gl 5.3: Disjoint Sets T.S. 4

Weighted-Union Heuristic

Need to update all J

d = DisjointSet()
hy = d.MakeSet(xp)

hy = d MakeSet(xy)
ho = d.union(h1 s ho)
h, = d. MakeSet(x2)
hy = d.union(hy, hy)
h; = d. MakeSet(x3)
hy = d.union(hs, ho)

[better to append shorter list to longer ~~ Weighted-Union Heuristic]
N
[Cost for n UNION operations: >°7 ;i = ©(n?)]

Sl 5.3: Disjoint Sets T.S. 5

Analysis of Weighted-Union Heuristic

Weighted-Union Heuristic
= Keep track of the length of each list

= Append shorter list to the longer list (breaking ties arbitrarily)
N

[can be done easily without significant overhead j

Theorem 21.1
Using the Weighted-Union heuristic, any sequence of m operations, n of
which are MAKE-SET operations, takes O(m + n - log n) time.

N

Amortized Analysis: Every operation has amortized cost
O(log n), but there may be operations with total cost ©(n).

S Y
o 5.3: Disjoint Sets TS. 6

IBO0 300
CHO-CHO-OAA-H0

Theorem 21.1

Using the weighted-union heuristic, any sequence of m operations, n of

which are MAKE-SET operations, takes O(m + n - log n) time.
N

Proof: [Can we improve on this further? j
= n MAKE-SET operations = at most n — 1 UNION operations
= Consider element x and the number of updates of the backward pointer
= After each update of x, its set increases by a factor of at least 2

= Backward pointer of x is updated at most log, n times

= Other updates for UNION, MAKE-SET & FIND-SET take O(1) time per
operation O

S Y
iy g 5.3: Disjoint Sets TS. 7

How to Improve?

Disjoint Sets via Forests

o gli
s “. ~ ~
A PN ., A A So N

\ A

N Basic Idea: Update Backward
% Pointers only during FIND
Doubly-Linked List Weighted-Union Heuristic
= MAKE-SET: O(1) = MAKE-SET: O(1)
= FIND-SET: O(n) = FIND-SET: O(1)
= UNION: O(1) = UNION: O(log n) (amortized)
: : 5.3: Disjoint Sets T.S. 8

Path Compression during FIND-SET

0: FIND-SET (x)

1: if x#x.p
2: X.p =FIND-SET (x.p)
3: return x.p

S Y
%:E 5.3: Disjoint Sets T.S. 10

{b,c, e, h} {d.f,g} {b,c.d,e,f,g,h}
[Rank may be just an upper bound on the height!j

Q 4 0
° rank = 2 rank=2. 3 ° rank=3

& ® ® &
ofRo

Forest Structure
= Set is represented by a rooted tree with root being the representative
= Every node has pointer .p to its parent (for root x, x.p = x)

= UNION: Merge the two trees

~—
—(Append tree of smaller height ~~ Union by Rank)_

Sl
o

5.3: Disjoint Sets T.S. 9

Combining Union by Rank and Path Compression

[Data Structure is essentially optimal! (for more details see CLRS)]

Theorem 21.14 \\
Any sequence of m MAKE-SET, UNION, FIND-SET operations, n of
which are MAKE-SET operations, can be performed in O(m-«(n)) time.
4

[In practice, «(n) is a small constant j

foro<n<2,

forn =3,

fora <n<7,

for 8 < n <2047,
for 2048 < n < 10%°

a(n) =

A WODN =+ O

More than the number of atoms in the universe!

S Y
g 5.3: Disjoint Sets TS. 11

6.1 & 6.2: Graph Searching

Frank Stajano Thomas Sauerwald

28 February 2014

UNIVERSITY OF
CAMBRIDGE

Origin of Graph Theory

Source: Wikipedia

Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

o Is there a tour which crosses

. each bridge tR(actly once?

e Q Is there a tour which visits every
island exactly once?

. ~» 1B course: Complexity Theory

6.1 & 6.2: Graph Searching TS. 3

Outline

Introduction to Graphs and Graph Searching

6.1 & 6.2: Graph Searching

What is a Graph?

TS. 2

~——— Directed Graph N
A graph G = (V, E) consists of:
= V: the set of vertices
= E: the set of edges (arcs)

. J

~——— Undirected Graph ————
A graph G = (V, E) consists of:

= V: the set of vertices

= E: the set of (undirected) edges

\. J

~——— Paths and Connectivity ———

= A sequence of edges between
two vertices forms a path

Path p = (1,2,3,4)

V=1{1,2,3,4}
E=1{(1,2),(1,3),(2,3),(3,1),(3,4)}

e

V = {1727374}
E={{1,2},{1,3},{2,3},{3,4}}

6.1 & 6.2: Graph Searching

TS. 4

What is a Graph?

~——— Directed Graph

A graph G = (V, E) consists of: LG is not a DAG 679

= V: the set of vertices

= E: the set of (undirected) edges G'Q

~——— Paths and Connectivity — — e °
= A sequence of edges between
two vertices forms a path V={1,2,34}

E= {{172}7 {173}7 {273}7 {374}}

6.1 & 6.2: Graph Searching TS. 4

Representations of Directed and Undirected Graphs

Path p = (1,2,3,1), which is a cycle

= V: the set of vertices '
= E: the set of edges (arcs) e °
—— Undirected Graph —————— V=1{1,234}
A graph G = (V, E) consists of: E={(1,2),(1,3),(2,3),(3,1),(3,4)}

123 45
1 2 P51/ 1o 1001
2 L[Ps] P He]/] 20101 11
3 2 P4/ 301010
4 2 P55 F{3]/] 410 1 1 0 1
5 4] P] P2]/] s[1 1010
(a) (b) ©)

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c¢) The adjacency-matrix representation

of G.
123456
1 2] P4]/] 11010100
2 5]/ 20 000 10
(D) (2) (3) 3 o] P{5]/] 310000 11
4 2]/ 4/0 10000
5 4]/ 5[0 00100
@G—06 (D 6 61/ 610 00001
() (b) (©)

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation of G.

6.1 & 6.2: Graph Searching TS. 5

What is a Graph?

~——— Directed Graph

A graph G = (V, E) consists of: a e
= V: the set of vertices .'
= E: the set of edges (arcs) r -
L G is not (strongly) e °

L connected
——— Undirected Graph ——————————— V={1,2,34}
A graph G = (V, E) consists of: E={(1,2),(1,3),(2,3),(3,1),(3,4)}

= V: the set of vertices

= E: the set of (undirected) edges 6'9

——— Paths and Connectivity G is connected o °
= A sequence of edges between
two vertices forms a path V={1,2,3,4}
= If each pair of vertices has a E={{1,2},{1,3},{2,3},{3,4}}
path linking them, then G is
connected

6.1 & 6.2: Graph Searching TS. 4

Overview

= Graph searching means taversing a graph via the edges in order to
visit all vertices

= useful for identifying connected components, computing the
diameter etc.

= Two strategies: Breadth-First-Search and Depth-First-Search

Measure time complexity in terms of the size of V and E
(often write just V instead of | V|, and E instead of |E|)

6.1 & 6.2: Graph Searching TS. 6

Outline

Breadth-First Search

Breadth-First Search: Basic Ideas

——— Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= BFS sends out a wave from s ~» compute distances/shortest paths
= Vertex Colours:

= Unvisited

Grey = Visited, but not all neighbors (=adjacent vertices)

4,'1, 6.1 & 6.2: Graph Searching

Complete Execution of BFS (Figure 22.3)

TS.

Queue:

OGNS
% w X y
S
Gl 6.1 & 6.2: Graph Searching TS.

= Visited and all neighbors

4,.;, 6.1 & 6.2: Graph Searching TS. 8

Complete Execution of BFS (Figure 22.3)

Queue: X X X ¥ X X X

i
E:'E 6.1 & 6.2: Graph Searching TS. 9

Breadth-First-Search: Pseudocode

0: def bfs(G)
1:

2:

3:

4: assert(s in G.vertices())

5x

6:

7: for v in G.vertices(): . .

8: vpredecessor = None = From any vertex, visit all adjacent

9: v.d = Infinity i i

[N vertices before going any deeper

1; Q = Queue() = Vertex Colours:

]35 L White | = Unvisited

]gf gcig'sf’;;(:)“gfey“ Grey = Visited, but not all neighbors
s SIEYSd = Visited and all neighbors

19: while not Q.isEmpty(): - ;

20: u=Q.extract() Runtime O(V+ E)

21: assert (u.colour == "grey") Y

= e Assuming that all executions of the FOR-loop
23: if v.colour = "white" =

24: colour = "grey" ; . o

%5] for u takes O(|u.adj|) (adjacency list model!)
3673: v.predecessor = u ™

8 Q.insert(v) | —

28: u.colour = "black" [Zuev |u.ad/| - 2|E|]
6.1 & 6.2: Graph Searching TS. 10

Depth-First Search: Basic Ideas

[—

Basic Idea

= Given an undirected/directed graph G = (V, E) and source vertex s
= As soon as we discover a vertex, explore from it ~ Solving Mazes
= Two time stamps for every vertex: Discovery Time, Finishing Time

o]
6.1 & 6.2: Graph Searching TS. 12

Outline

Depth-First Search

Complete Execution of DFS

6.1 & 6.2: Graph Searching

TS.

S

6.1 & 6.2: Graph Searching

TS.

Complete Execution of DFS

Complete Execution of DFS

W

i 6.1 & 6.2: Graph Searching TS. 13) 6.1 & 6.2: Graph Searching

Depth-First-Search: Pseudocode

def dfs(G):

assert(s in G.vertices())

for v in G.vertices():
v.predecessor = None
v.colour = "white"

dfsRecurse(G,s)

0:
1:
2
3
4
5:
6:
7
8
9
0

N

]

: def dfsRecurse(G,s):
s.colour = "grey"
s.d = time()
for v in s.adjacent()
if v.colour = "white"
v.predecessor = s
dfsRecurse(G,v)
s.colour = "black"

|
|
|
|
|
|
:
: s.f = time()

PN a RN o O

15678 910111213141516
(xx) (r (uu)) y)v)s)wzz)w)

= We always go deeper before visiting
other neighbors

= Discovery and Finish times, .d and .v
= Vertex Colours:
= Unvisited
Grey = Visited, but not all neighbors
= Visited and all neighbors
= Runtime O(V + E)

6.1 & 6.2: Graph Searching TS. 14 6.1 & 6.2: Graph Searching

55
S E

TS. 15

Outline Topological Sort

Problem
= Given: a directed acyclic graph (DAG)
= Goal: Output a linear ordering of all vertices

Topological Sort

[socks] [undershorts]—>[pantsshoes] (watch]
<

é:é 6.1 & 6.2: Graph Searching TS. 16 : : 6.1 & 6.2: Graph Searching TS. 17
Solving Topological Sort Execution of Knuth’s Algorithm

shoes

shirt

Knuth’s Algorithm (1968)
= Perform DFS’s so that all vertices are visited
= Qutput vertices in decreasing order of their finishing time
ANG

2

[Runtime O(V + E)] tices — use DFS directly!

— N
[Don’t need to sort the ver-J

fad
Gl 6.1 & 6.2: Graph Searching TS. 18

Correctness of Topological Sort using DFS

Correctness of Topological Sort using DFS

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
s
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle ;
(can’t happen, because G is acyclic!).

6.1 & 6.2: Graph Searching TS. 20

YR
G
=2

Correctness of Topological Sort using DFS

Q 3 ”” 1 0 e e °
u X

w z s v y r

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:
S
= Consider any edge (u, v) € E(G) being explored, @
= uis grey and we have to show that v.f < u.f
1. Ifvis grey, then thereisacycle %
(can’t happen, because G is acyclic!).
2. If v is black, then v.f < u.f. @
3. If v is white, we call DFS(v) and v.f < u.f.
u v
= Inall cases v.f < v.u, so v appears after u. O
: t 6.1 & 6.2: Graph Searching TS. 20

Theorem 22.12
| If the input graph is a DAG, then the algorithm computes a linear order.]

Proof:

= Consider any edge (u, v) € E(G) being explored,
= uis grey and we have to show that v.f < u.f

1. If v is grey, then there is a cycle
(can’t happen, because G is acyclic!).
2. Ifv is black, then v.f < u.f.

4,.;‘ 6.1 & 6.2: Graph Searching TS.

Summary of Graph Searching

20

——— Breadth-First-Search

= vertices are processed by a queue

= computes distances and shortest paths
~ similar idea used later in Prim’s and Dijkstra’s algorithm

* Runtime O(V + E)

~——— Depth-First-Search

= vertices are processed by recursive calls (= stack)
= discovery and finishing times

= application: Topogical Sorting of DAGs

* Runtime O(V + E)

=
Gl 6.1 & 6.2: Graph Searching TS.

21

6.3: Minimum Spanning Tree

Frank Stajano

Lent 2015

Minimum Spanning Tree Problem

Thomas Sauerwald

5 UNIVERSITY OF
¥ CAMBRIDGE

~——— Minimum Spanning Tree Problem —

= Given: undirected, connected
graph G = (V, E, w) with
non-negative edge weights

= Goal: Find a subgraph C E of

all vertices

minimum totaAweight that links

I 1
[Must be necessarily a tree!]

Applications

Outline

Minimum Spanning Tree Problem

6.3: Minimum Spanning Tree TS. 2

Generic Algorithm

= Street Networks, Wiring Electronic Components, Laying Pipes
= Weights may represent distances, costs, travel times, capacities,

resistance etc.

0: def minimum spanningTree (G)

1 A = empty set of edges

2: while A does not span all vertices yet:
3 add a safe edge to A

Definition

A edge of G is safe if by adding the edge to A, the resulting subgraph is
still a subset of a minimum spanning tree.

~

How to find a safe edge?

S
6.3: Minimum Spanning Tree

TS.

6.3: Minimum Spanning Tree T.S. 4

=

Finding safe edges Proof of Theorem

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

Definitions

= a cut is a partition of V into at least
two disjoint sets

Proof:

. = Let T be a MST containing A
= a cut respects A C E if no edge of L be the i0h g o
A goes across the cut = Let e, be the lightest edge across the cut

= |[f e, € T, then we are done

Theorem

Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe.

6.3: Minimum Spanning Tree TS. 5

6.3: Minimum Spanning Tree TS. 6
Proof of Theorem Proof of Theorem
Theorem Theorem
Let A C E be a subset of a MST of G. Then for any cut that respects A, Let A C E be a subset of a MST of G. Then for any cut that respects A,
the lightest edge of G that goes across the cut is safe. the lightest edge of G that goes across the cut is safe.
Proof: Proof:
= Let T be a MST containing A = Let T be a MST containing A

= Let ¢, be the lightest edge across the cut
= If e, € T, then we are done
= If e ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex

= Let ¢, be the lightest edge across the cut
= If e, € T, then we are done
= If e ¢ T, then adding e, to T introduces cycle

= This cycle crosses the cut through e, and
another edge ex
= Consider now the tree T U e, \ &x:
= This tree must be a spanning tree
= If w(er) < w(ex), then this spanning tree has
smaller cost than T (can’t happen!)
= If w(eg) = w(ex),then TU ey \ exisa
MST. O

6.3: Minimum Spanning Tree T.S. 6 6.3: Minimum Spanning Tree T.S. 6

Glimpse at Kruskal’s Algorithm

Basic Strategy

Glimpse at Kruskal’s Algorithm

= Let A C E be a forest, intially empty
= At every step, given A, perform:
Add lightest edge to A that does not introduce a cycle

Basic Strategy

= Let A C E be a forest, intially empty
= At every step, given A, perform:
Add lightest edge to A that does not introduce a cycle

Use Disjoint Sets to keep track
of connected components!

,'n.-, 6.3: Minimum Spanning Tree T.S. 7

;,n iy 6.3: Minimum Spanning Tree T.S. 8

Use Disjoint Sets to keep track
of connected components!

,'n.-, 6.3: Minimum Spanning Tree TS. 7

;,n iy 6.3: Minimum Spanning Tree T.S. 8

Details of Kruskal’s Algorithm

0: def kruskal (G)

1: Apply Kruskal’s algorithm to graph G
2: Return set of edges that form a MST
3:

4: A = Set () # Set of edges of MST

5: D = DisjointSet ()

6: for v in G.vertices():

7: D.makeset (v)

8: E = G.edges()

9: E.sort (key=weight, direction=ascending)
10:

11: for edge in E:

12: startSet = D.findSet (edge.start)
13: endSet = D.findset (edge.end)

14: if startSet != endSet:

15: A.append (edge)

16: D.union (startSet, endSet)

17: return A

Time Complexity

= |nitialization (I. 4-9): O(V + Elog E)
= Main Loop (I. 11-16): O(E - a(n))
= Overall: O(Elog E) = O(E log V)K

If edges are already sorted, runtime becomes O(E - «(n))!]

6.3: Minimum Spanning Tree TS. 9

Prim’s Algorithm

Prim’s Algorithm

—— Basic Strategy

= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

o

Assign every vertex not connected to A a key which is at all
stages equal to the smallest weight of an ed&e connecting to A

[Use a Priority Queue!]

6.3: Minimum Spanning Tree TS. 10

Prim’s Algorithm

— Basic Strategy
= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

— Basic Strategy

= Start growing a tree from a designated root vertex
= At each step, add lightest edge linked to A that does not yield cycle

~——— Implementation

= At each step:

1. extract vertex from Q with smallest key < safe edge of cut (V' \ Q, Q)
2. update keys and pointers of its neighbors in Q

= Every vertex in Q has key and pointer of least-weight edge to V' \ Q

6.3: Minimum Spanning Tree T.S. 10

6.3: Minimum Spanning Tree T.S. 10

Prim’s Algorithm Details of Prim’s Algorithm

—— Basic Strategy

0: def prim(G,r)
. i P 1: Apply Prim’s Algorithm to graph G and root r
Start growing a tree from a designated root vertex 5 Roturn result implicitly by medifying G:
= At each step, add lightest edge linked to A that does not yield cycle 2: MST induced by the .predecessor fields
5: Q = MinPriorityQueue ()
6: for v in G.vertices():
7: v.predecessor = None
8: if v == r:
9: v.key = 0
10: else:
11: v.key = Infinity
12: Q.insert (v)
13:
14: while not Q.isEmpty():
15: u = Q.extractMin()
16: for v in u.adjacent():
17: w = G.weightOfEdge (u, v)
18: if Q.hasItem(v) and w < v.key:
19: v.predecessor = u
20: Q.decreaseKey (item=v, newKey=v)

Time Complexity

Wbe Cc.)mpmed Slamle M.?‘T as KrUSk?I’ Init (1. 6-13): O(V), ExtractMin (15): O(V-log V), DecreaseKey (16-20): O(E-1)
ut in a completely different order! = Overall: O(Vlog V + E)

Amortized Cost

»,,'.-, 6.3: Minimum Spanning Tree TS. 10 6.3: Minimum Spanning Tree TS. 11

6.3: Minimum Spanning Tree T.S. 11

Lent 2015

6.4: Single-Source Shortest Paths

Frank Stajano Thomas Sauerwald

1 UNIVERSITY OF
» CAMBRIDGE

Shortest Path Problem

Shortest Path Problem

= Given: directed graph

G = (V, E) with edge weights,
pair of vertices s,t € V

* Goal: Find a path of minimum
weight from sto tin G

e
o

6.4: Single-Source Shortest Paths TS.

Outline

Introduction

6.4: Single-Source Shortest Paths

Variants of Shortest Path Problems

TS.

Single-source shortest-paths problem (SSSP)
= Bellman-Ford Algorithm
= Dijsktra Algorithm

All-pairs shortest-paths problem (APSP)
= Shortest Paths via Matrix Multiplication
= Johnson’s Algorithm

6.4: Single-Source Shortest Paths

=

TS.

Distances and Negative-Weight Cycles

/\
[Negative-Weight Cycle]

6.4: Single-Source Shortest Paths TS. 5

Relaxing Edges

Definition
Fix the source vertex s € V
= v.J is the length of the shortest path (distance) from sto v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =s.0 =0, v.d=occ for v # s
= Atthe end: v.d=v.dforalveV

~——— Relaxing an edge (u, v)

2
Given estimates u.d and v.d, can we find a SR @—’

better path from v using the edge (u, v)? . e

.
v.d > u.d+ w(u,v) ‘
_ ©

L (After relaxing (u, v):
Lv.d < ud+w(u,v)

sfin
f:? 6.4: Single-Source Shortest Paths TS. 6

Relaxing Edges

Definition
Fix the source vertex s € V
= v.J is the length of the shortest path (distance) from s to v
= v.d is the length <ithe shortest path discovered so far

= At the beginning: s.d =5 =0, v.d =occforv #s
= Atthe end: v.d=v.dforalveV

~——— Relaxing an edge (U, V) ——————
Given estimates u.d and v.d, can we find a -
better path from v using the edge (u, v)? . <.~

v.d ; u.d+w(u,v)

6.4: Single-Source Shortest Paths TS. 6

Properties of Shortest Paths and Relaxations

— Toolkit
Triangle inequality (Lemma 24.10)

= For any edge (u,Vv) € E, we have v.6 < u.d + w(u, v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.é for all v € V, and once v.d achieves the
value v.d, it never changes.

Convergence Property (Lemma 24.14)

» If s~ u — vis a shortest path from sto v, and if u.d = u.¢ prior to
relaxing edge (u, v), then v.d = v.§ at all times afterward.

v.d <u.d+ w(u,v)
s u v

V.0 Since v.d > v.5, we have v.d = v.4.

6.4: Single-Source Shortest Paths TS. 7

=

O

Path-Relaxation Property

Path-Relaxation Property (Lemma 24.15)
If p= (v, ws,..., V) is a shortest path from s = v, to vk, and we relax
the edges of pin the order (vo, v1), (v1,V2), ..., (Vk—1, V), then v.d =
vk.d (regardless of the order of other relaxation steps).

Proof:

= By inductionon i, 0 < i < k:
After the ith edge of p is relaxed, we have v;.d = v;.é.

= For i = 0, by the initialization s.d = 5.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — i): Assume v;_y.d = v;_1.6 and relax (vi_1, ;).

Convergence Property = v;.d = v;.0 (now and at all later steps)
Vo Vi Vo Vi1 Vi
@ @ @ ______
o
6.4: Single-Source Shortest Paths TS. 8

Complete Run of Bellman-Ford (Figure 24.4)

O

Relaxation Order: (t,x),(t,y),(,2),(x,1),(y,X),(,2),(z,X),(z,S),(S,1),(S,Y)

n
o 6.4: Single-Source Shortest Paths TS. 10

The Bellman-Ford Algorithm

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1: for v in G.vertices()

2: v.predecessor = None

3: v.d = Infinity

4: s.d =0

53

6: repeat |V|-1 times

7: for e in G.edges()

8:

OF if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

Time Complexity
= A single call of line 9-11 costs O(1)
= In each pass every edge is relaxed = O(E) time per pass
= Overall (V —1)+ 1= V passes = O(V - E) time

4,.;, 6.4: Single-Source Shortest Paths TS.

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(,2),(z,X),(z,S),(S,t),(S,Y)

i
E:'E 6.4: Single-Source Shortest Paths TS.

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (,x),(t,y),(t,2),(X,1),(y,X),(y,2),(z,X),(z,S

):(s:1),(s.Y)

*I;, 6.4: Single-Source Shortest Paths

TS.

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(1,2),(x,1),(y,x),(y,2),(z,x),(z

8),(s:1),(s.Y)

o 6.4: Single-Source Shortest Paths

TS.

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(,2),(z,X),(z,S),(S,t),(S,Y)

4,.;, 6.4: Single-Source Shortest Paths TS. 10

The Bellman-Ford Algorithm: Correctness (1/2)

Lemma 24.2/Theorem 24.3
Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.o for all vertices
v € V that are reachable and Bellman-Ford returns TRUE.

Proof that v.d = v.§
= Let v be a vertex reachable from s
» Letp= (v =S,w,..., V% = V) be a shortest path from sto v
= pis simple, hence k < |V|—1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Let (u, v) € E be any edge. After |V| — 1 passes:
vd=v.0<ud+w(u,v)=ud+w(u,v)

= Bellman-Ford returns TRUE O

i
E:'E 6.4: Single-Source Shortest Paths TS. 1"

The Bellman-Ford Algorithm: Correctness (2/2)

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
* Letc = (v, v1,...,Vk = W) be a negative-weight cycle reachable from s
= |f Bellman-Ford returns TRUE, then for every 1 </ < k,

V,'.d < Vj71.d+ W(V,',1, V,')

k k k
= Z vi.d < Z Vioi.d + Z w(Vi_1, V)
i—1 i— =1

k
0<) w(vii1,v)
i=1
= This contradicts the assumption that ¢ is a negative-weight cycle! O
6.4: Single-Source Shortest Paths TS. 12

Relaxing Edges

Definition

Fix the source vertex s € V
= v.J is the length of the shortest path (distance) from sto v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =s.0 =0, v.d=occ for v # s
= Atthe end: v.d=v.dforalveV

~——— Relaxing an edge (U, V) —————— u 2 v
Given estimates u.d and v.d, can we find a SR @@
better path from v using the edge (u, v)? ! N

? / S -)/
v.d > u.d+ w(u,v) ‘@“” ,/

S
f:? 6.4: Single-Source Shortest Paths TS. 14

Outline

Bellman-Ford Algorithm

6.4: Single-Source Shortest Paths TS. 13

Relaxing Edges

Definition

Fix the source vertex s € V
= v.J is the length of the shortest path (distance) from s to v

= v.d is the length of the shortest path discovered so far
S

= At the beginning: s.d =s.0=0,v.d=occforv # s
= Atthe end: v.d=v.dforalveV

~——— Relaxing an edge (u, v)

2
Given estimates u.d and v.d, can we find a SR @—’
better path from v using the edge (u, v)? ! N
? s
v.d > u.d+ w(u,v) @
AN

After relaxing (u, v), regardless of whether we found a shortcut:

v.d < u.d+ w(u,v)
: : 6.4: Single-Source Shortest Paths TS. 14

Properties of Shortest Paths and Relaxations

, Toolkit

Triangle inequality (Lemma 24.10)
= For any edge (u,Vv) € E, we have v.6 < u.d + w(u, v)
Upper-bound Property (Lemma 24.11)

= We always have v.d > v.é for all v € V, and once v.d achieves the
value v.d, it never changes.

Convergence Property (Lemma 24.14)

= If s~ u — vis a shortest path from sto v, and if u.d = u.¢ prior to
relaxing edge (u, v), then v.d = v.§ at all times afterward.

v.d <u.d+ w(u,v)

V.0 Since v.d > v.5, we have v.d = v.4.

;,I;, 6.4: Single-Source Shortest Paths TS. 15

The Bellman-Ford Algorithm

O

BELLMAN-FORD (G, w, S)

0: assert (s in G.vertices())

1: for v in G.vertices()

2: v.predecessor = None

SE v.d = Infinity

4: s.d =0

5:

6: repeat |V|-1 times

7: for e in G.edges()

8:

9: if e.start.d + e.weight.d < e.end.d:
10: e.end.d = e.start.d + e.weight
11: e.end.predecessor = e.start

12:

13: for e in G.edges()

14: if e.start.d + e.weight.d < e.end.d:
15: return FALSE

16: return TRUE

Time Complexity

= A single call of line 9-11 costs O(1)
= In each pass every edge is relaxed = O(E) time per pass
= Overall (V—1)+ 1= Vpasses = O(V - E) time

afin
6.4: Single-Source Shortest Paths TS. 17

Path-Relaxation Property

[“Propagation”: By relaxing proper edges, set of vertices with v.0 = v.d gets Iarger]

Path-Relaxation Propeﬁ(Lemma 24.15)
If p= (v, ws,..., V) is a shortest path from s = v, to vk, and we relax
the edges of p in the order (vo, v1), (v1, Vo), ..., (Vk—1, Vk), then
vk.d = vi.6 (regardless of the order of other relaxation steps).

Proof:
= By inductionon i, 0 < i < k:
After the ith edge of p is relaxed, we have v;.d = v;.é.
= For i = 0, by the initialization s.d = 5.6 = 0.
Upper-bound Property = the value of s.d never changes after that.

= Inductive Step (i — 1 — i): Assume V;_y.d = v;_1.6 and relax (vi_1, ;).
Convergence Property = v;.d = v;.6 (now and at all later steps)

Complete Run of Bellman-Ford (Figure 24.4)

O

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(y,2),(z,X),(z,S),(S,t),(S,Y)

i
%? 6.4: Single-Source Shortest Paths TS. 18

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 1

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(,2),(z,X),(z,S),(S,1),(S,Y)

*Ih 6.4: Single-Source Shortest Paths TS. 18

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 3

Relaxation Order: (1,x),(t,y),(t,2),(x,t),(y,X),(y,2),(z,X),(z,S),(S,t),(S,Y)

=
Gl 6.4: Single-Source Shortest Paths TS. 18

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 2

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(,2),(z,X),(z,S),(S,t),(S,Y)

*Ih 6.4: Single-Source Shortest Paths TS. 18

Complete Run of Bellman-Ford (Figure 24.4)

Pass: 4

Relaxation Order: (t,x),(t,y),(t,2),(x,1),(y,X),(y,2),(z,X),(z,S),(S,t),(S,Y)

=
Gl 6.4: Single-Source Shortest Paths TS. 18

Bellman-Ford Algorithm: Correctness (1/2)

Bellman-Ford Algorithm: Correctness (2/2)

Lemma 24.2/Theorem 24.3

Assume that G contains no negative-weight cycles that are reachable
from s. Then after |V| — 1 passes, we have v.d = v.o for all vertices
v € V that are reachable and Bellman-Ford returns TRUE.

Proof that v.d = v.0
= Let v be a vertex reachable from s
" Lletp= (v =8,w,..., V% = V) be a shortest path from sto v
= pis simple, hence k < |V| -1
= Path-Relaxation Property = after |V| — 1 passes, v.d = v.§

Proof that Bellman-Ford returns TRUE
= Need to prove: v.d < u.d + w(u, v) for all edges
= Let (u, v) € E be any edge. After |V| — 1 passes:

Theorem 24.3

If G contains a negative-weight cycle reachable from s, then Bellman-
Ford returns FALSE.

Proof:
* Letc = (w, v1,..., k = W) be a negative-weight cycle reachable from s
= |f Bellman-Ford returns TRUE, then for every 1 </ < k,

Vi.d < Vig.d + w(Vi_1, V)

k k k
= Z vi.d < Z Viir.d+ Z w(Vi_1,)
i—1 i—1 =

k
0< Y w(vii1,v)
i=1
= This contradicts the assumption that ¢ is a negative-weight cycle! O
6.4: Single-Source Shortest Paths TS. 20

Dijkstra’s Algorithm

vd=v.d<ud+w(u,v)=ud+w(u,v) O
N
Triangle inequality (holds even if w(u, v) < 0!)]
6.4: Single-Source Shortest Paths TS. 19
Outline
Dijkstra’s Algorithm

6.4: Single-Source Shortest Paths TS. 21

Overview of Dijkstra

= Requires that all edges have non-negative weights

= Use a special order for relaxing edges
= The order follows a greedy-strategy (similar to Prim’s algorithm):

1. Maintain set S of vertices u with v.6 = v.d
2. Ateach step, add a vertex v € V' \ S with minimal v.4

6.4: Single-Source Shortest Paths TS. 22

Dijkstra’s Algorithm Complete Run of Dijkstra (Figure 24.6)

Overview of Dijkstra

= Requires that all edges have non-negative weights Priority Queue Q:

= Use a special order for relaxing edges (s,0),(t,), (x,00), (¥,), (2,00)
= The order follows a greedy-strategy (similar to Prim’s algorithm):

1. Maintain set S of vertices u with u.6 = v.d
2. Ateach step, add a vertex v € V' \ S with minimal v.§
3. Relax all edges leaving v

6.4: Single-Source Shortest Paths TS. 22 6.4: Single-Source Shortest Paths TS. 23
Complete Run of Dijkstra (Figure 24.6) Runtime of Dijkstra’s Algorithm
Priority Queue Q:

DIJKSTRA(G,w,s)) .) .
0: INITIALIZE(G.s) I?%mt'lmel(usmg Fibonacci Heaps)
1: S=10 = |nitialization (I. 0-2): O(V)
2:Q=V . ; . .
3: while Q # 0 do ExtractMin (I. 4): O(V -log V)
4: u = Extract-Min(Q) = DecreaseKey (. 7): O(E - 1)
5 S=SuU{u} .
6: foreach v € G.Adj[u] do = Overall: O(Vlog V + E)
7 RELAX(u, v, w)
8: end for
9: end while

6.4: Single-Source Shortest Paths TS. 23 6.4: Single-Source Shortest Paths TS. 24

Correctness of Dijkstra’s Algorithm

Theorem 24.6

For any directed graph G = (V, E, w) with non-negative edge weights
and source s, Dijkstra terminates with v.d = v.J for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.6‘

= Suppose there is u € V, when extracted,
u.d > u.d

= Let u be the first vertex with this property

*I;, 6.4: Single-Source Shortest Paths TS. 25

Correctness of Dijkstra’s Algorithm

Theorem 24.6

For any directed graph G = (V, E, w) with non-negative edge weights
and source s, Dijkstra terminates with v.d = v.J for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.é‘

= Suppose there is u € V, when extracted,

ud>ud
= Let u be the first vertex with this property y
= Take a shortest path from s to v and let ®

(x, y) be the first edge from Sto V\ S
=
ud<yd
[u is extracted before yJ

: :: 6.4: Single-Source Shortest Paths TS. 25

Correctness of Dijkstra’s Algorithm

Theorem 24.6

For any directed graph G = (V, E, w) with non-negative edge weights
and source s, Dijkstra terminates with v.d = v.J for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.5‘

= Suppose there is u € V, when extracted,

ud>ud
= Let u be the first vertex with this property y
= Take a shortest path from s to v and let ®

(x, y) be the first edge from Sto V\ S

4,.;, 6.4: Single-Source Shortest Paths TS. 25

Correctness of Dijkstra’s Algorithm

Theorem 24.6

For any directed graph G = (V, E, w) with non-negative edge weights
and source s, Dijkstra terminates with v.d = v.J for all u € V.

Proof: | Invariant: If v is extracted, v.d = v.é‘

= Suppose there is u € V, when extracted,
u.d>u.é

= Let u be the first vertex with this property

= Take a shortest path from s to v and let
(x, y) be the first edge from Sto V\ S
=
ud<yd=yo

since x.d = x.6 when x is extracted, and then
(x,y) is relaxed = Convergence Property

i
E:'E 6.4: Single-Source Shortest Paths TS. 25

Correctness of Dijkstra’s Algorithm

Theorem 24.6
For any directed graph G = (V, E, w) with non-negative edge weights
and source s, Dijkstra terminates with v.d = v.J for all u € V.

There are edge cases like
s = x andlory = u!

Proof: | Invariant: If v is extracted, v.d = v.6‘ {

= Suppose there is u € V, when extracted, N
ud>usb : S
= Let u be the first vertex with this property y:
= Take a shortest path from s to v and let ®
(x,y) be the first edge from Sto V\ S
=

ud<ud<yd=yd

This contradicts that y is on a shortest path
from s to u. O

e
6.4: Single-Source Shortest Paths TS. 25

Outline

All-Pairs Shortest Path

6.5: All-Pairs Shortest Paths

Frank Stajano Thomas Sauerwald

Lent 2015

] UNIVERSITY OF
» CAMBRIDGE

é;é 6.5: All-Pairs Shortest Paths T.S.
Formalizing the Problem Outline
——— All-Pairs Shortest Path Problem \
= Given: directed graph G = (V,E), V ={1,2,..., n}, with edge
weights represented by a matrix W:
weight of edge (/,j) for an edge (/,j) € E,
Wij =14 oo if there is no edge from i to j,
0 if i =j. APSP via Matrix Multiplication

= Goal: Obtain a matrix of shortest path weights L, that is

%) otherwise.

L N\)

AN\

/ {weight of a shortest path from i to j, if jis reachable from i
ij =

Here we will only compute the weight of the shortest
path without keeping track of the edges of the path!

i ol
g 6.5: All-Pairs Shortest Paths TS. 3 6.5: All-Pairs Shortest Paths TS.

A Recursive Approach

Basic Idea

= Any shortest path from j to j of length kK > 2 is the concatenation of
a shortest path of length kK — 1 and an edge

= Let £ be min. weight of any path from / to j with at most m edges

= Then Kl(.y =wj,s0 L) =W

= How can we obtain L® from L(1)?

(2) _ o (1) in (1))
£j = min (Ew' 0, S W“) [Recall that w;,; = 0!]

q =1 ! —1 B =1
47 = min(e7 ™", min 6770+ we) = min (6570 + wi)

i
6.5: All-Pairs Shortest Paths TS. 5

Computing L(™

(m) _ i (m—1))
48 —12}('2"(4,1(+Wk,/)

J

o LD = [0 — () — = [since every shortest path uses at most
n—1=|V| -1 edges (assuming absence of negative-weight cycles)
= Computing L(™:
(m)
m (m—1) ' L'™ can be
Gy = EJQH(E"# + W"’/) <[computed in O(n®)
(L(m—1) W)= Z (el(fz—1) X Wk,j)
1<k<n

= The correspondence is as follows:

min < >
+ & X
o < 0
0 < 1

»,,I-, 6.5: All-Pairs Shortest Paths TS. 7

Example of Shortest Path via Matrix Multiplication (Figure 25.1)

0 3 8 oo | —4 0 3 8 2 -4

oo 0 oo 1|7 3 0 —4 1 7
LD =—w= co 4 0 oo | o0 L@ = © 4 0 5 11

2 oo =5 0| o0 2 -1 -5 0 -2

co oo oo 6 0 8 1 6 0

0 3 -3 2 -4 0 1 -3 2 -4

3 0 -4 1 -1 3 0 -4 1 1

&= |7 4 0 5 11 W=7 4 o 5 [3
2 1 -5 0 -2 2 1 -5 —2
8 5 1 6 0 8 5 1.5 0
[eg‘; =min{7 — 4,4 +7,0 + 00,5 + 00, 11 +0}]
6.5: All-Pairs Shortest Paths TS. 6

Computing L("") efficiently

(m) __ f (m—1))
47 = min (457 + w)

[Takes O(n- n®) = O(n*)]

= For, say, n = 738, we subsequently compute /

I_(1)’ I_(2)7 L(3)7 L(4)7 e LT3 — |

= Since we don’t need the intermediate matrices, a more efficient way is

I_(1)’ L(Z), L(4)7 o L(512)7 L1024 _

e T~

[We need ¥ = [®.1® = [®).] D) (see Ex. 25.1-4)] [Takes O(logn -).]

S
*;-,;:E 6.5: All-Pairs Shortest Paths TS. 8

Outline

Johnson’s Algorithm

ol
6.5: All-Pairs Shortest Paths TS. 9

How Johnson’s Algorithm works

~——— Johnson’s Algorithm

1. Add a new vertex s and directed edges (s, v), v € V, with weight 0
2. Run Bellman-Ford on this augmented graph with source s
= |f there are negative weight cycles, abort
= Otherwise:
1) Reweight every edge (u, v) by w(u, v) = w(u,v) + u.5 — v.§
2) Remove vertex s and its incident edges

3. For every vertex v € V, run Dijkstra on (G, E, w) ~

[Runtime: O(V-E+V-(Vlog V+E))j

79

a)
[Direct: 7, Detour: —1] [Direct: 10, Detour: 2]

ol
f:f 6.5: All-Pairs Shortest Paths TS. 11

Johnson’s Algorithm

Overview
= allow negative-weight edges and negative-weight cycles

= one pass of Bellman-Ford and | V| passes of Dijkstra
= after Bellman-Ford, edges are reweighted s..

= all edge weights are non-negative
= shortest paths are maintained

[Adding a constant to every edge doesn’t work!]

6.5: All-Pairs Shortest Paths TS. 10

Correctness of Johnson’s Algorithm

w(u,v) = w(u, V) + u.d — v.§

~——— Theorem
For any graph G = (V, E, w) without negative-weight cycles:
1. After reweighting, all edges are non-negative

2. Shortest Paths are preserved

\.

Proof of 1. Let u.6 and v.é be the distances from the fake source s

u.d+wu,v)>v.o (triangle inequality)
= w(u,v) + u.d +w(u,v) > w(u,v) +ud—v.is+v.s
= w(u,v) >0

o
E:E 6.5: All-Pairs Shortest Paths TS. 12

Correctness of Johnson’s Algorithm

Comparison of all Shortest-Path Algorithms

w(u,v) = w(u,Vv)+ u.d — v.§

~——— Theorem

1. After reweighting, all edges are non-negative
2. Shortest Paths are preserved

\.

For any graph G = (V, E, w) without negative-weight cycles:

Proof of 2.

Let p = (vo, w1, ..., Vk) be any path
= In the original graph, the weight is ZL w(Vvi_1, V;).
= In the reweighted graph, the weight is

, SSSP APSP negative
Algorithm
sparse | dense | sparse dense weights
Bellman-Ford V2 V3 V3 v4 v
Dijkstra Viog V V2 V2log V Ve X
Matrix Mult. - - VilogV | VilogV (v)
Johnson - - V2log V Ve v

k
Z w(Vi_1, Vi) = Z(w(\/,_1, Vi) + Vii1.6 — viid) = w(p) + vo.0 — V.6 [

i=1 i=1

Sl
6.5: All-Pairs Shortest Paths TS.

6.5: All-Pairs Shortest Paths

TS.

Outline

Introduction

6.6: Maximum flow

Frank Stajano Thomas Sauerwald

Lent 2015
UNIVERSITY OF
CAMBRIDGE -
6.6: Maximum flow TS. 2
History of the Maximum Flow Problem [Harris, Ross (1955)] Flow Network

- Flow Network

= Abstraction for material (one commodity!) flowing through the edges
G = (V, E) directed graph without parallel edges

Fig. 5— Soviet and
satellite rail
network

= distinguished nodes: source s and sink t
= every edge e has a capacity c(e)
7

[Capacity function c : V x V — R* J [c(u,v) =0« (u,v) ¢ E]

6.6: Maximum flow TS. 4

i
ol 6.6: Maximum flow TsS. 3

Flow Network Flow Network

Flow Flow
A flow is a function f : V x V — R that satisfies: A flow is a function f : V x V — R that satisfies:
= Forevery u,v e V, f(u,v) < c(u, v) (F|0W Conservation) = Forevery u,v e V, f(u,v) < c(u, V)
* Forevery ve V\{s,t}, >, ,ce f(u,v) :/Z(Vyu)e,:_ f(v,u) » Forevery ve V\{s t}, 32, nyee f(U, V) = 221 nyee f(V, 1)
» f(u,v) = —f(v,u) = f(u,v) = —f(v,u)
The value of a flow is defined as |f| =3 .\, f(s, V) ~_ The value of a flow is defined as |f| = 3 .\, f(s, V)

(Sievflsv) = Suer (v.1))

© ®

0/4 0/15
® © ® ®©
0/6‘
0/4 0115 ~ ~_
@ 7 [|f|:5+10+1o:25] @—7 [|f|:5+10+1o:25]
6.6: Maximum flow TS. 4 s 6.6: Maximum flow TS. 4
Flow Network A First Attempt

Flow Greedy Algorithm

= Start with f(u, v) = 0 everywhere
* Forevery u,v eV, f(u,v) < c(u,v) » Repeat as long as possible:

» Forevery vie V\ {s,t}, >, e f(U, V) =2 yyee f(V, U) = Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < ¢(u, v)
’ ’ = Augment flow along p
= f(u,v) = —f(v,u)

The value of a flow is defined as |f| = 3

A flow is a function f : V x V — R that satisfies:

f(s,v)

veV

How to find a Maximum Flow?

@ @ 0/4

0/4 0/15 o o
O O OO 7 ® X
0/4 0/15 ~_ @ 0/10 \3/ 0/9

() @[|f|:8+10+10:28]

g e
o 6.6: Maximum flow TS. 4 »,‘Es,_ 6.6: Maximum flow TS. 5

A First Attempt

A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

* Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
* Augment flow along p

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
* Augment flow along p

)
o 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:

= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

\f| = 16

X
[Is this optimal?]

o 6.6: Maximum flow TS. 5

o 6.6: Maximum flow TS. 5

A First Attempt

Greedy Algorithm
= Start with f(u, v) = 0 everywhere
= Repeat as long as possible:
= Find a (s, t)-path p where each edge e = (u, v) has f(u, v) < c(u, v)
= Augment flow along p

\f| =19

A

[Greedy did not succeed! j

i 6.6: Maximum flow TS. 5

Outline

Ford-Fulkerson

B
D 6.6: Maximum flow TS. 6

The Ford-Fulkerson Method (“Enhanced Greedy”)

0: def fordFulkerson (G)

1: initialize flow to 0 on all edges

2 while an augmenting path in G can be found:

3 push a%much extra flow as possible through it

~
[Augmenting path: Path J [If f' is a flow in G; and f a flow

from source to sink in G in G, then f + f' is a flow in G
_J

(Using BFS or DFS, we can find an
_ L augmenting path in O(V + E) time.
Questions:

/4
= How to find an augmenting path?
= Does this method terminate?
= If it terminates, how good is the solution?

Residual Graph

— Original Edge
Edgee=(u,v) € E
= flow f(u, v) and capacity c(u, v)

O 6/17 @
Residual Capacity)

c(u,v)—f(u,v) if(uv)eE,
ci(u,v) =< f(v,u) if (v,u) € E, :
0 otherwise. v

Graph G:

Residual Gy:
11

Residual Graph
- Gf = (Va Ef7 Cf)! Ef = {(U, V): Cf(U, V) > 0} 000

»,‘Ih 6.6: Maximum flow TS. 7

Illustration of the Ford-Fulkerson Method

6.6: Maximum flow TS. 8

Graph G=(V,E,c):

i
g 6.6: Maximum flow TsS. 9

lllustration of the Ford-Fulkerson Method lllustration of the Ford-Fulkerson Method

Graph G=(V,E,c): Graph G=(V,E,c):

: : 6.6: Maximum flow TS. 9 : t 6.6: Maximum flow T.S.
Illustration of the Ford-Fulkerson Method Illustration of the Ford-Fulkerson Method
Graph G=(V,E,c): Graph G=(V,E,c):

g:g 6.6: Maximum flow T.S. 9 E:g 6.6: Maximum flow T.S.

lllustration of the Ford-Fulkerson Method

Graph G=(V,E,c):

If| =19

A
9%(Is this a max-flow?)
Z

0

i
Gl 6.6: Maximum flow TS. 9

Outline

lllustration of the Ford-Fulkerson Method

Max-Flow Min-Cut Theorem

6.6: Maximum flow T.S. 10

Graph G=(V,E,c):

S
Gl 6.6: Maximum flow TS. 9

From Flows to Cuts

Cut

= Acut (S,T)is a partition of Vinto Sand T = V\ Ssuchthats € S
andte T.

= The capacity of a cut (S, T) is the sum of the capacities of the edges
from Sto T:
(ST = > cls).
ueS,veT

= A mininum cut of a network is a cut whose capacity is minimum over
all cuts of the network.

Graph G=(V,E,c):

c({s,3},{2,4,5,1}) =10 +9 =19

i
Sl 6.6: Maximum flow TS. 11

From Flows to Cuts

From Flows to Cuts

Flow Value Lemma (Lemma 26.4)

Let f be a flow with source s and sink ¢, and let (S, T) be any cut of G.
Then the value of the flow is equal to the net flow across the cut, i.e.,

fl= > fuv)— > f(v,u).

(u,v)EE(S,T) (v,u)eE(T,S)

Graph G=(V,E,c):

.
‘\

@ 6/10 @\8/9
10-2+8=16

S Y
g 6.6: Maximum flow TS.

From Flows to Cuts

fl= > fuv)— > f(v,u).

(u,v)EE(S,T) (v,u)€E(T,S)

fl= > flsw)= Z(quw wau)

(s,w)eE ueS *(u,w)eke (w,u)eE
= Z f(U, V) - Z (Va U)
(u,v)EE(S,T) (v,u)€E(T,S)
Graph G=(V,E,c): |fl =16

6/10 8/9,"': 10/10 @

8+8—-6+6=16

e
i 6.6: Maximum flow T.S.

Flow Value Lemma (Lemma 26.4)

Let f be a flow with source s and sink ¢, and let (S, T) be any cut of G.
Then the value of the flow is equal to the net flow across the cut, i.e.,

fl=" > fuv)— > f(v,u).

(u,v)EE(S,T) (v,u)€E(T,S)
Graph G= (V,E,c): |fl =16
0/4 @
& RN
@ 66 0

6/10 8/9,"': 10/10 @

8+8—-6+6=16

S Y
g 6.6: Maximum flow TS. 11

Weak Duality betwen Flows and Cuts

Weak Duality (Corollary 26.5)

Let f be any flow and (S, T) be any cut. Then the value of f is bounded
from above by the capacity of the cut (S, T), i.e

Ifl <c(S,T).
fl= > fwv- > f(v.u)
(u,v)EE(S,T) (v,u)eE(T,S)
< Y f(uv)
(u,v)EE(S,T)
< > cuv)=¢(S,T). O
(u,v)€EE(S,T)
0/4
\ d’ 6/8\"0
06/10 '8/9
|fl=10-2+8=16 c(S, T)=10+9=19

i
Sl 6.6: Maximum flow TS. 12

Max-Flow Min-Cut Theorem

Theorem
The value of the max-flow is equal to the capacity of the min-cut, that is

max|f| = min ¢(S, T).
f S, TCV

S
Gl 6.6: Maximum flow TS. 13

Key Lemma

Key Lemma (Theorem 26.6)
The following three conditions are all equivalent for any flow f:

1. fis a maximum flow
2. There is no augmenting path in Gy
3. There exists a cut (S, T) such that c(S, T) = |f|

Proof 2 = 3:

= Let f be a flow with no augmenting paths.

= Let S be the nodes reachable fromsin G, T:=V\S=s5€ 5, t¢S.
= (u,v) € E(S,T) = f(u,v) = c(u,v).

* (v,u) € E(T,S) = f(v,u) =0.

&=—=0) 5
9/10 \2/ 9/9 \2/10/10

S
ﬁ:& 6.6: Maximum flow TS. 14

Key Lemma

Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that c(S, T) = |f|

Proof 1 = 2:
= For the sake of contradicion, suppose there is an augmenting path with
respect to f.
= Then we can improve f by increasing the flow along this path.
= Hence f cannot be a maximum flow.

(S, 6.6: Maximum flow TS. 14

Key Lemma

Key Lemma (Theorem 26.6)

The following three conditions are all equivalent for any flow f:
1. fis a maximum flow

2. There is no augmenting path in Gy

3. There exists a cut (S, T) such that c(S, T) = |f|

Proof 2 = 3:

= Let f be a flow with no augmenting paths.

= Let S be the nodes reachable fromsin G, T:=V\S=s5€ 5,t¢S.
= (u,v) € E(S,T) = f(u,v) = c(u,v).

* (v,u) € E(T,S) = f(v,u) =0.

|f|: Z f(U, V)_ Z f(V,U)
(u,v)EE(S,T) (v,u)eE(T,S)
= > cuv)=cST) O
(u,v)EE(S,T)

i
Sl 6.6: Maximum flow TS. 14

Key Lemma Proof of the Max-Flow Min-Cut Theorem

~—— Key Lemma

Key Lemma (Theorem 26.6)
The following three conditions are all equivalent for any flow f:

The following conditions are equivalent for any flow f:
1. There exists a cut (S, T) such that ¢(S, T) = |f|
2. fis a maximum flow

1. fis a maximum flow
2. There is no augmenting path in Gy .) .
3. There exists a cut (S, T) such that c(S, T) = |f| 3. There is no augmenting path in G.

.

Proof 3 = 1: ~—— Theorem

. . The value of the max-flow is equal to the capacity of the min-cut, that is
= Suppose that (S, T) is a cut with c(S, T) = |f|

» By Corollary 26.5, for any flow , max [f| = SfTT‘ignV c(S, 7).
= Hence f is a maximum flow. \
Proof of “<”:
= For any flow f and cut (S, T), |f| < ¢(S, T) (Corollary 26.5)
=

max |f| < min ¢(S, T)
f S, TCV

Sl Sl
o 6.6: Maximum flow TS. 14 S 6.6: Maximum flow TS. 15

Proof of the Max-Flow Min-Cut Theorem Outline

——— Key Lemma \
The following conditions are equivalent for any flow f:
1. There exists a cut (S, T) such that c(S, T) = |f|
2. fis a maximum flow

3. There is no augmenting path in G.

\. J

~—— Theorem N\
The value of the max-flow is equal to the capacity of the min-cut, that is

max|f| = min ¢(S, T).
f S, TCV

\. J

Proof of “>": Analysis of Ford-Fulkerson

= Let fnax be a maximum flow
= Key Lemma = there is a cut (S, T) with ¢(S, T) = |fnax|-

=
max |f| = |fnax| > ¢(S, T) > min ¢(S, T) O
f S,TCV

6.6: Maximum flow T.S. 15 6.6: Maximum flow T.S. 16

Analysis of Ford-Fulkerson

0: def FordFulkerson (G)

1 initialize flow to 0 on all edges

2: while an augmenting path in G can be found:

3 push as much extra flow as possible through it

Lemma
If all capacities c(u, v) are integral, then the flow at every iteration of
Ford-Fulkerson is integral.

e)

Flow before iteration integral
& capacities in Gy are integral
= Flow after iteration integeral

Theorem
For integral capacities c(u, v), Ford-Fulkerson terminates after C :=

maxy,v c(u, v) iterations and returns the maximum flow.
N

\

[at the time of termination, no augmenting path J

= Ford-Fulkerson returns maxflow (Key Lemma)

S Y
6.6: Maximum flow TS. 17

Slow Convergence of Ford-Fulkerson (Figure 26.7)

6.6: Maximum flow T.S. 18

Slow Convergence of Ford-Fulkerson (Figure 26.7)

R)
1
700 Ao®
G Gy

S
Gl 6.6: Maximum flow TS. 18

Slow Convergence of Ford-Fulkerson (Figure 26.7)

(Number of iterations is C := max,, c(u, v)!)

e
[For irrational capacities, Ford-Fulkerson J

may even fail to terminate!

6.6: Maximum flow T.S. 18

Summary and Outlook

——— Ford-Fulkerson Method

= works only for integral (rational) capacities
= Runtime: O(E - |f*]) = O(E - C)

~—— Capacity-Scaling Algorithm
= |dea: Find an augmenting path with high capacity

= Runtime: O(E2 - log C)

\.

= Consider subgraph of Gy consisting of edges (u, v) with ¢¢(u, v) > A
= scaling parameter A, which is initially 2M°%2 €1 and 1 after termination

~——— Edmonds-Karp Algorithm

= |dea: Find the shortest augmenting path in G¢
= Runtime: O(E? - V)

6.6: Maximum flow TsS.

Application: Maximum-Bipartite-Matching Problem

Matching

A matching is a subset M C E such that for all
v € V, at most one edge of M is incident to v.

Bipartite Graph

A graph G is bipartite if V can be partitioned into L
and R so that all edges go between L and R.

Given a bipartite graph G = (V U L, E), find a
matching of maximum cardinality.

6.6: Maximum flow TS.

L R
[Jobs l(Machines l
21

Outline

Matchings in Bipartite Graphs

6.6: Maximum flow

TsS.

20

6.6: Maximum flow

TS.

22

Correspondence between Maximum Matchings and Max Flow

Theorem (Corollary 26.11)

The cardinality of a maximum matching M in a bipartite graph G gquals
the value of a maximum flow f in the corresponding flow network G.

Graph G

Gl 6.6: Maximum flow TS. 23

From Flow to Matching

= Let f be a maximum flow in G’ of value k
= |ntegrality Theorem = f(u, v) € {0,1} and k integral
= Let M’ be all edges from L to R which carry a flow of one
a) Flow Conservation = every node in L receives at most one unit
b) Flow Conservation = every node in R sends at most one unit
c) Cut (LU {s}, RU{t}) = netflow is k = M’ has k edges
= By a) & b), M’ is a matching and by c), M’ has cardinality k
(NN

[value of maxflow < max cardinality matching]

\\’\

g:g 6.6: Maximum flow T.S. 25

From Matching to Flow

= Given a maximum matching of cardinality k
= Consider flow f that sends one unit along each each of k paths
= fis aflow and has value k

[max cardinality matching < value of maxflow]

Graph G Graph G

o ey 6.6: Maximum flow TS.

24

Outline

Introduction and Line Intersection

7: Geometric Algorithms

Frank Stajano Thomas Sauerwald

Lent 2015
B UNIVERSITY OF
CAMBRIDGE -
'E:'E 7: Geometric Algorithms TS.
Introduction Cross Product (Area)
P+ p2 = (3,4)
~—— Computational Geometry ——e)}’\ 1.
= Branch that studies algorithms for pz=(1,3) 7.7
geometric problems ‘
= typically, input is a set of points, line Ps - -
segments etc. [How large is this area?]
. J P2
pP1 = (27 1)
~——— Applications \ P4
= computer graphics > X
= computer vision pr
= textile layout /\
* VLS| design [Do these lines intersect?j
o) ><p2:det<; ;z> =Xyo—Xoy; =2-3—-1-1=5

P2 X P1 = YiXe — YoXi = —p1 X p2 = =5

g i
B 7: Geometric Algorithms TS. 3 %? 7: Geometric Algorithms T.S.

Cross Product in 3D Using Cross product to determine Turns (1/2)

V4
A
y
p1 % P2 = (0,0, X1y — Xo¥1) A
A pz=(1,3)
<[pi x p2 > 0: left (counterclockwise) turn]
P = (27 1)
z f p1 x ps < 0: right (clockwise) turn]
00) [\ At
- ps = (1 ’ _1)
' Sign of cross product determines turn! '
ANW

[Cross product equals zero iff vectors are colinearj

;,I;, 7: Geometric Algorithms TS. 5 7: Geometric Algorithms TS. 6
Using Cross product to determine Turns (2/2) Solving Line Intersection (without Trigonometry and Division!)
)
A
)y\ L
b2 = (3,4) [enxua-s | !
/4
<((p1 — po) x (P2 — po) > 0O: left turn] T
sy (@yx0-n=-3] '
/8 t
po = (?,_1_). { (Pt — po) X (ps — po) < 0O: right turn] (0,0)
. > T (1 —ps) x (pa —ps) = (3,1) x (1,4) =11
ps = (3,0)
(0,0) (P2 = ps) x (pa — ps) = (=1,8) x (1,4) = -7

=
[Opposite signs = pip2 crosses}

(infinite) line through ps and p4

ol e
a'D 7: Geometric Algorithms T.S. 7 6 7: Geometric Algorithms T.S. 8
a'E

Solving Line Intersection (without Trigonometry and Division!)

(0,0)

(Ps — p1) x (P2 — p1) = (=3,-1) x (4,2) = —10

(Ps = p1) x (P2 = p1) = (=2,-2) x (4,2) = 4
= =
[Opposite signs = pi1p2 crosses} [Opposite signs = PsPs crosses}

(infinite) line through ps and ps (infinite) line through py and p.

*I:h 7: Geometric Algorithms TS. 8

Solving Line Intersection (without Trigonometry and Division!)

A
P2
L Ps g -1-|-- =8 D1
i Ps
t t t t t —>»X
(0,0)
T (b3 —p1) x (P2 —p1) <0

(s — p1) x (P2 —p1) <0

[P12 does not cross p3 P, J

Gl 7: Geometric Algorithms T.S. 8

Solving Line Intersection (without Trigonometry and Division!)

A
P2

4 p4

N P1

L 4
t t t t t —>»X
(0,0)

| pipa crosses pspi |

= ~o

Opposite signs = p1p> crosses Opposite signs = p3ps crosses
(infinite) line through ps and ps (infinite) line through py and p.

;I;

,,',;‘ 7: Geometric Algorithms TS. 8

Solving Line Intersection

(0,0)
DIRECTION(ps, pa, p1) = (p1 — Ps) % (s — Ps)

0: DIRECTION(p;, p;, px)
1: return (px — p;) x (pj — P;)

P4 p.
0: SEGMENTS-INTERSECT(p;, pj, Pk)
1: d; = DIRECTION(ps, p4, p1) D1
2: d> = DIRECTION(ps, p4, p2)
3: d3 = DIRECTION(p1, p2, p3) P1
4: dy = DIRECTION(p1, p2, Ps) . — 03
5. lfdi-db <0andd;-ds <O return TRUE{ In total 4 satisfying condmons!]
6: e
(Lines could toch or be colinear)
S

Gl 7: Geometric Algorithms TS. 9

Outline

Convex Hull

7: Geometric Algorithms

TS.

Application of Convex Hull

Robot Motion Planning

N

Find shortest path from s to t which avoids a polygonal obstacle
\

[can be solved by computing the Convex hull! J

7: Geometric Algorithms

TS.

Convex Hull

Vertex lies on the convex hull,
but is not part of the polygon!

]

Definition

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior.

[Smallest perimeter fence enclosing the points]
Convex Hull Problem

= Input: set of points Q in the Euclidean space

= Qutput: return points of the convex hull in counterclockwise order

7: Geometric Algorithms

TS.

Graham’s Scan

Basic Idea

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= |f it does not introduce non-left turn, then fine v/

7: Geometric Algorithms

TS.

Graham’s Scan

Basic Idea

Graham’s Scan

= Start with the point with smallest y-coordinate

= Sort all points increasingly according to their polar angle
= Try to add next point to the convex hull

= |f it does not introduce non-left turn, then fine v/
= Otherwise, keep on removing recent points until point can be added

7: Geometric Algorithms TS. 13

Graham’s Scan

®
y
O -0
—&PH— x
(Use Cr'oss Product!)

, [Efficient Sorting by comparing (not computingT) polar angles]
Basic Idea

= Start with the point with smallest y—ooordinate\
= Sort all points increasingly according to their polar angle

= Try to add next point to the convex hull
= |f it does not introduce non-left turn, then fine v/

o

,,I,, 7: Geometric Algorithms T.S. 13

Complete Run of Graham’s Scan

o)

[Overall Runtime: O(nlog n)]
O

0: GRAHAM-SCAN(Q)

1: Let py be the point with minimum y-coordinate

2: Let (p1, P2, - - -, pn) be the other points sorted by polar angle w.r.t. pg

3: If n < 2 return false

4: S=0 AN

5 PUSH(po,S) [Takes O(nlog n) time]

6 PUSH(p;,S)

7 PUSH(p»,S)

8: Fori=3ton

9: While angle of NEXT-TO-TOP(S),TOP(S),p; makes a non-left turn

10: POP(S) A

11: End While . . -

12: pUSH(p'hS) Takes O(n) time, since every point is

13: End For part of a PUSH or POP at most once.

14: Return S

sfin
f:? 7: Geometric Algorithms TS. 13

i=0
©
o °
® O,
© &)
O
(2
@
© O
O
(9
® \
a0,
Sl
(5 7: Geometric Algorithms T.S. 14

Complete Run of Graham’s Scan Jarvis’ March (Gift wrapping)

i=15v [o]1]s]s]re]s]s]
Intuition
O © = Wrapping taut paper around the points
0 O. © 1. Tape end of paper at lowest point
2. Pull paper to the right until it touches a point
3. Tape paper and go to 2
))
9
0 ~——— Algorithm N
™ 1. Let po be the lowest point
2. Next point the one with smallest angle w.r.t. po
o @ 3. Continue until highest point px
4. Next point the one with smallest angle w.r.t. pg
(o) . Lo =
o L 5. Continue untﬂ\po is reached (Here, we rotate the coordinate system by 180!]
() \ [Runtime: O(n - h) }\(Output sensitive algorithm!]
20,
'E:% 7: Geometric Algorithms T.S. 14 7: Geometric Algorithms T.S. 15
Execution of Jarvis’ March Execution of Jarvis’ March
y y
A
[J
[X
[J d [J [J d [J
[J [J [J [J
([J ([J
° ° g °
° d ° °
[J [J
[J [J
[J [J
O——> X

Y R
B 7: Geometric Algorithms TS. 16 %? 7: Geometric Algorithms TS. 16

Execution of Jarvis’ March

Execution of Jarvis’ March

X <€ S
° {]
@ []
[([
[]
[]
([]
PY ([
([
[
[
o
\4
y
7: Geometric Algorithms T.S. 16

Computing Convex Hull: Summary

— Graham’s Scan
= natural backiracking algorithm

= cross-product avoids computing polar angles
= Runtime dominated by sorting ~~ O(nlog n)

—— Jarvis’ March

= proceeds like wrapping a gift

= Runtime O(nh) ~- output-sensitive
S

[Improves Graham'’s scan only if h = O(log n)

1

[There exists an algorithm with O(nlog h) runtime!]

Lessons Learned

= cross product very powerful tool

= take care of degenerate cases, numerical
precision

7: Geometric Algorithms TS.

@
X €& ° @
[([
]
@
(]
[
([
[
[
y
7: Geometric Algorithms T.S. 16
Outline
Inside or Outside a Polygon?
7: Geometric Algorithms T.S. 18

Another Problem: The Inside-or-Outside a Polygon Problem

Problem

= Given: A polygon as list of edges (x1, 1), (X2, ¥2), - - ., (Xn, ¥n), @and
another point p = (ps, p2)
= Question: Is the point p = (p1, p2) inside or outside the polygon?
[\

Two-year old human can do it, but it's not
S0 obvious how to program a computer...

But this is just the line segment intersection problem...

0: IsInside(point p, polygon G)

1: { let g be a point outside G (’'infinity’)
2: int count = 0;

3: for E an edge of G do

4: if (pg intersects E) count = count+l;
5: if (count is odd) return YES;

6: return NO;

7: }

¥
S E

7: Geometric Algorithms T.S. 20

B
¥

Another Problem: The Inside-or-Outside a Polygon Problem

Problem

= Given: A polygon as list of edges (x1, y1), (X2, y2), - - -, (Xn, ¥n), and
another point p = (pr, P2)

= Question: Is the point p = (p1, p2) inside or outside the polygon?

[

Observation: p is inside if a Iiné drawn from “infinity”

“infinity”: can take
(max; x; + 1, max; y; + 1)

]

to p crosses the polygon an odd number of times

(0]
q
0
i
,,':;‘ 7: Geometric Algorithms TS. 19

Inside-or-Outside the Polygon Problem: Are we done yet?

[Some extra tweaks are needed to make our program (fully) correct... J

l

“Unusual” (Degenerate) Cases: oq
= line (p, q) crosses an endpoint of an edge 0
O
= line (p, q) is parallel to an edge 0
S
Gl 7: Geometric Algorithms T.S. 21

How likely are “unusual” cases?

First Idea

If we take four random points in a plane, then
the mathematical probability of:

= two of them being identical; or

= any two lines connecting them being
parallel

is vashingly small (even “probability zero”)!

Ps P

P

5

I\
I\

[So, | don’t have to worry about this when programming?]
N

= Imagine people drawing squares or two objects together
(Real examples may result in lots of horrible cases)

= Computer floating-point arithmetic is not exact

(Problems when points are very close)

7: Geometric Algorithms

TS. 22

The End

Thank you for attending this course &
Best wishes for the rest of your Tripos!

= Don't forget to visit the online feedback page!

= Please send comments on the slides (typos, criticsm, praise etc.) to:

tms4lQ@cam.ac.uk

7: Geometric Algorithms TS.

23

	Structure
	Operations
	Glimpse at the Analysis
	Amortized Analysis
	Bounding the Maximum Degree
	Disjoint Sets
	Graph Representations
	Introduction to Graphs and Graph Searching
	Breadth-First Search
	Depth-First Search
	Topological Sort
	Introduction
	Bellman-Ford Algorithm
	Dijkstra's Algorithm
	All-Pairs Shortest Path
	APSP via Matrix Multiplication
	Johnson's Algorithm
	Introduction
	Ford-Fulkerson
	Max-Flow Min-Cut Theorem
	Analysis of Ford-Fulkerson
	Matchings in Bipartite Graphs
	Introduction and Line Intersection
	Convex Hull
	Inside or Outside a Polygon?

